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Abstract4

We present the quantification and kinetic characterisation of the enzymes of the pentose5

phosphate pathway in Saccharomyces cerevisiae. The data are combined into a mathematical6

model that describes the dynamics of this system and allows us to predict changes in metabo-7

lite concentrations and fluxes in response to perturbations. We use the model to study the8

response of yeast to a glucose pulse. We then combine the model with an existing glycolysis9

model to study the effect of oxidative stress on carbohydrate metabolism. The combina-10

tion of these two models was made possible by the standardised enzyme kinetic experiments11

carried out in both studies. This work demonstrates the feasibility of constructing larger12

network-scale models by merging smaller pathway-scale models.13

∗To whom correspondence should be addressed at pedro.mendes@manchester.ac.uk
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Introduction14

The pentose phosphate pathway (PPP) is a central and widely conserved metabolic pathway of car-15

bohydrate metabolism which, in eukaryotic cells, is located in the cytoplasm (see Figure 1). This16

pathway serves two major functions: production of precursors for biosynthesis of macromolecules17

and production of reducing equivalents in the form of NADPH. Accordingly, these two roles are re-18

flected in the two major phases of the PPP: in the “oxidative phase”, glucose 6-phosphate (G6P) is19

converted into ribulose 5-phosphate (Ru5P) through the sequential action of glucose-6-phosphate20

dehydrogenase and 6-phosphogluconate dehydrogenase, with lactonase catalysing the hydrolysis21

of its 6-phosphogluconolactone (G6L) product. The “non-oxidative phase” carries out the isomeri-22

sation of Ru5P to ribose 5-phosphate (R5P), the epimerisation of Ru5P to xylulose 5-phosphate23

(X5P) and, through the actions of transketolase and transaldolase, a series of carbon skeleton24

transfers that can interconvert pentose phosphate into fructose 6-phosphate (F6P) and glyceralde-25

hyde 3-phosphate (GAP) – both glycolytic intermediates – and erythrose 4-phosphate (E4P). The26

net effect of the non-oxidative phase is to produce an equilibrium between the pentoses needed for27

biosynthesis of macromolecules and the hexoses needed for energy management, allowing the two28

pools of sugars easily to interconvert. The oxidative branch is considered to be largely irreversible29

under normal cellular conditions, whilst the non-oxidative branch is reversible [Saggerson, 2009].30

The PPP is not a simple linear pathway (see Figure 2) since several carbon atoms are recycled31

back into glycolysis. Furthermore, the enzyme transketolase catalyses two different reactions in the32

pathway, resulting in the substrates of these reactions being competitive inhibitors of one another.33

Thus the dynamic response of this network is hard to predict by intuition and a computational34

model is required for a deeper understanding.35

The PPP has three main products: reduced equivalents in the form of NADPH, produced in36

the oxidative phase, needed in biosynthetic pathways and for maintenance of the oxidative level37

of cells; R5P, for the biosynthesis of all nucleic acids; and E4P, for biosynthesis of the three38

aromatic amino acids. Different physiological states require operation of this biochemical network39

in different modes: in actively growing cells, such as during culture growth in reactors, the pathway40

must produce a sufficient amount of all three products, since all are required in the construction41

of new cells. Under stress conditions growth slows and the only product in considerable demand42

is NADPH.43

Oxidative stress causes damage to all living organisms. A number of defence and repair mechanisms44

have evolved that are conserved from unicellular to multicellular organisms. Cells typically respond45

with post-translational modification of a number of proteins, affecting both their localisation46

and functionality [Godon et al., 1998, Ishii et al., 2007]. In particular, oxidative stress in yeast47

leads to repression of glycolysis and induction of the PPP; this is crucial for maintaining the48

NADPH/NADP+ ratio, which provides the redox power for antioxidant systems [Ralser et al.,49

2007].50

Since the seminal work of [Glock & McLean, 1953], the pentose phosphate pathway has been51

subjected to a number of quantitative studies, including in yeast [Bruinenberg et al., 1983]. Math-52

ematical models of the pathway have been created in yeast [Vaseghi et al., 1999, Ralser et al., 2007],53

trypanosome [Kerkhoven et al., 2013], rat [Haut et al., 1974, Sabate et al., 1995] and human [Joshi54

& Palsson, 1989, Mulquiney & Kuchel, 1999]. However, such studies have over-simplified, or indeed55

completely neglected, the non-oxidative branch of the pathway.56

In this study, we aim to understand the rerouting of flux through the different modes of the57

PPP following in response to different cues. To that end, we kinetically quantify and characterise58

various enzymes in the pathway, combine these properties into a non-linear mathematical model59

that describes the dynamic behaviour of this system, and compare the model’s predictions to60

experimental observations of transient metabolite concentrations following a glucose pulse. We go61

on to examine the response of a combined glycolysis:PPP model to oxidative stress, and compare62

this to measured metabolite levels.63
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Materials and Methods64

