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SUMMARY

A framework is developed for inference concerning the covariance operator of a functional ran-
dom process, where the covariance operator itself is an object of interest for statistical analysis.
Distances for comparing positive-definite covariance matrices are either extended or shown to be
inapplicable to functional data. In particular, an infinite-dimensional analogue of the Procrustes
size-and-shape distance is developed. Convergence of finite-dimensional approximations to the
infinite-dimensional distance metrics is also shown. For inference, a Fréchet estimator of both
the covariance operator itself and the average covariance operator is introduced. A permutation
procedure to test the equality of the covariance operators between two groups is also consid-
ered. Additionally, the use of such distances for extrapolation to make predictions is explored.
As an example of the proposed methodology, the use of covariance operators has been suggested
in a philological study of cross-linguistic dependence as a way to incorporate quantitative pho-
netic information. It is shown that distances between languages derived from phonetic covariance
functions can provide insight into the relationships between the Romance languages.

Some key words: Distance metric; Functional data analysis; Procrustes analysis; Shape analysis.

1. INTRODUCTION

Datasets are increasingly becoming available that are best described as functional. In recent
years, many statistical techniques have been proposed to deal with functional data (see, e.g.,
Ramsay & Silverman, 2005; Ferraty & Vieu, 2006; Horváth & Kokoszka, 2012). However, this
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body of work has mainly focused on mean functions, with little attention paid to the analysis of
the covariance operator, which is either directly or indirectly of interest in its own right.

Recent work (Panaretos et al., 2010; Fremdt et al., 2013) has examined the testing of equality
of covariance structures from two groups of functional curves by defining a test statistic through
the Karhunen–Loève expansions of the two covariance structures. These methods are therefore
based on the Hilbert–Schmidt metric, exploiting the immersion of the space of covariance oper-
ators in the Hilbert–Schmidt space. However, such an extrinsic approach ignores the geometry
of the space of covariance operators.

We consider the problem of defining possible metrics for covariance operators. Making use
of various distances between covariance operators, some of which are newly introduced, this
paper develops a formal two-sample test for comparing covariance operators and proposes an
exploratory technique based on the Fréchet mean and extrapolation.

Analysis of the covariance operator arises in many applied contexts. In the linguistic analysis of
human speech, the main interest is often not in the mean of speech frequency intensity but rather
in the variations that can be found within the language. In § 5, we show that different languages
can be compared and even predicted by using functional distances, allowing a quantitative anal-
ysis of comparative philological relations based on speech recordings rather than discrete textual
analysis.

2. DISTANCES BETWEEN COVARIANCE OPERATORS

In this section we consider the functional extension of metrics that have proved useful for
positive-semidefinite matrices (Dryden et al., 2009). For a more detailed discussion of the under-
lying Hilbert space model for functional data, see Horváth & Kokoszka (2012, pp. 21–36).

Let f be a random function taking values in L2(�), where � ⊆ R, such that E(‖ f ‖2
L2(�)

) <

+∞. The covariance operator C f is defined, for g ∈ L2(�), by C f g(t) = ∫
�

c f (t ′, t)g(t ′) dt ′,
where c f (t ′, t) = cov{ f (t ′), f (t)} = E([ f (t ′) − E{ f (t ′)}][ f (t) − E{ f (t)}]). Then C f is a
trace-class, self-adjoint, compact operator on L2(�) with nonnegative eigenvalues (see, e.g.,
Bosq, 2000, § 1.5). Any compact operator T has a canonical decomposition that implies the
existence of two orthonormal bases {uk} and {vk} for L2(�) such that T f =∑k σk〈 f, vk〉uk

or, equivalently, T vk = σkuk, where 〈v, v〉 denotes the inner product in L2(�). The sequence
{σk} ∈ R is called the sequence of singular values for T . If the operator is self-adjoint, there
exists an orthonormal basis {vk} such that T f =∑k λk〈 f, vk〉vk or, equivalently, T vk = λkvk ,
and the sequence {λk} ∈ R is called the sequence of eigenvalues for T . A compact operator T
is said to be trace class if tr(T ) =∑k〈T ek, ek〉 < +∞ for every orthonormal basis {ek}. In the
case of nonnegative operators, it can be shown that this definition is independent of the choice
of basis, and for nonnegative-definite self-adjoint operators, the trace is equivalent to the sum
of the eigenvalues. Let S{L2(�)} denote the space of trace-class operators on L2(�). Finally, a
compact operator T is said to be Hilbert–Schmidt if its Hilbert–Schmidt norm is bounded, i.e.,
‖T ‖2

HS = tr(T ∗T ) < +∞, which is a generalization of the Frobenius norm for finite-dimensional
matrices.

