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Abstract  

The aim of the current study was to investigate the validity and reliability of a radio- 

frequency based system for accurately tracking athlete movement within the wheelchair court 

sports. Four wheelchair specific tests were devised to assess the system during i) static 

measurements ii) incremental fixed speeds iii) peak speeds, and iv) multi-directional 

movements. During each test, three sampling frequencies (4, 8 & 16 Hz) were compared to a 

criterion method for distance, mean and peak speeds. Absolute static error remained between 

0.19-0.32 m across the session. Distance values (test ii) showed greatest relative error in 4 Hz 

tags (1.3%), with significantly lower errors seen in higher frequency tags (< 1.0%). Relative 

peak speed errors of < 2.0% (test iii) were revealed across all sampling frequencies in relation 

to the criterion (4.00 ± 0.09 m·sˉ¹). Results showed 8 and 16 Hz sampling frequencies 

displayed the closest to criterion values, whilst intra-tag reliability never exceeded 2.0% 

coefficient of variation (% CV) during peak speed detection. Minimal relative distance errors 

(< 0.2%) were also seen across sampling frequencies (test iv). To conclude, the indoor 

tracking system is deemed an acceptable tool for tracking wheelchair court match-play using 

a tag frequency of 8 or 16 Hz.   

Keywords: disability sport, field-based testing, accuracy, radio-frequency, performance 

analysis   
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Introduction  

Understanding the movement demands placed upon an athlete during competition is a 

fundamental requirement for the prescription of specific, individualised training programmes. 

Player tracking has been extensively used within able-bodied (AB) team sports to explore 

movement demands, with basic notational techniques employed since the mid-1970’s (Reilly 

& Thomas, 1976; Sanderson & Way, 1977). Advances in technology introduced more 

objective methods of player tracking, such as manual (O’Donoghue, 2002; Bloomfield, 

Polman, & O’Donoghue, 2004) and automatic video tracking techniques (Figueroa, Leite, & 

Barros, 2006; Barros et al., 2007). Currently, the use of Global Positioning Systems (GPS) 

has emerged as the most practical method of player tracking to obtain a real time analysis of 

key performance variables (e.g. distance covered and speed profiles) during team sports 

(Cummins, Orr, O’Connor, & West, 2013).  

The validity of GPS during high intensity, intermittent sports has been 

comprehensively examined (MacLeod, Morris, Nevill, & Sunderland, 2009; Duffield, Reid, 

Baker, & Spratford, 2010; Coutts & Duffield, 2010; Johnston et al., 2012). Investigations 

suggest that GPS accurately tracks players during low-speed (< 1.8 m·sˉ¹) movements (Portas, 

Rush, Barnes, & Batterham, 2007), with distance and speed errors (5-20%) increasing 

exponentially during high-speed (> 4 m·sˉ¹) movements (Duffield et al., 2010; Johnston et al., 

2012). Recent studies have also revealed that the validity and reliability of GPS improves 

when higher sampling frequencies (10 Hz) are used, contributing towards the magnitude of 

these aforementioned errors (Jennings, Cormack, Coutts, Boyd, & Aughey, 2010; Castellano 

et al., 2011; Varley, Fairweather, & Aughey, 2012).  

A major limitation with GPS is its reliance on satellite signals, restricting its use to an 

outdoor environment only (Larsson, 2003). As a result, indoor team sports such as wheelchair 

basketball and wheelchair rugby (known collectively as the wheelchair court sports), cannot 

utilise GPS. Consequently, image-based processing techniques (Sarro, Misuta, Burkett, 

Malone, & Barros, 2010) and wheel mounted magnetic reed-switch devices (Sporner et al., 

2009; Sindall et al., 2013a) have been employed in an attempt to determine the demands of 

the wheelchair court sports. However, image-based processing techniques require time 

consuming analysis to be performed post event (Barris & Button, 2008), which introduces 

accuracy and reliability issues due to a heavy reliance on manual digitisation (Lames & 

Siegle, 2011) along with a delay in feedback time to coaches. Subsequently, data collection is 

often restricted to small sample sizes, affecting the power of such investigations. Substantial 
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errors in measurement reliability (19.9% coefficient of variation [% CV]) have also been 

reported within magnetic reed-switch devices at speeds in excess of 2.5 m·sˉ¹ (Sindall et al., 

2013b). Such speeds are frequently exceeded by elite wheelchair athletes (Goosey-Tolfrey & 

Moss, 2005; Mason et al., 2009; 2012), which questions the suitability of existing reed-switch 

devices for use within elite wheelchair court sport applications.  