Kinetics65

To determine the kinetic parameters of individual enzymatic reactions of the pentose phosphate66

pathway, isoenzymes were purified as described previously [Malys et al., 2011]. Spectrophotomet-67

ric assays were then performed for most of the isoenzymes, following a similar strategy to [Messiha68

et al., 2011, Smallbone et al., 2013]. Enzymes were assayed spectrophotometrically through de-69

tection of NADPH or NADH, by using coupling reactions where needed, with the exception of70

ribulose-5-phosphate-3-epimerase (RPE1) and ribose-5-phosphate ketol isomerase (RKI1) which71

where assayed using circular dichroism (CD, [Kochetov et al., 1978]). Spectrophotometric assays72

were coupled with enzyme(s) in which NADH or NADPH is a substrate or product so that its73

consumption or formation could be followed spectrophotometrically at 340 nm, using an extinc-74

tion coefficient of 6.62 mM−1cm−1. This is unless the reaction of a particular enzyme consumes75

or produces NADH or NADPH, in which case no coupling enzymes were needed.76

Absorbance measurements were carried out with a BMG Labtech NOVOstar plate reader (Offen-77

burg, Germany) in 384-well format plates in a 60µl reaction volume. All assays were performed78

in a standardised reaction buffer (100 mM MES, pH 6.5, 100 mM KCl, and 5 mM free magnesium79

in the form of MgCl2) at 30 ◦C and were automated so that all reagents in the reaction buffer (in-80

cluding any coupling enzymes) are in 45µl, the enzyme (to be assayed) in 5µl and the substrate in81

10µl volumes as described in [Messiha et al., 2011]. For each individual enzyme, both the forward82

and the reverse reactions were assayed whenever possible.83

Assays for each enzyme were either developed or modified from previously published methodology84

to be compatible with the conditions of the assay reactions (e.g. pH compatibility or unavailability85

of commercial substrates). The assay conditions used for each enzyme were as follows:86

6-phosphogluconate dehydrogenase GND1 and GND2 were assayed in the reaction buffer87

in the forward reaction by direct measurement of the production of NADPH as in [He et al., 2007].88

The kinetic parameters for each isoenzyme were determined by varying the concentration of each89

substrate (6-phosphogluconate and NADP) at fixed saturated concentration of the other.90

6-phosphogluconolactonase SOL3 and SOL4 were assayed in the reaction buffer exactly ac-91

cording to [Schofield & Sols, 1976].92

Transaldolase TAL1 and NQM1 were assayed in the reaction buffer in the forward and reverse93

directions according to [Tsolas & Joris, 1964, Wood, 1972]. Since sedoheptulose 7-phosphate94

was not available commercially, we obtained its barium salt synthesised by Chemos GmbH, and95

converted it to the sodium salt just prior to assay, according to [Charmantray et al., 2009].96

Transketolase TKL1 and TKL2 were assayed for both of their participatory reactions in the97

reaction buffer in the forward and reverse directions according to [Datta & Racker, 1961, Kochetov,98

1982]. The kinetic parameters were determined by varying the concentration of each substrate at99

a fixed saturated concentration of the other for the forward and reverse reactions.100

Glucose-6-phosphate dehydrogenase ZWF1 was assayed in the reaction buffer in the forward101

reaction by direct measurement of the production of NADPH according to [Gould & Goheer, 1976].102
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Ribose-5-phosphate ketol-isomerase RKI1 was assayed for the forward and reverse reac-103

tion by CD measurements [Kochetov et al., 1978]. The assay was developed based on the fact104

that ribulose-5-phosphate has a maximum absorbance at 278 nm, with a measured coefficient of105

-2.88 m◦mM−1mm−1, and ribose-5-phosphate has an absorbance at 278 nm with a measured coef-106

ficient of -0.131 m◦mM−1mm−1. The data were collected in 400µl in a 1 mm path length cuvette.107

In both directions, the change in CD angle θ at 278 nm was used to calculate the rate of reaction.108

D-ribulose-5-phosphate 3-epimerase RPE1 was assayed for the forward and reverse reaction109

by CD measurements. The assay was developed and modified from [Karmali et al., 1983]. Ribulose-110

5-phosphate and xylulose-5-phosphate have an absorbance at 278 nm with a measured coefficients111

of -2.88 m◦mM−1mm−1 and +0.846 m◦mM−1mm−1, respectively. The change of CD θ at 278 nm112

was again followed to infer the rate of reaction in both directions.113

All measurements are based on at least duplicate determination of the reaction rates at each114

substrate concentration. For each isoenzyme, the initial rates at various substrate concentrations115

were determined and the data obtained were analysed by the KineticsWizard [Swainston et al.,116

2010] and COPASI [Hoops et al., 2006] and fitted to Michaelis-Menten type kinetics (see Table 1).117