Not all matrix-based distances are extendable in the functional case. Two popular metrics
for finite-dimensional covariance matrix analysis are the log-Euclidean metric and the affine
invariant Riemannian metric. While both would appear to be natural candidates for generaliza-
tion to covariance operators, their generalization is not straightforward due to the natural trace-
class structure of the covariance operator, which implies that the eigenvalues λi in descending
order are summable, i.e.,

∑
i λi < ∞, and this implies that λi → 0 as i → ∞. The log-Euclidean

distance (Arsigny et al., 2006) for two positive-definite matrices M1 and M2 is defined as
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dlog(M1, M2) = ‖ log(M1) − log(M2)‖, where ‖·‖ indicates the Frobenius norm and log(·) the
matrix logarithm, i.e., given a spectral decomposition M = V DV −1, log(M) = V log(D)V −1

with [log(D)]i i = log([D]i i ) and [log(D)]i j = 0 for i |= j . The matrix logarithm is not extend-
able to infinite-dimensional trace-class operators, as the log([D]i i ) tend to minus infinity. The
affine invariant Riemannian metric (Pennec et al., 2006) for positive-definite matrices is defined
as dRiem(M1, M2) = ‖ log(M−1/2

1 M2 M−1/2
1 )‖, which requires calculation of the inverse. Even

for a positive-definite compact operator, the inverse is unbounded in general (Zhu, 2007, § 1.3).
Even though in applications only finite-dimensional representations are available, these are

usually not of full rank, i.e., they have zero eigenvalues. This means that the above metrics must
be computed on subspaces which should be carefully chosen to avoid instability in the compu-
tation of the distance coming from small eigenvalues, while taking into account all the signifi-
cant information. Indeed, the way the distances change as the dimension of the approximation
increases is also an issue (Fremdt et al., 2013). We therefore use some alternative distances which
are well-defined for self-adjoint trace-class operators with nonnegative eigenvalues.

A distance between covariance operators can be defined naturally by using the distance
between their kernels in L2(� × �). Let S1 and S2 be two covariance operators, and let Si f (t) =∫
�

si (t ′, t) f (t ′) dt ′ for f ∈ L2(�). Then, we can define the kernel distance as

dL(S1, S2)
2 = ‖s1 − s2‖2

L2(�×�)
=
∫

�

∫
�

{s1(t
′, t) − s2(t

′, t)}2 dt ′ dt. (1)

This distance is well-defined, since it inherits all the properties of the distance in the Hilbert space
L2(� × �). Indeed, (1) is the distance induced by the Hilbert–Schmidt norm, since for Hilbert–
Schmidt kernel operators one has ‖S1 − S2‖HS = ‖s1 − s2‖L2(�×�). Thus, the kernel distance
exploits the immersion of the space of covariance operators in the Hilbert–Schmidt space, being
an extrinsic metric that ignores the geometry of the space of interest. In addition, as will be
seen later, the kernel distance is not constrained always to provide estimates within the space of
covariance operators when used for extrapolation or prediction.

A second possibility is to regard the covariance operator as an element of L{L2(�)}, the space
of bounded linear operators on L2(�), in which case the distance between S1 and S2 can be
defined as the operator norm of their difference. We recall that the norm of a self-adjoint bounded
linear operator on L2(�) is defined as ‖T ‖L{L2(�)} = supv∈L2(�) |〈T v, v〉|/‖v‖2

L2(�)
and that for

a covariance operator this coincides with the absolute value of the largest eigenvalue. Thus

dL(S1, S2) = ‖S1 − S2‖L{L2(�)} = |λ̃1|,

where λ̃1 is the eigenvalue of the operator S1 − S2 with the largest absolute value. The distance
dL(· , ·) generalizes the matrix spectral norm often used in the finite-dimensional case (see, e.g.,
El Karoui, 2008). This distance takes into account the spectral structure of the covariance oper-
ators, but it is restrictive in the sense that it focuses only on the behaviour of the first mode of
variation. This can describe effectively the distance between the operators only if λ̃1 explains the
majority of the variation, which is often not the case in practical applications.

