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Abstract 

The ability of materials to define the architecture and micro-environment experienced by cells 

provides new opportunities to direct the fate of human pluripotent stem cells (HPSCs) (Robinton 

DA, et al (2012) Nature 481:295-305). However, the conditions required for self-renewal verses 

differentiation of HPSCs are different and a single system that efficiently achieves both 

outcomes is not available (Giobbe GG, et al. (2012) Biotech Bioeng 109:3119-3132). We have 

addressed this dual need by developing a hydrogel-based material that uses ionic decrosslinking 

to remove a self-renewal permissive hydrogel (alginate) and switch to a differentiation-

permissive micro-environment (collagen). Adjusting the timing of this switch can preferentially 

steer the HPSC differentiation to mimic lineage commitment during gastrulation to ectoderm 

(early switch) or mesoderm/endoderm (late switch). As an exemplar differentiated cell type, we 

showed that directing early-lineage specification using this single system can promote 

cardiogenesis with increased gene expression in high-density cell populations. This work will 

facilitate regenerative medicine by allowing in situ HPSC expansion to be coupled with early 

lineage-specification within defined tissue geometries. 
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Significance Statement 

Stem cell micro-environment has been identified as an important modulator of plasticity, self-

renewal and differentiation. This paper details the development of a hydrogel system tailored to 

promote human pluripotent stem cell (HPSC) self-renewal with a simple chemical micro-

environmental switch to direct differentiation. Furthermore the timing of switching post-

hydrogel fabrication can promote specific lineage differentiation as in vivo. This system 

highlights the role of micro-environment on fate choices of pluripotent cells and demonstrates it 

may be tailored to control differentiation in vitro. Importantly this approach may improve the 

generation of fully differentiated tissues, as demonstrated for cardiogenic differentiation. Our 

combination of hydrogels allows dense tissue structures to be produced from HPSCs using a 

single step process inaccessible to any current methodology. 
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/body 

HPSCs comprise human embryonic stem cells (HESCs) and human induced pluripotent stem 

cells (HiPSCs) (1). The ability to couple expansion and differentiation of these cells underpins 

current efforts in regenerative medicine (2, 3). Initial efforts to direct the fate of HPSCs by 

recapitulating the developmental process of gastrulation, (employing spontaneous differentiation 

of embryoid bodies, termed EBs) have been refined to allow directed differentiation in two- and 

three-dimensions (3D) (4). This includes coupling bioreactor expansion of HPSCs in 3D 

aggregates with differentiation to neural lineages (5). The differentiated cells from these 

processes can be harvested and then used to seed geometrically complex scaffolds. However, this 

two stage process could be better controlled and streamlined by in situ HPSC expansion and 

differentiation within a single template. Furthermore in situ tissue development more closely 

recapitulates embryogenesis (6) and could produce tissue with authentic cellular complexity and 

physiology (7). 

To date natural (8, 9) and synthetic (10) materials have been developed to retain the self-renewal 

phenotype of HPSCs. We (11) and others (12) have shown hydrogel systems can instruct cell 

behaviour by providing cell-adhesive or non-adhesive micro-environments. Extracellular matrix 

(ECM) hydrogels, such as collagen, have fibrous microstructures (13) and are suitable for cell 

adhesion, growth and migration (14). This is unlike hydrogels such as alginate, which are non-

adhesive, nano-porous and prevent migration. Collagen (type-I) is crosslinked by neutralising 

acidity and leads to fibril formation, whereas alginate gels are formed or disaggregated by 

regulating divalent cation availability; usually Ca2+ in the form of CaCl2 (15).  
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Importantly HPSC self-renewal and triggering of gastrulation-like differentiation requires 

different culture and micro-environmental conditions (2). Therefore the development of hydrogel 

systems that allow the modification of the structural and adhesive micro-environment after the 

initial crosslinking would be ideal to control cell behaviour (16-18). A previous study explored 

this concept and used alginate switching from cross-linked to uncross-linked states to 

demonstrate non-adhesive-to-adhesive tailoring of the micro-environment in the presence of 

somatic cell lines. This switch affected attributes such as rate of solute transport, gel mechanics, 

cell adhesion, morphology and migration (12). Here we describe the development of a system 

that can direct HPSC fate from self-renewal to differentiation using alginate 

crosslinked/decrosslinked-state as a micro-environmental switch (Fig. 1A).  