Whilst most of the assay methodologies performed here were reported previously, the CD measure-118

ments for ribose-5-phosphate ketol-isomerase and D-ribulose-5-phosphate 3-epimerase were newly119

developed for this study.120

Proteomics121

We attempted to measure the absolute quantities of all isoenzymes in this pathway through the122

QConCAT technology [Benyon et al., 2005]. Total cell protein was extracted from turbidostat123

yeast cultures as described earlier [Carroll et al., 2011]. Data analyses were performed using the124

PrideWizard software [Swainston et al., 2011] (see Table 2). Concentrations were then calculated125

from copy number using a typical cytoplasmic volume of 5 fl [Smallbone et al., 2013].126

Model construction127

From a modelling perspective, the enzyme kinetic constants and protein concentrations represent128

the parameters of the system, while the metabolite concentrations (Table 3) represent the vari-129

ables. Combining the protein concentration data with those for the enzyme kinetic parameters130

allows a mathematical model to be produced for this system (Table 4) in ordinary differential131

equation format. Simple Michaelis-Menten kinetics are used for enzymatic reactions. The reac-132

tions consuming NADPH, E4P and R5P (sinks) are represented with mass-action kinetics (all133

set to an arbitraty rate constant of k = 1 s−1). Initial concentrations of metabolites are set to134

the values we measured experimentally. The model considers, in the first instance, the PPP in135

isolation. Thus we consider three boundary metabolites to be fixed: F6P, G6P and GAP.136

To consider oxidative stress, however, we expanded the model to combine it with our recently137

published model of glycolysis (that includes trehalose and glycerol metabolism) [Smallbone et al.,138

2013], where the enzymatic parameters were determined in the same condiditions as described139

here. This combined glycolysis:PPP model contains 34 reactions, and allows calculation of the140

concentration of 32 metabolites (variables). Importantly, it allows us to compare the joint response141

of both pathways to environmental perturbations.142

Simulations and analyses were performed in the software COPASI [Hoops et al., 2006]. The models143

described here are available in SBML format [Hucka et al., 2003] from the BioModels database [Li144

et al., 2010] with identifiers BIOMD0000000502 (PPP in isolation) and BIOMD0000000503 (com-145

bined glycolysis:PPP); the models are also available from JWS online [Olivier & Snoep, 2004] at146

http://jjj.mib.ac.uk/database/messiha/ where they can be inspected interactively.147
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Results148

Experimental149

Kinetic data were obtained for all PPP isoenzymes, with the exception of SOL3 and SOL4 which150

showed no activity after purification (see Table 1). Any missing kinetic parameters were taken151

from previous models [Vaseghi et al., 1999, Ralser et al., 2007], or given initial estimates using152

typical values (kcat = 10 s−1, Km = 0.1 mM, [Bar-Even et al., 2011, Smallbone & Mendes, 2013]).153

Only four of the isoenzymes (Gnd1, Sol3, Tal1 and Tkl1) were detected using the QConCAT pro-154

teomic approach. In the case of Gnd1/Gnd2 and Tal1/Nqm1, only the most abundant isoenzyme155

was detected in each case, and it is likely that the expression level the less abundant isoenzyme was156

not necessarily zero but at least it was below the detection limit. The remaining three undetected157

enzymes (Rki1, Rpe1 and Zwf1) were found in a previous study ([Ghaemmaghami et al., 2003],158

detailed in Table 2). Moreover, these are soluble cytoplasmic proteins, so we can assume they159

were likely present in the extracted protein preparations (rather than sequestered to membranes,160

and subsequently lost as insoluble material). There are two possible explanations for the fail-161

ure to detect these proteins: poor or incomplete proteolysis (trypsin miscleavage) or unexpected162

post-translational modifications, either naturally occurring or inadvertently introduced during the163

experimental protocol.164

There is a discrepancy between the TAP-tagged published data [Ghaemmaghami et al., 2003]165

and the QconCAT quantifications described here, with our study reporting twenty-fold higher166

values. We have observed higher values for QconCAT quantifications in a previous study on167

glycolytic enzymes [Carroll et al., 2011], compared to TAP-tagged values. In the same study we168

also compared the values obtained by QconCAT with other approaches; indeed the QconCAT169

method gave the highest values of all methods compared.170

We note that the TAP-tagged values were obtained for haploid cells, whereas the current study171

uses diploid cells. We estimate the total cellular protein to be approximately 6 pg for diploid cells172

(though some studies give a higher value of 8 pg/cell [Sherman, 2002]), and 3–4 pg for haploid cells.173

This alone does not therefore account for the discrepancy; by this rationale one might expect the174

QconCAT values to be simply double. However, in our previous study [Carroll et al., 2011] we also175

raised the possibility of ‘range compression’, where abundant proteins are underestimated, due to176

limited linear range with TAP-tagged methodologies, and other approaches. It is also possible177

that different yeast strains, growth conditions, extraction methods and analytical workflows result178

in very different values, making convergence of data far from trivial.179

Given these discrepancies, using the data from [Ghaemmaghami et al., 2003] directly to fill in any180

missing measurements would not be appropriate. Rather, in cases where one of two isoenzymes181

was not quantified (Gnd2, Nqm1), the same ratio was maintained as as in [Ghaemmaghami et al.,182