Since covariance operators are trace-class operators, we can also generalize the square root
matrix distance (Dryden et al., 2009) to them. Indeed, S being a self-adjoint trace-class operator,
there exists a Hilbert–Schmidt self-adjoint operator

(S)1/2 f =
∑

k

λ
1/2
k 〈 f, vk〉vk,
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where the λk are eigenvalues and the vk eigenfunctions of S. We can therefore define the square
root distance between two covariance operators S1 and S2 as

dR(S1, S2) = ‖S1/2
1 − S1/2

2 ‖HS. (2)

The square root transformation has been shown to produce good results in the finite-dimensional
setting (Dryden et al., 2009), but is also well-defined for trace-class operators. Any power greater
than 1/2 would be a possible candidate distance, since ‖Sα‖HS < +∞ for all α � 1/2. For general
trace-class operators, the square root operator is the smallest power that can be defined while still
ensuring finite distances, meaning that it is the closest available to the log-Euclidean distance,
which is the limit when α → 0. In addition, it can be interpreted as a distance which takes into
account the full eigenstructure of the covariance operator.

However, (2) is only one particular choice from a broad family of distances based on the
mapping of two operators S1 and S2 from the space of covariance operators to the space of
Hilbert–Schmidt operators. In general, we can consider a transformation from Si to Li such that
Si = Li L∗

i , and define the distance to be the Hilbert–Schmidt norm of L1 − L2. It is easy to see
that any such transformation is defined only up to a unitary operator R, since (Li R)(Li R)∗ =
Li R R∗L∗

i = Li L∗
i = Si . One way to make the approach well-defined is to choose the particu-

lar unitary operator R which minimizes the distance between the two operators L1 and L2. In
Dryden et al. (2009), a Procrustes distance is proposed to compare two positive-definite matri-
ces, which we now generalize. Let S1 and S2 be two covariance operators on L2(�). We define
the square of the Procrustes reflection size-and-shape distance between S1 and S2 as

dP(S1, S2)
2 = inf

R∈O{L2(�)}
‖L1 − L2 R‖2

HS = inf
R∈O{L2(�)}

tr{(L1 − L2 R)∗(L1 − L2 R)},

where the Li (i = 1, 2) are such that Si = Li L∗
i and O{L2(�)} is the space of unitary operators

on L2.

PROPOSITION 1. Let σk be the singular values of the compact operator L∗
2 L1. Then

dP(S1, S2)
2 = ‖L1‖2

HS + ‖L2‖2
HS − 2

∞∑
k=1

σk .

The proof can be found in the Supplementary Material. The map from the space of covariance
operators to the space of Hilbert–Schmidt operators associates Si with the equivalence class of
operators Li such that Si = Li L∗

i . The Procrustes distance looks for the operator L̃i in this class
that minimizes the distance between the two covariance operators, and L̃i can be non-self-adjoint.

In applications, we observe only a finite-dimensional representation of the operators of inter-
est. Therefore, ideally we would require the square root distance or the Procrustes size-and-
shape distance between two finite-dimensional representations to be a good approximation of
the distance between the infinite-dimensional operators. We consider the more general case of
Procrustes distance; the square root distance is a special case where Li = (Si )

1/2 and R is con-
strained to be the identity operator. Let {ek}∞k=1 be a basis for L2(�), let Vp = span(e1, . . . , ep),
and let S p

i be the restriction of Si on Vp, i.e.,

S p
i g =

p∑
k=1

〈g, ek〉Si ek, g ∈ Vp.
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In practical situations, Vp will be the subspace containing the finite-dimensional representation
of the functional data. Let us assume that as p → +∞, L p

i → Li with respect to the Hilbert–
Schmidt norm, where S p

i = L p
i L p∗

i and we can choose, for instance, Li = (Si )
1/2, although any

choice for which convergence is guaranteed is suitable. Then, the distance between the two
restricted operators satisfies

dP(S p
1 , S p

2 )2 = ‖L p
1 ‖2

HS + ‖L p
2 ‖2

HS − 2
p∑

k=1

〈R̃ p∗L p∗
2 L p

1 ek, ek〉.

Let {vk}+∞
k=1 be the orthonormal basis obtained from the canonical decomposition of L∗