 

Results  

Creation of a switching hydrogel system. 

We optimised gelation of our hydrogel system to aid fabrication into complex geometries. Using 

CaCO3 and D-glucono-δ-lactone (19) we created a delayed setting formulation for alginate.  

CaCO3 and GDL addition allows alginate-containing suspensions, with or without cells, to be 

moulded into complex geometric shapes before gelation. Using these approaches, we produced 

free-standing, uniform and transparent crosslinked alginate gels within 5-10 minutes and 

complete crosslinking within 30 minutes at 37 °C (1.2 % alginate w/v crosslinked with 34 mM 

CaCO3 and 42 mM GDL). We confirmed complete and uniform crosslinking of alginate by 

dry/wet and rehydrated/wet weight comparisons of intact gels (Table. S1) or gel slices (Fig. S1).  
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By combining collagen into this slow setting alginate gel, we were able to construct combined 

matrices (alginate/collagen), which had the same gelation properties as alginate-only gels (Table. 

S1, Fig. S1). We demonstrated that these combined hydrogels could be decrosslinked and the 

alginate component efficiently removed, a process we term ‘switching’. Switching converts the 

environment from alginate-dominated to collagen-dominated (Fig. 1A) and relies on Ca2+ ion 

chelation using EDTA/sodium citrate-based treatment (12, 20). The material properties of this 

hydrogel system also allowed application in bioprinting technologies which retained geometry 

after switching (Fig. 1B).  

We determined that the switching process resulted in >85% removal of alginate but >80% 

retention of collagen in combined hydrogels (Fig. 1C). We also observed (Fig.1D) (22) that 

collagen fibril formation only occurred after alginate removal was complete even when several 

days post-fabrication (Fig. S2). Efficient removal of alginate was confirmed by 488nm confocal 

microscopy (Fig. 1E) and environmental SEM (E-SEM) (Fig. S3). Alginate removal occurred 

with <10 minutes of chelation corroborated by assessing the dry/wet and rehydrated/wet weights, 

which showed hydration characteristics changed during switching (Fig. S1).  

Furthermore the combination hydrogel mechanical properties changed from ~21.37 ± 5.37 kPa 

(alginate-only being ~19.37 ± 6.98 kPa) to ~4.87 ± 1.64 kPa (collagen-only being ~6.28 ± 2.83 

kPa) representing a switch from alginate- to collagen-dominated character. Using ultrasound we 

were also able to demonstrate a density and bulk mechanical change after switching relative to 

acoustic impedance of the material (Fig. S4). Overall these data demonstrates that alginate 

crosslinking prevented the majority of collagen fibril formation. Switching does not lead to an 

extensive loss of collagen, triggers fibrillogenesis and changes the bulk mechanical properties of 

the hydrogel. 
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To test the compatibility of the switching process with HPSC culture we treated HPSCs 

maintained on tissue-culture plastic with the chemical regime used to switch the hydrogels (Fig. 

S5). We thought this to be a valid test as monolayers of HPSCs are considered to be exquisitely 

sensitive to changes in culture conditions (21). Treatments required for switching were 

compatible with survival, proliferation and alkaline phosphatase (AP) activity of HPSCs (Fig. 

S5). 

We tested how HUES7 HESCs responded when seeded within composite hydrogels formulated 

as disc shapes (Fig. 2) or injection moulded to 3D structures, such as tubes (Fig. S6). Disc 

constructs were thin enough (~25 µm) for adequate mass-transport of nutrients/metabolic by-

products (11) and were loaded with high cell densities (up to 5 x106 HUES7 cells/ml) in MEF-

conditioned medium (termed CM) (23). After 21 days HPSCs were uniformly distributed and 

sustained metabolic and AP activity. Similar levels of metabolic and AP activity were seen in 

alginate-only hydrogels but were considerably reduced in collagen-only hydrogels (Fig. S7A). 