2003] (i.e. we use the same proportions of the two isoenzymes). For the remaining three undetected183

enzymes (Rki1, Rpe1, Zwf1) the value reported in that study was multiplied by twenty to provide184

an initial estimate.185
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Glucose pulse186

In an earlier study [Vaseghi et al., 1999], changes in G6P concentration following a glucose pulse187

were found to follow the empirical function188

G6P = 0.9 +
44.1 t

48.0 + t+ 0.45 t2
,

where t represents time in seconds.189

We used this function as an input representing a glucose pulse, and compared the model’s predicted190

changes in NADPH and P6G concentration with the experimental observations of [Vaseghi et al.,191

1999] (see Figure 3).192

Whilst the present model contains many parameters that were measured under standardised condi-193

tions, a few parameters were not possible to determine experimentally and were therefore obtained194

from the literature. We thus employed the fitting strategy set out in [Smallbone et al., 2013]. The195

relative contribution of each parameter value to the quality of fit to time-course data was ranked196

using sensitivity analysis. If we were unable to closely match the data varying only the most197

important parameter, we tried using two parameters, and continued until the cycle was complete198

and a satisfactory fit was obtained. Parameters maintained their initial value where possible. Five199

parameters were varied in this way (see Table 5) to provide the match seen in Figure 3. Of these200

five, three were initial guesses, one (ZWF:Kg6l) was measured under other conditions, and only201

one ([Gnd1]) had been measured by us, but nonetheless fitted to the data.202

Oxidative stress203

One of the proteins that responds to oxidative stress is the glycolytic enzyme glyceraldehyde-3-204

phosphate dehydrogenase (TDH). In response to high oxidant levels this enzyme is inactivated205

and accumulates in the nucleus of the cell in several organisms and cell types [Chuang et al.,206

2005, Shenton & Grant, 2003]. Thus, we simulate in silico oxidative stress through reduction of207

TDH activity in the combined glycolysis:PPP model to 25% of its wild-type value, following the208

approach of [Ralser et al., 2007]. Cells also respond to the presence of oxidative agents through209

slower growth, which we translate in our model as reducing the requirement for E4P and R5P (the210

biomass precursors); we thus reduce the rate of consumption of these by two orders of magnitude211

from their reference values. The defence against the oxidant agent requires reductive power which212

is ultimately supplied by NADPH (e.g. through glutathione); we thus also increase the rate of213

NADPH consumption by two orders of magnitude. We may then compare predicted changes in214

metabolite concentrations to those measured in response to H2O2 treatment [Ralser et al., 2007],215

a typical oxidative stress agent [Godon et al., 1998].216

The results of these simulations are presented in Table 6. They show that seven of the eight217

qualitative changes in metabolite concentrations are correctly predicted by the model. A difference218

between the experimental data and the predictions was only observed for the metabolite glycerol219

3-phosphate (G3P), where the simulation predicts a small increase, but experimentally we observe220

a small decrease.221

As the qualitative predictions reasonably matched the experimental data set, we moved on to222

calculate the influence of oxidative stress on carbon flux. Experimental measurements show that,223

in aerobic growth conditions on glucose minimal medium, PPP activity accounts for approximately224

10% of the total consumption of glucose [Blank et al., 2005]. This is reasonably consistent with225

our simulations’ prediction that the ratio of fluxes into PPP (via ZWF) and into glycolysis (via226

PGI) is 1:18, or 6%. Under oxidative stress conditions, our simulations predict that the ratio of227

fluxes into PPP and into glycolysis increases two-fold, corroborating the hypothesis that oxidative228

stress leads to a redirection of the carbohydrate flux [Ralser et al., 2007].229
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Control analysis230

Metabolic control analysis (MCA) is a biochemical formalism, defining how variables, such as231

fluxes and concentrations, depend on network parameters. It stems from the work of [Kacser &232

Burns, 1973] and, independently, [Heinrich & Rapoport, 1974]. In Table 7 (a), we present the flux233

control coefficients for the (fitted) PPP model. These are measures of how a relative change in234

enzyme activity leads to a change in steady state flux through the system. For example, from235

the third row of the table, we predict that a 1% increase in GND levels would lead to a 0.153%236

decrease in RPE flux.237

The table shows us that control of flux into the pathway (via ZWF) is dominated by ZWF, SOL,238