2 L1

(Zhu, 2007, § 1.3). Since Vp ⊂ L2(�), we can choose a subset v
p
1 , . . . , v

p
p , with v

p
k ∈ {vk}+∞

k=1,
which is an orthonormal basis for Vp. However, these v

p
k need not be the first p elements of the

basis coming from the canonical decomposition of L∗
2 L1, because the space Vp depends only

on the original basis {ek}p
k=1 and does not depend on the covariance structure of the data. Since

the subspaces Vp are nested, we can define a permutation s : N → N such that {vs(1), . . . , vs(p)}
forms a basis for Vp, for every p. Since the trace of an operator does not depend on the basis
choice, we obtain

dP(S p
1 , S p

2 )2 = ‖L p
1 ‖2

HS + ‖L p
2 ‖2

HS − 2
p∑

k=1

〈R̃ p L p∗
2 L p

1 vs(k), vs(k)〉

= ‖L p
1 ‖2

HS + ‖L p
2 ‖2

HS − 2
p∑

k=1

σs(k),

where {σs(k)}p
k=1 are the singular values for L∗

2 L1, because the action of the operator L p∗
2 L p

1
should be equal to the action of the operator L∗

2 L1 on every element belonging to the subspace
Vp, and vs(k) ∈ Vp for k = 1, . . . , p. Finally, as L∗

2 L1 is trace class, the series of its singular
values is absolutely convergent and therefore also unconditionally convergent, i.e., convergent
under any permutation. Thus, as the number p of basis functions increases, we have

lim
p→+∞ dP(S p

1 , S p
2 )2 = ‖L1‖2

HS + ‖L2‖2
HS − 2

∞∑
k=1

σs(k)

= ‖L1‖2
HS + ‖L2‖2

HS − 2
∞∑

k=1

σk = dP(S1, S2)
2.

3. A TEST FOR TWO-SAMPLE COMPARISON OF COVARIANCE STRUCTURES

Let us consider two samples of random curves. Curves in the first sample, f 1
1 (t), . . . , f 1

n1
(t) ∈

L2(�), are realizations of a random process with mean μ(t) and covariance operator �1. Curves
in the second sample, f 2

1 (t), . . . , f 2
n2

(t) ∈ L2(�), are realizations of a random process with mean
μ(t) and covariance operator �2. We would like to test the null hypothesis H0 : �1 = �2 against
the alternative H1 : �1 |= �2. We reformulate the test using distances between covariance oper-
ators, i.e., we test H0 : d(�1, �2) = 0 against H1 : d(�1, �2) > 0. Let S1 and S2 be the sample
covariance operators of the two groups. We use d(S1, S2) as a test statistic, since large values
of d(S1, S2) provide evidence against the null hypothesis. We consider M random permutations
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of the labels {1, 2} on the sample curves and compute d(S(m)
1 , S(m)

2 ) (m = 1, . . . , M), where

S(m)
i is the sample covariance operator for the group indexed with label i in permutation m. The

p-value of the test is the proportion of d(S(m)
1 , S(m)

2 ) which are greater than or equal to d(S1, S2).
For this formulation of the permutation test, equality of mean functions is essential. However,
if the two groups have different and unknown means, an approximate permutation test can be
performed after the curves are centred using their sample means. This is a common strategy for
testing scale parameters, such as variance, for univariate real random variables (e.g., Good, 2005,
§ 3.7.2).

We now apply the proposed permutation procedure to simulated data. Our main purpose is
to explore the behaviour of the different distances with various modifications of the covari-
ance structure. We use as benchmarks the empirical power of the testing procedure proposed
by Panaretos et al. (2010), with the test statistic TN (K ), and that proposed by Fremdt et al.
(2013), with the test statistic T̂1. Further details of these procedures are given in the Supple-
mentary Material. The parameter K in these methods is the number of eigendirections consid-
ered, and it is chosen to be the number of eigenvalues of the pooled covariance operator that
explain at least 90% of the variability. The performance of these tests can be improved by mak-
ing different choices of K and modifications of the test statistics to look for specific differences
between covariance operators (Panaretos et al., 2010), but our results show that the proposed
permutation procedure competes well with existing techniques in many situations of practical
interest.

We consider two groups with the same mean function sin(x) and covariance operators �1 and
�(γ ) = [(�1)

1/2 + γ {(�2)
1/2 R̃ − (�1)

1/2}][(�1)
1/2 + γ {(�2)

1/2 R̃ − (�1)
1/2}]∗, where R̃ is

an operator minimizing the Procrustes distance between �1 and �2; see the proof of Propo-
sition 1. For γ = 0, the two groups thus have the same covariance operator. As γ increases, the
difference between the two operators increases. In the following simulations, �1 and �2 are the
sample covariance operators for the males and females, respectively, in the Berkeley growth curve
dataset (Ramsay & Silverman, 2005), rescaled to lie in [0, 1]. The integral kernels of �1 and �2
can be found in the Supplementary Material.

For the first simulation, all the curves are simulated on [0, 1] with a Gaussian process. Obser-
vations are generated on a grid of p = 31 points with three different sample sizes, N = 10, 20
and 30. Each permutation test is performed with M = 1000 and is repeated for 5000 samples, so
that we can evaluate the power of the test for different values of sample size and different degrees
of violation of the null hypothesis.