Combination hydrogels increased in size (diameter of 3.21 ± 0.34 verses 4.38 ± 0.57 mm on day 

0 and 14, respectively) as HPSCs proliferated. 

 

Optimisation of switching hydrogels for HPSC self-renewal 

As poly(vinyl alcohol) (PVA) and the extracellular matrix MatrigelTM have been shown to have 

positive effects on maintenance of HESCs in monolayers (4, 25), we tested whether these 

substances could further facilitate HPSC pluripotency in the combined hydrogels (Fig. S7B).  

Firstly we determined that addition of PVA and MatrigelTM did not prevent the alginate-mediated 

inhibition of collagen fibrillogenesis in combined hydrogels (Fig S2A). Inclusion of PVA at 1 
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mg/ml and MatrigelTM  at 25% v/v enhanced expression of stem cell markers (OCT4, NANOG 

and alkaline phosphatase) in the absence of differentiation marker expression (T for mesoderm 

and SOX17 for endoderm) (Fig. S7B and 2A) and therefore enhanced the self-renewal phenotype 

of HPSCs. Therefore MatrigelTM and PVA were included in subsequent hydrogel formulations. 

Microscopy of cells within optimised composite hydrogels showed a rounded morphology with 

an average cell diameter of 10 ± 0.32 µm consistent with published sizes for undifferentiated 

cells (24) (Fig. S7C). Cell proliferated as isolated aggregates until they impinged on their 

neighbours and the aggregates merged (Fig. S7C and S8). 

We next assessed the effect on cell behaviour, self-renewal and differentiation of conversion to 

the collagen-rich switched-form. We seeded cells on top of gels to more clearly observe 

differences in cell-matrix interaction (Fig. S9). HPSCs on alginate-only or unswitched composite 

gels were rounded, had lower perimeter length, cell body area and were loosely attached (Fig. 

S9A), while cells on collagen or switched composite gels were adherent (Fig. S9B).  

Gene expression by QPCR of HPSCs cultured in CM for 21 days within switched combined 

hydrogels showed significant down-regulation of pluripotency markers (p<0.05 for both OCT4 

and NANOG). Decreases in expression were observed one day post-switching with expression 

completely lost by day 6 for OCT4 and day 12 for NANOG (Fig. 3A). Conversely, differentiation 

markers (T for mesoderm and SOX17 for endoderm) were up-regulated directly after switching 

(Fig. 2A). Therefore the micro-environment within switched combined gels has a dominant effect 

and ‘primes’ differentiation of HPSCs even in pluripotency-maintaining CM conditions.  

As expected, substitution of CM for differentiation-inducing medium (termed DIFF medium; 

Fig. 2B) accelerated down-regulation of OCT4 and NANOG in switched hydrogels (Fig. S10). 
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Furthermore, DIFF media induced differentiation without switching demonstrating unswitched 

combination gels cannot override extrinsic influences from the culture medium. The switching of 

combined hydrogel micro-environment had a more profound effect on HPSC fate than changing 

media conditions alone. Furthermore if these parameters were changed together there was a 

combined synergistic effect to more efficiently induce HPSC differentiation (Fig. 2C & D). 

 

The effect of switching on early HPSC lineage specification. 

As the switching of combined hydrogels from alginate- to collagen-dominated character had 

profound influence on HPSC self-renewal, we assessed if the timing of switching between states 

could direct early lineage-specification during differentiation (Fig. 3). Previously it has been 

suggested that the micro-environmental history of HPSCs may skew the induction of specific 

lineages as for embryonic gastrulation (26). Here, when switching hydrogels, we simultaneously 

swapped CM culture media to DIFF media to promote the priming of differentiation by 

switching (Fig. 3C & D). We determined that NANOG and OCT4 are rapidly down-regulated 

upon switching at any time post-gelation (p<0.01 seven days post-switching) (n=6) (Fig. 3A). 