GND and NADPH oxidase (the latter representing all processes that oxidise NADPH). Returning239

to Figure 1, we see that these correspond to the first three steps of the pathway plus NADPH240

recycling – the oxidative phase. The table also shows the overall control of each step of the241

pathway, taken in COPASI [Hoops et al., 2006] to be the norm of the control coefficients. We see242

that little control is exerted by the RPE and TKL (R5P:S7P) steps. The three sinks have high243

overall control, and as such we would expect fluxes through the pathway to be highly dependent244

on growth rate and stress levels.245

In the oxidative stress simulation the control distribution changes, as presented in Table 7 (b). The246

main observation from these data is that the control of the pathway input flux by the NADPH247

oxidase is now much lower – this is somewhat expected since the rate of this step increased 100×248

and thus became less limiting. Less intuitive is the reduction of overall control of the network by249

RKI (the reaction that produces ribose 5-phosphate, which is then used for nucleic acid biosyn-250

thesis). However this result implies that, under oxidative stress, the PPP is essentially insensitive251

to the “pull” from ribose use for nucleic acid synthesis, which agrees with the observation that252

growth is arrested under these conditions.253
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Discussion254

The pentose phosphate pathway, depicted in Figure 1, is a central pathway in yeast and in most255

organisms and serves two main functions: maintenance of the NADPH:NADP+ ratio, and pro-256

duction of several precursors for biosynthesis of macromolecules. These two roles of the pathway257

are mirrored in its structure and it consists of two semi-independent parts; the oxidative branch258

reduces NADP+, whilst the non-oxidative branch creates R5P, a precursor for nucleic acid biosyn-259

thesis, or E4P, a precursor for aromatic amino acids and some vitamins. The PPP is intimately260

connected with glycolysis as it diverts some of its flux away from energy production. Furthermore,261

the two pathways have three metabolites in common: G6P, F6P and GAP.262

In order to describe a biological system such as PPP quantitatively, the kinetic properties of263

all its components need to be established in conditions close to the physiological [van Eunen et264

al., 2010, Messiha et al., 2011]. Where possible, they should represent a system in steady state,265

where all measurements, even if carried out at different times, are performed under identical266

conditions. Following the methodology previously applied to glycolysis [Smallbone et al., 2013],267

robust and standardised enzyme kinetics and quantitative proteomics measurements were applied268

to the enzymes of the pentose phosphate pathway in the S. cerevisiae strain YDL227C. The269

resulting data are integrated in a kinetic model of the pathway. This is in contrast to previous270

studies [Vaseghi et al., 1999, Ralser et al., 2007], where kinetic parameters were taken from various271

literature sources and different organisms:272

“The kinetic constants were determined using enzymes from five different species (hu-273

man, cow, rabbit, yeast, E. coli) in different laboratories over a period of more than274

three decades. Consequently, it cannot be expected that the simulations coincide quan-275

titatively with the measured metabolite concentrations.” [Ralser et al., 2007]276

We may have more confidence in our model, whose parameters were determined under standardised277

conditions. We thus use the model to study the response of the pentose phosphate pathway to a278

glucose pulse (Figure 3). We go on to use model to study the combined response of glycolysis and279

PPP to oxidative stress, and find that a considerable amount of flux is rerouted through the PPP.280

Our modelling approach also reveals a discrepancy between the observed change in G3P levels281

following stress cannot be predicted by current understanding of glycolysis and PPP; following282

the “cycle of knowledge” [Kell, 2006], it is of interest to direct future focus towards glycerol283

metabolism in order to improve the accuracy of this model.284

It is important to highlight that we were not able here to quantify the concentration of all enzymes285

in the pathway, thus having to rely on crude estimates. The physiological conditions under which286

the cells were measured by [Ghaemmaghami et al., 2003] were very different than those used here,287

which could result in inaccurate estimates for the concentration of several enzymes. However the288

fact that we have measured kcat values for those enzymes will allow easy correction of the model289

if accurate enzyme concentrations are determined later. Indeed, these data will allow to account290

for changes in enzyme concentrations resulting from a longer term response of the cells, through291

protein degradation or increased protein synthesis rate due to changes at the level of transcription292

and translation.293

The combined PPP and glycolysis model demonstrates the value of standardised enzyme kinetic294

measurements – models thus parameterised can be combined to expand their scope, eventually295

forming large-scale models of metabolism [Snoep, 2005, Snoep et al., 2006, Smallbone & Mendes,296

2013]. Indeed the combined glycolysis:PPP model could be expanded to consider enzyme con-297

centrations as variables (through accounting for their synthesis and degradation, reflecting gene298

expression and signalling) which would improve its utility in predicting a broader array of condi-299

tions. Such an expansion of models to cover wider areas of metabolism and cellular biochemistry300

will lead to digital organisms, as shown in a recent proof of principle for the simple bacterium301

Mycoplasma genitalium [Karr et al., 2012].302
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The “bottom-up” strategy used here is to combine compatible kinetic models (PPP and glycolysis),303

expanding them towards a larger metabolic model. An alternative (“top-down”) strategy is to304

start with a large structural yeast network [Herrg̊ard et al., 2008, Dobson et al., 2010, Heavner305

et al., 2012, Heavner et al., 2013, Aung et al., 2013], then add estimated kinetic parameters and,306

through successive rounds of improvement, incorporate measured parameters [Smallbone et al.,307