Figure 1 shows the estimated power for different values of γ and N , where γ = 0 corresponds
to the empirical size. Here the square root and Procrustes tests are the most powerful for most
situations, and both tests have the correct empirical size, as do all tests with large enough sample
sizes. However, some tests suffer from slightly inflated size when only small N is available. The
test proposed by Panaretos et al. (2010) is slightly more powerful for large values of N .

For the second simulation, curves are generated by sampling the coefficients of a Lagrangian
basis on p = 31 equispaced points on [0, 1] from a multivariate t distribution with four degrees
of freedom. We use the same values of N , M and γ as in the previous case. The empirical
power curves for this second setting are also plotted in Fig. 1. In this scenario, the test based
on the statistic TN (K ) of Panaretos et al. (2010) has severely inflated empirical size, as would be
expected from the violation of the Gaussian hypothesis. The test of Fremdt et al. (2013) based on
T̂1 has correct empirical size, at least for large N , but it has a smaller empirical power compared
with the permutation test based on Procrustes or square root distance, except for small values of
γ . The results of additional simulations involving other scenarios for changes in the covariance
structure are reported in the Supplementary Material.
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Fig. 1. Power estimated by simulation from a Gaussian process (first row) and a multivariate t distribution
(second row) for different values of γ and N obtained with the parametric tests proposed by Panaretos et al.
(2010) (long dashed grey line) and by Fremdt et al. (2013) (dotted grey line), along with the estimated power of
the permutation test based on Procrustes size-and-shape distance (dotted black line), square root distance (long
dashed black line), kernel distance (solid black line) and spectral distance (dot-dashed black line). The horizontal

line shows the significance level α = 0·05.

4. DISTANCE-BASED POINT ESTIMATION FOR COVARIANCE OPERATORS

4·1. Fréchet averaging with square root and Procrustes distances

We address here the problem of averaging of covariance operators. Let S1, . . . , Sg be a sam-
ple of independent covariance operators. The most straightforward way to obtain an average
operator is to calculate �̂ = g−1(S1 + · · · + Sg). This formula arises from the minimization of
deviations measured with the Hilbert–Schmidt distance, i.e., the kernel distance. If we choose
a different distance with which to compare covariance operators, it would make more sense to
average covariance operators with respect to that chosen distance.

The population Fréchet mean (Fréchet, 1948) of a random element S with probability distri-
bution μ on the space of covariance operators can be defined as � = arg inf P

∫
d(S, P)2μ(dS).

If a sample S1, . . . , Sg from μ is available, a least-squares estimator for � can be defined using
the sample Fréchet mean as �̂ = arg inf S

∑g
i=1 d(S, Si )

2. Investigation of the properties of these
kinds of estimators has been an active research field since the seminal work of Ziezold (1977).
In the case of covariance operators, the consistency of the sample Fréchet mean is guaranteed,
for the distances considered in this paper, if there exists � such that E{d(Si , �)2} < +∞; see
Huckemann (2011, Appendix A) for proofs and discussion.
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In general the Fréchet mean is not unique, and therefore consistency is understood as con-
vergence to an element of the Fréchet mean set; see Ziezold (1977), Le (1995), Le (2001) and
Bhattacharya & Patrangenaru (2003) for more details.

The computation of the sample Fréchet mean �̂ depends on the choice of the distance d(· , ·).
Moreover, in practice covariance operators are often obtained from an estimation procedure
applied to curve observations, and thus the sample Fréchet mean may need to be weighted to
take into account the number of curves used in the estimate. Let S1, . . . , Sg be the sample
covariance operators of g different groups, with ni curve observations each. Then the aver-
age covariance operator can be estimated as �̂ = arg inf S

∑g
i=1 ni d(S, Si )

2. In general, this is a
high-dimensional minimization problem, but some distances admit an analytical solution while
for others efficient minimization algorithms are available. Note that �̂ may not be unique for
positively curved spaces, although it is unique for suitably concentrated data (Kendall, 1990;
Le, 1995, 2001). It can be seen that for the square root distance dS,

�̂ = arg min
S

g∑
i=1

ni dS(S, Si )
2 =

{
G−1

g∑
i=1

ni (Si )
1/2

}2

where G = n1 + · · · + ng.
For the Procrustes reflection size-and-shape distance, an analytical solution is not available.