We confirmed that switch timing can direct the efficient induction of the specific germ-layers 

(mesoderm, endoderm, and ectoderm) as assessed with QPCR (Fig. 3B). We demonstrated that 

early switching generates more ectodermal-differentiation (peaking with the switch on day 3 

with SOX1 and OTX2 expression) (~81 and ~642 -fold increase over monolayer cultures, 

respectively; p<0.05), whereas mesodermal- (T and HAND1 expression; p<0.01) and 

endodermal-commitment (SOX17 and GATA4 expression; p<0.005) was highest with a day 5 

switch (~92/~893- and ~4750/~6454 -fold increase over monolayer cultures, respectively) (n=6) 
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(Fig. 3B). Therefore we show that early HPSC lineage commitment can be skewed by the time of 

switching micro-environmental states in combined hydrogels. This indicates that with further 

optimisation this approach may allow precise fine-tuning HPSC germ-layer differentiation. 

 

Employing switching hydrogels to create terminally differentiated tissues from HPSCs 

We wanted to determine if switching of germ-layer specification could improve the generation of 

terminally differentiated tissues in situ which is the ultimate goal for any regenerative medicine 

application (Fig. 4A). Firstly we used a transcription-factor driven method by directly 

programming gene-regulatory networks (23). We transduced HUES7 HESCs with 

GATA4/TBX5-lentiviruses, loaded cells into combined hydrogels and varied the time of 

switching (Fig. 4B). This approach induced mesoderm (T; p<0.01), cardiac mesoderm (NXK2.5; 

p<0.05) and a terminal cardiac marker (MYH6; p<0.001). While cardiac differentiation was 

apparent in unswitched hydrogels, switching promoted cardiogenesis (~48,000-fold relative to 

non-programmed monolayer cultures). Day of switching also influenced their developmental 

position within the lineage, with cells towards a cardiac progenitor (day 9 switch) or specified 

cardiomyocyte identity (day 5 switch) (Fig. 4B).  

To test whether cardiomyocyte differentiation could be induced within switched combined 

hydrogels by non-transgenic methods, we used a protocol (27) that relies of sequential addition 

of growth factors (BMP4 and FGF2; Fig. S11). This induced significant up-regulation of cardiac 

markers NKX2.5 and MYH6 relative to switched hydrogels seeded with HPSCs cultured in CM 

or with HPSCs following the transcription-factor driven protocol (p<0.05) (Fig. 4B and C). 

Growth factor induction of cardiogenesis in the switched hydrogels also enhanced expression of 
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cardiac markers relative to a conventional EB differentiation protocol (p<0.01). The optimal time 

to generate mature cardiomyocyte gene expression (MYH6) was achieved by day 7 switching 

(~150,000 -fold over non-programmed monolayer cultures) and enhanced cardiac mesoderm 

gene expression was achieved by day 5 switching (~12,000 -fold over non-programmed 

monolayer cultures) (p<0.05) (n=6). By comparison, in unswitched combined hydrogels 

expression of cardiac markers was ~12-fold less efficient for transcription-factor mediated 

differentiation and ~8-fold less for growth-factor mediated differentiation  (p<0.05) (n=6) (Fig. 

4B and C). These experiments demonstrate that extrinsic programming of HPSCs along with 

control of micro-environmental to direct specification can more efficiently produce terminally 

differentiated cell types.  

 

Discussion 

HPSCs represent an attractive approach to generate any genetically matched tissue type (2). 

However with unlimited potential, HPSCs are the furthest developmentally from differentiated 

tissues. Therefore efficient and faithful control of expansion and differentiation must be achieved 

(21, 28). Previous work has used pre-fabricated chitosan/alginate scaffolds to maintain HPSC 

self-renewal (8). This approach requires chemical modification, heating and lyophilization to 

create chemically bonded chitosan-alginate and produce porous sponges.  