2010, Smallbone & Mendes, 2013, Stanford et al., 2013], in an automated manner where possible308

[Li et al., 2010, Büchel et al., 2013]. Can these two strategies be combined into a more robust and309

scalable approach?310

In summary, we present here a model of the yeast pentose phosphate pathway that we believe is311

the most realistic so far, including experimentally determined kinetic parameters for its enzymes312

and physiological enzyme concentrations. A more complex model resulting from the combination313

of this PPP model with a previous glycolytic model [Smallbone et al., 2013] was possible due to314

the standardised way in which the kinetic parameters were measured. This opens up the prospect315

of expanding models to eventually cover the entire metabolism of a cell in a way that makes them316

compatible with a further improvement, by including the effects of changes in gene expression.317
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Figure 1: Pictorial representation of the pentose phosphate pathway in Systems Biology Graphical
Notation format (SBGN, [Le Novère et al., 2009])), where a circle represents a simple chemical, a
rounded rectangle represents a macromolecule, the empty set symbol represents a sink, and a box
represents a process.
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Figure 2: Pictorial representation of the combined glycolysis:PPP model in SBGN format. Note
that the enzymes are ommited from this diagram for clarity of the layout.
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Figure 3: A pulse in G6P is applied to the model and a comparison is made between the predicted
(lines) and experimentally-determined (circles) concentrations of NADPH and P6G. The system
is first run to steady state before application of the pulse.
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Table 1: Enzyme kinetic parameters used in the model. Standard errors are given where the
parameters were measured in this study.

reaction isoenzyme parameter value units SEM / reference

GND Gnd1 kcat 28.0 s−1 ±1.8%
GND Gnd1 Kp6g 0.062 mM ±7.7%
GND Gnd1 Knadp 0.094 mM ±14%
GND Gnd1 Kru5p 0.1 mM –
GND Gnd1 Knadph 0.055 mM [Vaseghi et al., 1999]
GND Gnd2 kcat 27.3 s−1 ±2.5%
GND Gnd2 Kp6g 0.115 mM ±12%
GND Gnd2 Knadp 0.094 mM ±8.9%
GND Gnd2 Kru5p 0.1 mM –
GND Gnd2 Knadph 0.055 mM [Vaseghi et al., 1999]

RKI Rki1 kcat 335 s−1 ±9.5%
RKI Rki1 Kru5p 2.47 mM ±53%
RKI Rki1 Kr5p 5.70 mM ±19%
RKI Keq 4.0 1 [Vaseghi et al., 1999]

RPE Rpe1 kcat 4020 s−1 ±0.097%
RPE Rpe1 Kr5up 5.97 mM ±0.50%
RPE Rpe1 Kx5p 7.70 mM ±0.30%
RPE Keq 1.4 1 [Vaseghi et al., 1999]

SOL Sol3 kcat 10 s−1 –
SOL Sol3 Kg6l 0.8 mM [Ralser et al., 2007]
SOL Sol3 Kp6g 0.1 mM –

TAL Tal1 kcat 0.694 s−1 ±2.8%
TAL Tal1 Kgap 0.272 mM ±12%
TAL Tal1 Ks7p 0.786 mM ±9.7%
TAL Tal1 Kf6p 1.44 mM ±15%
TAL Tal1 Ke4p 0.362 mM ±15%
TAL Nqm1 kcat 0.694 s−1 –
TAL Nqm1 Kgap 0.272 mM –
TAL Nqm1 Ks7p 0.786 mM –
TAL Nqm1 Kf6p 1.04 mM ±25%
TAL Nqm1 Ke4p 0.305 mM ±8.0%
TAL Keq 1.05 1 [Vaseghi et al., 1999]

TKL Tkl1 kcat (E4P:F6P) 47.1 s−1 ±2.9%
TKL Tkl1 kcat (R5P:S7P) 40.5 s−1 ±2.9%
TKL Tkl1 Kx5p 0.67 mM ±13%
TKL Tkl1 Ke4p 0.946 mM ±8.7%
TKL Tkl1 Kr5p 0.235 mM ±13%
TKL Tkl1 Kgap 0.1 mM [Ralser et al., 2007]
TKL Tkl1 Kf6p 1.1 mM [Ralser et al., 2007]
TKL Tkl1 Ks7p 0.15 mM [Ralser et al., 2007]
TKL Keq (E4P:F6P) 10.0 1 [Vaseghi et al., 1999]
TKL Keq (R5P:S7P) 1.2 1 [Vaseghi et al., 1999]
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ZWF Zwf1 kcat 189 s−1 ±1.2%
ZWF Zwf1 Kg6p 0.042 mM ±5.0%
ZWF Zwf1 Knadp 0.045 mM ±6.3%
ZWF Zwf1 Kg6l 0.1 mM –
ZWF Zwf1 Knadph 0.017 mM [Ralser et al., 2007]