However, the Procrustes mean can be obtained by an adaptation of the algorithm proposed in
Gower (1975). A description of the algorithm can be found in the Supplementary Material, as
well as a simulation study comparing the behaviour of the standard average and Fréchet mean
with both the square root and the Procrustes metrics. This simulation study shows that using a
Fréchet mean can be beneficial in covariance estimation.

4·2. Distance-based estimation

Above, we chose the covariance operators as the starting point of the analysis, estimating the
integral kernels of these operators with the traditional sample covariance function. However, a
different approach is possible that uses the proposed distances in the estimation of the covariance
operators. Specifically, an estimate of the common covariance operator for curve samples coming
from g different groups could be

�̂ = arg min
S

g∑
i=1

ni∑
k=1

d{S, ( fik − f̄i.) ⊗ ( fik − f̄i.)}2, (3)

where i = 1, . . . , g are different groups, with k = 1, . . . , ni curves in each group, ⊗ indicates the
tensor product, i.e., ( f ⊗ f )v = 〈 f, v〉 f , and f̄i. is the sample mean of the i th group. If we assume
that the rank-one operators ( fik − f̄i.) ⊗ ( fik − f̄i.) are generated from the same distribution
with finite second moments for all the groups, the result in Huckemann (2011) guarantees that
(3) is a consistent estimator for the Fréchet mean of this distribution when ni → +∞.

As in the case of the sample Fréchet mean, if we choose the square root distance, we get an
explicit solution for problem (3) and

�̂ =
⎡
⎣
( g∑

i=1

ni

)−1 g∑
i=1

ni∑
k=1

{( fik − f̄i.) ⊗ ( fik − f̄i.)}1/2

⎤
⎦

2

.
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For the Procrustes distance, problem (3) can be solved with a slight modification of the algorithm
presented in the Supplementary Material. This estimator can be used, for instance, in the permu-
tation test proposed in § 3, where the covariance operator for each group can be estimated by
minimizing the same distance chosen for the test statistic.

4·3. Interpolation and extrapolation

Interpolation and extrapolation in nonlinear spaces has been studied in depth for the case of
positive-definite matrices, for which it has been shown that simply using the Euclidean metric
can be very problematic (see, e.g., Arsigny et al., 2006; Pennec et al., 2006; Dryden et al., 2009).
In the infinite-dimensional case, the equivalent of a Euclidean approach would be extrapolation
based on kernels. Let S1 and S2 be two covariance operators and s1(t ′, t) and s2(t ′, t) their integral
kernels. We can obtain a path passing through these kernels as

s(t ′, t)(x) = [s1(t
′, t) + x{s2(t

′, t) − s1(t
′, t)}], x ∈ R.

However, just as in the case of positive-definite matrices, extrapolation based on kernel distances
does not always result in a valid kernel for a covariance operator; that is, the associated integral
operator may not be nonnegative definite. An invalid operator could be made valid through a
projection onto the space of covariance kernels, but how to choose this projection, given the
possible projections available, is not immediately clear.

The square root metric and the Procrustes metric can each be associated with a geodesic which
connects the two covariance operators S1 and S2, i.e.,

SR(x) =
{

S1/2
1 + x

(
S1/2

2 − S1/2
1

)}∗ {
S1/2

1 + x
(

S1/2
2 − S1/2

1

)}
and

SP(x) =
{

S1/2
1 + x

(
S1/2

2 R̃ − S1/2
1

)}{
S1/2

1 + x
(

S1/2
2 R̃ − S1/2

1

)}∗
, (4)

respectively, where x ∈ R and R̃ is an unitary operator that minimizes ‖S1/2
1 − S1/2

2 R‖2
HS. In

general, analogously to the finite-dimensional case, the operator R̃ may not be uniquely defined
if the sequence of singular values of S1/2

2 S1/2
1 is degenerate (Kent & Mardia, 2001), i.e., if in our

case there is more than one zero singular value. However, any choice of the operator R̃ provides
a valid geodesic with respect to the Procrustes metric.