During all stages of embryogenesis but especially at gastrulation/lineage commitment (between 

day 14-16 post-ovulation) changes in 3D micro-environments affect cell migration, growth, 

apoptosis and identity (6). HESCs are derived from pre-implantation embryos (29) but resemble 

the pluripotent cells of an older pre-gastrulation epiblast-stage embryo (30). Therefore, we 
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hypothesised that by manipulating HPSC culture micro-environment, it may be possible to 

efficiently direct cell fate towards the cell-type of choice (3, 31, 32). We combined existing 

technologies using a mixture of two natural hydrogels with divergent influence on cells (33). By 

tailoring these gels for initial self-renewal of HPSCs we were able to achieve high cell densities 

(~2x107/ml; Fig. S7B) before switching the properties of the hydrogel to promote early lineage-

specification. The switching process has no direct negative effect on self-renewal of HPSCs and 

can be completed within 40 minutes with non-toxic chemicals (Fig. S5). In contrast to other 

studies (12), our system also has the advantage that construct geometry was retained after 

removal of alginate (Fig.1B). We performed an extensive study of proliferation and 

differentiation using germ-layer specification and cardiomyogenesis as an exemplar. By using 

previously published methods to direct differentiation either by growth-factor regimes (27) or by 

transcription-factor regulation (23), we demonstrated efficient cardiac differentiation depending 

on the timing of the switch thereby showing that micro-environmental control significantly 

influences the cell fate outcomes. 

Our material may be optimised with matrices that stimulate specific cell outcomes (35). For 

example, further work could directly replace collagen with decellularized ECM (dECM) gels to 

more closely recapitulate the micro-environment of the target tissue (e.g. heart dECM for cardiac 

differentiation) (36).  Mechanistically, it is likely that cell adhesion, degradation of the hydrogel 

and elasticity all influence the switching in cell behaviour.  

This study has demonstrated that the self-renewal and differentiation of HPSCs can be controlled 

in situ within a single combination scaffold system. Furthermore our work demonstrates that 

combined hydrogels when switched yields in situ tissue development which more closely 

recapitulates gene expression observed during embryogenesis (6, 7) and the process of lineage 
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commitment in gastrulation. Tailoring micro-environmental changes as well as growth factor- 

and small molecule-directed manipulation of cells will be an important parameter when devising 

methods to produce human engineered tissues for regenerative medicine applications.  

 

Materials and Methods. Detailed information is provided in SI Materials and Methods. 

Combined hydrogels (1.2% w/v alginate/2mg/ml collagen type-I) were crosslinked by CaCO3 

and GDL (34 mM and 42 mM, respectively). Switching (removal of alginate) was achieved by 

firstly stabilizing gels with L-lysine and chelating Ca2+ with sodium citrate and EDTA (200mM 

and 30mM, respectively). HUES7 cells were grown on MatrigelTM in feeder-conditioned media 

(CM) before fabrication of hydrogels. Hydrogels were grown in CM or in DIFF media (DIFF; 

DMEM media containing fetal calf serum previously described (25)). Viability assays used 

AlamarBlueTM and Live/Dead assays. Microscopy of DiI cell staining used macroconfocal 

analyses to assess HPSC growth in hydrogels. Cell proliferation and collagen fibrillogenesis was 

assessed by scanning and environmental scanning electron microscopy (SEM and ESEM). 

Mechanical and gel property analyses employed protein and 1,9-dimethyl methylene blue 

(DMMB) assays for collagen and alginate, respectively. Wet/dry weight assessments and 

ultrasound of hydrogels were used to assess switching efficiency and gel mechanics, 

respectively. Assessment of pluripotency was achieved by alkaline phosphatase (AP) 

staining/assays and quantitative real-time PCR (QPCR). HUESs were transduced with 

GATA4/TBX5 lentiviruses to direct cardiogenesis as previously described (23). Growth-factor 

cardiac differentiation was as previously described using FGF2 and BMP4 (27).  
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Figures 

 

 

Fig. 1. (A) Alginate serves as structural modulator to prevent the adhesive and fibrous network 

created by collagen. Upon switching (chelation of Ca2+ ions) alginate is removed and collagen 

fibres are generated forming an adhesive microenvironment. (B) 3D printed gels retain geometry 

when switched by chelation (grid; 1mm). (C) Quantitation of alginate and collagen before and 

after switching (n=3). (D)  Spectroscopy measuring collagen fibre character during cross-linking 

and switching of hydrogels. Alginate prevents complete collagen network formation until 

chelation and wash-out. (n=6) (E) Confocal images of collagen fibres with transmission imaging. 