NADPH oxidase k 1 s−1 –
E4P sink k 1 s−1 –
R5P sink k 1 s−1 –
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Table 2: Protein levels used in the model. Standard errors are given where measured in this study.

reaction isoenzyme UniProt #/cell SEM [Ghaemmaghami et al., 2003] mM

GND Gnd1 P38720 1,010,000 ±21% 101,000 0.335
GND Gnd2 P53319 556 0.003
RKI Rki1 Q12189 5,680 0.05
RPE Rpe1 P46969 3,310 0.03
SOL Sol3 P38858 89,000 ±27% 3,420 0.0296
TAL Tal1 P15019 434,000 ±10% 53,000 0.144
TAL Nqm1 P53228 1,920 0.02
TKL Tkl1 P23254 1,370,000 ±36% 40,300 0.455
ZWF Zwf1 P11412 15,000 0.1
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Table 3: Initial metabolite concentrations used in the model, and a comparison to their steady
state levels. G6P, F6P and GAP are boundary metabolites. Note that NADP and NADPH form
a conserved moeity with (experimentally-determined) constant total concentration 0.33 mM.

metabolite ChEBI id
concentration (mM)

reference
initial steady state

E4P 16897 0.029 0.0130 [Vaseghi et al., 1999]
G6L 57955 0.1 2.25 –

NADP 58349 0.17 0.166 [Vaseghi et al., 1999]
NADPH 57783 0.16 0.164 [Vaseghi et al., 1999]

P6G 58759 0.25 0.255 [Vaseghi et al., 1999]
R5P 18189 0.118 0.0940 [Vaseghi et al., 1999]
Ru5P 58121 0.033 0.0379 [Vaseghi et al., 1999]
S7P 57483 0.082 0.0902 [Vaseghi et al., 1999]
X5P 57737 0.041 0.0539 [Vaseghi et al., 1999]

G6P 16897 0.9 [Vaseghi et al., 1999]
F6P 57579 0.325 [Smallbone et al., 2013]
GAP 58027 0.067 [Smallbone et al., 2013]
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Table 4: Kinetic rate laws for the reaction velocities used in the model.

enzyme E.C. reaction rate law

GND 1.1.1.44 P6G + NADP −→ Ru5P + NADPH
Gnd kcat

Kp6g Knadp

P6G NADP

(1 + P6G/Kp6g + Ru5P/Kru5p) (1 + NADP/Knadp + NADPH/Knadph)

RKI 5.3.1.6 Ru5P←→ R5P
Rki1 kcat

Kru5p

Ru5P− R5P/Keq

1 + Ru5P/Kru5p + R5P/Kr5p

RPE 5.1.3.1 Ru5P←→ X5P
Rpe1 kcat

Kru5p

Ru5P−X5P/Keq

1 + Ru5P/Kru5p + X5P/Kx5p

SOL 3.1.1.31 G6L −→ P6G
Sol3 kcat

Kg6l

G6L

1 + G6L/Kg6l + P6G/Kp6g

TAL 2.2.1.2 GAP + S7P←→ F6P + E4P
Tal kcat

Kgap Ks7p

GAP S7P− F6P E4P/Keq

(1 + GAP/Kgap + F6P/Kf6p) (1 + S7P/Ks7p + E4P/Ke4p)

TKL (E4P:F6P) 2.2.1.1 X5P + E4P←→ GAP + F6P
Tkl1 kcat

Kx5p Ke4p

X5P E4P−GAP F6P/Keq

(1 + X5P/Kx5p + GAP/Kgap) (1 + E4P/Ke4p + F6P/Kf6p + R5P/Kr5p + S7P/Ks7p)

TKL (R5P:S7P) 2.2.1.1 X5P + R5P←→ GAP + S7P
Tkl1 kcat

Kx5p Kr5p

X5P R5P−GAP S7P/Keq

(1 + X5P/Kx5p + GAP/Kgap) (1 + E4P/Ke4p + F6P/Kf6p + R5P/Kr5p + S7P/Ks7p)

ZWF 1.1.1.49 G6P + NADP −→ G6L + NADPH
Zwf1 kcat

Kg6p Knadp

G6P NADP

(1 + G6P/Kg6p + G6L/Kg6l) (1 + NADP/Knadp + NADPH/Knadph)

NADPH oxidase NADPH −→ NADP k ·NADPH

E4P sink E4P −→ k · E4P

R5P sink R5P −→ k · R5P

23

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.146v4 | CC-BY 3.0 Open Access | received: 10 Apr 2014, published: 10 Apr 2014