For every x , both the square root and the Procrustes geodesics give a valid covariance opera-
tor. However, in the case of extrapolation with the square root geodesic, this operator can be the
result of the inverse square operation from the space of Hilbert–Schmidt operators to the space
of covariance operators. Extrapolation in the space of Hilbert–Schmidt operators may lead to
large negative eigenvalues, which result in large positive eigenvalues in the space of covariance
operators. These are in general difficult to interpret, as they are an artificial effect of the choice
of the square root geodesic. This effect can be avoided by using the Procrustes geodesic. We
illustrate this with an artificial example involving covariance operators for boys and girls in the
Berkeley growth curves study. Let S1 and S2 be the sample covariance operators for males and
females, respectively. Figure 2 shows the minimum eigenvalue for the Hilbert–Schmidt opera-
tors S1/2

1 + x(S1/2
2 − S1/2

1 ) and S1/2
1 + x(S1/2

2 R̃ − S1/2
1 ), for x ∈ (0, 4). The former continuously

decreases, while the latter correctly stabilizes at zero. Applying the backward map to the space
of covariance operators, the square root geodesic thus yields, as an artefact, a very large positive
eigenvalue, while the Procrustes geodesic does not suffer from this problem.
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Fig. 2. (a) Minimum eigenvalue for the extrapolated Hilbert–Schmidt operator for the square root
geodesic (solid line) and for the Procrustes geodesic (dashed line); (b) corresponding square eigen-

value for SR(x) (solid line) and for SP(x) (dashed line).

5. EXPLORING RELATIONSHIPS AMONG ROMANCE LANGUAGES

In this section we give an example of how the analysis of second-order structure can pro-
vide insights into a linguistic problem. The traditional way of exploring relationships across
languages consists of examining textual similarity. However, this neglects phonetic character-
istics of the languages. Here we propose a novel approach that involves comparing languages
using their phonetic structure. This approach can add valuable linguistic information, particu-
larly when combined with textual comparison and historical and geographical information in the
linguistic analysis.

The recordings of people speaking different Romance languages are registered using the pro-
cedure of Tang & Müller (2008), with words pronounced in each language. The output of the
registration for each word and for each speaker consists of the intensity of the sound over time
and frequencies.

The aim is to explore phonetic relationships between languages and to compare these with
existing linguistic knowledge. While the temporal aspects of each individual word are important,
here we will concentrate on frequencies. Previous studies (Aston et al., 2010; Hadjipantelis et al.,
2012) have indicated that covariance operators characterize languages well. The operators sum-
marize phonetic information about the language, while disregarding characteristics of singular
speakers and words. For the scope of this work, we focus on the covariance operators among
frequencies in the log-spectrogram, estimated from all speakers of the language in the dataset.
The spectrogram is a two-dimensional time-frequency image which gives localized time and
frequency information across a word. We consider different time-points as different groups with
the same covariance operator among frequencies. This is a significant simplification of the rich
structure in the data, but it can generate some interesting conclusions. The main idea is that the
distance between the covariance operators of frequency intensities is a good indication of the
phonetic difference between languages.

Let fi jk(t) ∈ L2(�) be a realization of a random process, where i = 1, . . . , L represent dif-
ferent languages, j = 1, . . . , n the groups, i.e., different time-points, and k = 1, . . . , Ki the
observations, i.e., individual speakers. As mentioned above, it is expected that the significant
information from the different languages lies in the language-wise covariances Si rather than
in the individual observations fi jk . Here results are reported for the covariance operator for the
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Fig. 3. Distance matrix among Fréchet estimates, obtained with the square root distance (left), Procrustes dis-
tance (centre) or kernel distance (right), where I = Italian, F = French, P = Portuguese, SA = American Spanish,

and SI = Iberian Spanish.

word ‘one’ spoken in the different languages by a total of 23 speakers across five languages:
French, Italian, Portuguese, Iberian Spanish and American Spanish. This word is similar in
each language, coming from a common Latin root, but different enough to highlight changes
across the languages. We estimate the covariance structure among frequencies for each language
i using the estimator (3). Visual representations of the estimated covariance operator for each
language are given in Fig. 4 and in the Supplementary Material. Figure 3 shows the dissimi-
larity matrix among estimated covariance operators, using the square root distance, Procrustes
distance and kernel distance. Relationships among the covariance operators have features which
are expected from linguistic hypotheses, such as strong similarity between the two varieties of
Spanish, and with Italian, which are correctly found using both the square root distance and the
Procrustes distance. These two distances yield essentially the same distance structure among
languages, while the kernel distance matrix is slightly different and disagrees somewhat with
existing linguistic knowledge. However, not all our conclusions directly support textual analy-
sis, and thus they provide complementary information. The distance of Portuguese from both
Spanish languages is greater than expected. Moreover, for historical reasons, American Spanish
is expected to be closer than Iberian Spanish to Italian, but the covariance structures indicate that
this is reversed.