Collagen fibre formation is inhibited until alginate is removed (Bar is 20µm). 
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Fig. 2. Switching HPSC self-renewal to differentiation. (A) Quantitative gene expression of 

pluripotency markers OCT4 and NANOG in HUES7 HESCs cultured in hydrogels (containing 

MatrigelTM and PVA) compared to those grown as conventional monolayers  or as embryoid 

bodies (EBs, (23)). Relative expression levels for constructs over a 21 day period cultured in 

HPSC maintenance media (Conditioned media; CM). (Bars are S.E.) (n=6).  (B) Light 

microscopy of HUES7 HESCs cultured in composite hydrogels (containing MatrigelTM and 

PVA) with or without switching at day 0 (post-crosslinking of hydrogel) cultured in CM or 

Differentiation media (DIFF, (23)). HUES7 cells within unswitched hydrogels cultured in CM 

retained HESC morphology and proliferated to fill the gel volume which was inhibited if 

cultured in DIFF media. HUES7 cells in switched hydrogels, especially those cultured in DIFF 

rapidly lose HESC morphology and proliferation. Images were taken at 14 days post-
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crosslinking (Bar is 50µm). (C-D) Quantitative gene expression analyses for the culture 

conditions described in (B). (C) OCT4 and NANOG (at day 14) and (D) T (at day 5) and SOX17 

(at day 14) gene expression is shown. (Bars are S.E.) (n=6). 
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Fig. 3. Switch timing influences HPSC fate. (A) Quantitative gene expression of pluripotency 

markers OCT4 and NANOG in HUES7 HESCs cultured with a variable switching time. 
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Switching was undertaken on day 0 post cross linking or at either day 1, 3, 5, 7, 14 or not 

switched within the 21 day culture period. HUES7 HESCs cultured in CM with longer time 

before switching retained pluripotent gene expression at higher levels. Early switching caused 

rapid down-regulation both OCT4 and NANOG (Bars are S.E.) (n=6). (B) Quantitative gene 

expression characterisation of mesodermal- (T and HAND1), endodermal- (SOX17 and GATA4) 

and ectodermal-(SOX1 and OTX2) differentiation with variable switching time. The timing of the 

switch appears to direct the differentiation process with very early switching generating more 

ectodermal- and later switching generating more endodermal- gene expression. (Bars are S.E.) 

(n=6). 

 

 

 

 

 

 

 

 

 

 



22 
 

 

Fig. 4. Promoting directed cardiac differentiation of HPSCs by transcription- or growth-factors 

using optimal switching time.  (A) Quantitative gene expression of transcription-factor driven 

differentiation after 21 days culturing with variable switching time (day 5, 7, 9 or no switch). 

Analyses employed pluripotency- (OCT4 and NANOG), mesoderm- (T, BRACHYURY), 

endoderm- (SOX17), cardiac mesoderm- (NXK2.5) and terminally differentiated cardiomyocyte- 

(MYH6) markers.  Control- transduced (CON) constructs (eGFP-expressing lentivirus) possessed 
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no significant cardiac differentiation, whereas those transduced with GT significantly up-

regulated cardiac mesoderm and cardiomyocyte markers  (p<0.05). This was more efficient for 

cardiac mesoderm than for terminal differentiation (p<0.05) when compared to monolayer 

differentiation as previously described (23). Switching time significantly affected specification 

and terminal differentiation with 7 days prior to switching the most efficient at specifying cardiac 

mesoderm  (p<0.05) (Bars are S.E.) (n=6). (B) Quantitative gene expression characterisation of 

growth-factor driven differentiation. Control constructs cultivated in CM media showed some 

differentiation depending on switching time but no significant cardiac gene expression. 

Hydrogels cultivated with the growth-factor regime showed significant cardiac gene expression, 

even in unswitched constructs (p<0.05). Those switched at day 7 or 9 showed the highest 

specification and terminal differentiation beyond that produced by the transcription-factor 

directed system. (Bars are S.E.) (n=6). 

 