P
re
P
rin

ts

http://identifiers.org/ec-code/1.1.1.44
http://identifiers.org/ec-code/5.3.1.6
http://identifiers.org/ec-code/5.1.3.1
http://identifiers.org/ec-code/3.1.1.31
http://identifiers.org/ec-code/2.2.1.2
http://identifiers.org/ec-code/2.2.1.1
http://identifiers.org/ec-code/2.2.1.1
http://identifiers.org/ec-code/1.1.1.49


Table 5: Parameter changes in the fitted version of the model.

reaction parameter initial fitted

GND [Gnd1] 0.335 0.013
SOL kcat 10 4.3
SOL Kp6g 0.1 0.5
ZWF [Zwf1] 0.1 0.02
ZWF Kg6l 0.1 0.01
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Table 6: Change in experimentally-determined metabolite concentrations with and without oxida-
tive stress and the predictions from the combined glycolysis:PPP model. Changes are presented
as log10 ([stressed]/[reference]).

metabolite ChEBI id in vivo change in silico change

DHAP 16108 0.172 0.158
F6P+G6P 47877 0.183 0.238

G3P 15978 −0.073 0.096
GAP 29052 0.176 0.173
P6G 58759 0.699 0.603
R5P 18189 0.295 1.919

Ru5P+X5P 24976 0.908 1.723
S7P 57483 1.405 3.429
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Table 7: Flux control coefficients in the PPP model in (a) the reference state and (b) following oxidative stress. The rows represent the fluxes under
control, and the columns represent the controlling reactions. The overall control values are defined by the L2-norm of the column values.
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T
A
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T
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(E
4
P
:F
6
P
)

T
K
L

(R
5
P
:S
7
P
)

Z
W

F

N
A
D
P
H

o
x
id
a
se

E
4
P

sin
k

R
5
P

sin
k

(a) GND 0.156 0.004 0.000 0.333 0.000 −0.001 0.000 0.128 0.374 0.000 0.005
RKI 0.118 0.034 0.001 0.251 −0.006 0.084 0.000 0.096 0.283 0.028 0.111
RPE −0.153 0.251 0.010 −0.327 −0.050 0.682 −0.001 −0.125 −0.367 0.227 0.853
SOL 0.156 0.004 0.000 0.333 0.000 −0.001 0.000 0.128 0.374 0.000 0.005
TAL 0.772 −1.076 −0.045 1.645 0.849 −0.585 0.011 0.631 1.848 1.432 −4.483

TKL E4P:F6P −0.106 0.183 0.008 −0.226 −0.004 0.618 −0.001 −0.087 −0.254 0.288 0.580
TKL R5P:S7P 0.772 −1.076 −0.045 1.645 0.849 −0.585 0.011 0.631 1.848 1.432 −4.483

ZWF 0.156 0.004 0.000 0.333 0.000 −0.001 0.000 0.128 0.374 0.000 0.005
NADPH oxidase 0.156 0.004 0.000 0.333 0.000 −0.001 0.000 0.128 0.374 0.000 0.005

E4P sink −0.063 0.122 0.005 −0.135 0.038 0.559 0.000 −0.052 −0.151 0.344 0.334
R5P sink 0.114 0.042 0.002 0.242 −0.012 0.088 0.000 0.093 0.272 0.018 0.141

overall 1.163 1.559 0.065 2.481 1.203 1.364 0.016 0.952 2.788 2.087 6.434

(b) GND 0.103 0.001 0.000 0.638 0.055 0.006 0.000 0.131 0.003 −0.005 0.067
RKI 0.159 0.001 0.000 0.984 −0.359 −0.066 0.004 0.202 0.005 0.055 0.016
RPE −0.044 0.001 0.000 −0.271 1.145 0.198 −0.012 −0.056 −0.001 −0.161 0.202
SOL 0.103 0.001 0.000 0.638 0.055 0.006 0.000 0.131 0.003 −0.005 0.067
TAL 0.009 0.000 0.000 0.055 0.934 0.013 0.002 0.011 0.000 0.017 −0.041

TKL E4P:F6P −0.141 0.003 0.000 −0.875 1.535 0.540 −0.038 −0.180 −0.004 −0.492 0.653
TKL R5P:S7P 0.009 0.000 0.000 0.055 0.934 0.013 0.002 0.011 0.000 0.017 −0.041

ZWF 0.103 0.001 0.000 0.638 0.055 0.006 0.000 0.131 0.003 −0.005 0.067
NADPH oxidase 0.103 0.001 0.000 0.638 0.055 0.006 0.000 0.131 0.003 −0.005 0.067

E4P sink 0.185 −0.005 0.001 1.144 0.231 −0.605 0.049 0.235 0.005 0.613 −0.852
R5P sink 0.208 0.002 0.000 1.288 −0.784 −0.092 0.005 0.265 0.006 0.067 0.034

overall 0.409 0.007 0.001 2.531 2.494 0.843 0.064 0.521 0.012 0.807 1.103
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Figure 4: Saturation curves for the assays performed in this study. The original data are available
from http://dbkgroup.org:8080/mcisb-web/MeMo-RK/
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