A particularly interesting objective of the analysis is to provide insight into the change of
the frequency structure along the path of language evolution. This would be inherently linked
to extrapolation based on the distances we have proposed. Here, we want to compare the fre-
quency covariance structure of a language to the structures obtained by extrapolating covari-
ance operators of previous languages in the evolutionary path, as it is supposed from historical
and geographical considerations. The Portuguese language presents a very different covariance
structure from the other Romance languages, as can be seen in Fig. 4 as well as figures in the
Supplementary Material. Thus, it would be of interest to compare its frequency covariance oper-
ator with the one extrapolated from the covariances of the two Spanish languages, to see if this
kind of covariance was expected and whether a linear model of distance is appropriate. In the
opposite direction of the evolutionary path, we also compare the Italian frequency covariance
operator with that extrapolated from the two Spanish varieties.

As starting estimates, we can use those provided by any one of the three distances consid-
ered above. Here we show only results based on the kernel estimates, i.e., the classical pooled
covariance functions, to highlight the effect of the different extrapolation strategies using differ-
ent distances. Other choices, including ones that use estimates consistent with each extrapolation
procedure, can be found in the Supplementary Material.
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Fig. 4. Fréchet estimates of the covariance operators of the log-spectrogram among frequencies for five Romance
languages, using the Procrustes distance.

The extrapolated covariance operator for Portuguese, P, is obtained with the method pro-
posed in § 4·3, by evaluating the extrapolation line from the Iberian Spanish, SI, operator to the
American Spanish, SA, operator, at x = d(SSA, SP)/d(SSA, SSI). For Italian, I, we evaluate the
line from the American Spanish operator to the Iberian Spanish operator, at x = d(SSI, SI)/d(SSA,
SSI).

Table 1 shows the comparison between the extrapolation starting from kernel-based esti-
mates of the covariance operators of the two Spanish varieties and the kernel-based estimates of
Portuguese and Italian. The comparison is performed with the square root distance, Procrustes
distance and kernel distance. Simple extrapolation of integral kernels does not provide valid
covariance operators for either Portuguese or Italian. Here the Procrustes method is shown to be
better for both Portuguese and Italian, although the advantage is far greater for the former. This
is to be expected, since the extrapolation for the Italian covariance operator is a short-distance
extrapolation, and as such the square root mapping does not introduce large artificial effects. A
truncation of negative eigenvalues to zero in the square root space, which might be thought to
alleviate issues with artificial effects, performs even worse than the original square root extrapo-
lation. Thus, extrapolation based on the Procrustes geodesic is to be preferred, as expected from
the theory and seen empirically in § 4·3. Figure 5 shows results obtained with the Procrustes
geodesic. The results obtained with the square root distance are given in the Supplementary
Material. We can conclude that some features of the most extreme language in the family can
be expected, such as higher variability in the high frequencies. Yet, unexpected features are also
present, for example a higher variability in the mid-range frequencies for Portuguese; these are
worthy of deeper linguistic exploration, especially using a larger corpus.

In conclusion, we have shown that the covariance structure between frequency intensities con-
tains valuable linguistic information. Of course, this is not enough for drawing general linguistic
conclusions, but we offer it as an additional tool to be used alongside existing linguistic sources
of information, such as textual comparison and historical and geographical information.
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Table 1. Comparison between the kernel-based estimates of the Portuguese and
Italian covariance operators and the geodesic extrapolation from kernel-based

estimates of the two Spanish varieties
Square root Procrustes Kernel

geodesic extrapolation geodesic extrapolation extrapolation

Portuguese
Square root distance 14·55 13·43 NaN
Procrustes distance 13·84 12·78 NaN
Kernel distance 3107·70 2524·99 5372·54

Italian
Square root distance 6·28 6·23 NaN
Procrustes distance 5·76 5·70 NaN
Kernel distance 329·88 258·45 232·99
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Fig. 5. Upper panels show the kernel estimate for Portuguese (left) and the corresponding Procrustes
extrapolation from the two Spanish varieties using equation (4) (right). Lower panels show the kernel
estimate for Italian (left) and the corresponding Procrustes extrapolation from the two Spanish vari-

eties using equation (4) (right).
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TANG, R. & MÜLLER, H. G. (2008). Pairwise curve synchronization for high-dimensional data. Biometrika, 95,

875–89.
ZHU, K. (2007). Operator Theory in Function Spaces, 2nd edition. Providence, Rhode Island: American Mathematical

Society.
ZIEZOLD, H. (1977). On expected figures and a strong law of large numbers for random elements in quasi-

metric spaces. In Trans. 7th Prague Conf. Info. Theory, Statist. Decis. Functions, Random Proces. 8th Eur. Meeting
of Statisticians, vol. A, pp. 591–602. Dordrecht: Reidel.

[Received July 2012. Revised December 2013]



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