Radio-frequency tracking systems have emerged, which gather similar data to GPS, 

with both the Local Position Measurement (LPM) system (Frencken, Lemmink, & Delleman, 

2010; Ogris et al., 2012) and the Wireless Ad-hoc System for Positioning (WASP) (Hedley et 

al., 2010; Sathyan, Shuttleworth, Hedley, & Davids, 2011) currently available. These systems 

rely on distance measurements between known fixed base stations and mobile tags worn by 

the athlete (Leser, Baca, & Ogris, 2011). A key advantage of radio-frequency systems is that 

they can function indoors (Sathyan, Humphrey, & Hedley, 2011). Unfortunately, these 

systems are still in their relative infancy, particularly for sporting applications and as a result 

little is known about their validity and reliability. Initial validation of the LPM system when 

sampling at 45 Hz, highlighted the typical error of the estimate increased (1.8-3.9% CV) at 

higher movement speeds (Frencken et al., 2010). In support of this, Ogris et al. (2012) 

confirmed error values increased (10% error) during high speed movements, yet the LPM 

system provided valid speed estimations at low speeds (< 6 km·hˉ¹). More recently, 

validation of the WASP system when sampling at 10 Hz, revealed an overestimation (2.7%) 

in distance travelled during dynamic testing (Sathyan et al., 2012). Unfortunately, the 

analysis was confined to a basic linear and non-linear drill at self-regulated speeds (not 

defined), which may not adequately reflect athlete movements seen during match-play.  

A new, radio frequency-based indoor tracking system (ITS) has recently been 

developed, which utilises ultra-wideband (UWB) signals to communicate with compact tags 

worn by athletes, providing real-time analysis on movement parameters. The additional 

benefit of the ITS is the incorporation of smaller, lightweight tags (size = 40 x 40 x 10 mm; 

mass = 25 g), opposed to the larger tags used with the LPM (92 x 57 x 15 mm; mass = 60 g) 

and WASP (90 x 50 x 25 mm; mass = 50 g) systems. Subsequently, the ITS may be a more 

practical solution since minimal disruption would be imposed on athletes during competition 

and training environments. The aims of the current study were: (1) to investigate the validity 

and reliability of the ITS during movements and speeds specific to the wheelchair court 

sports and (2) to determine the effect of different sampling frequencies on the system’s 

measurement accuracy. 
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Methods 

Participants  

Two physically active, able-bodied males (age: 30.0 ± 2.0 years, mass: 82.5 ± 9.2 kg, height: 

1.81 ± 0.04 m) with extensive experience of wheelchair propulsion volunteered to participate 

in the current investigation. The study was approved by the University’s local ethical 

advisory committee, with informed consent gained prior to participation.  

Equipment  

The ITS (Ubisense, Series 700 IP, Cambridge, UK) is a wired radio-frequency based real-

time location system. The system has an overall bandwidth of 137 Hz and is comprised of six 

sensors that communicate with compact tags. The sensors detect UWB signals from the tags, 

measuring both the angle-of-arrival and the time-difference-of-arrival to generate an accurate 

tag location. This provides raw data on the positional coordinates of a tag in three dimensions. 

Raw data is then filtered using a 3-pass sliding-average filter with a window width 

proportional to the tag frequency.  

The validity and reliability of the ITS was assessed during one session using four 

separate tests i) static measurements; ii) incremental fixed speeds; iii) peak speeds; iv) multi-

directional movements. Movement parameters detailed by the ITS were derived using 

software developed specifically for wheelchair court sports at the University of Nottingham. 

All dynamic tests (ii, iii & iv) were performed in a rugby wheelchair (Melrose Wheelchairs, 

New Zealand: mass = 12.7 kg; wheel size = 0.591 m; tyre pressure = 120 psi; camber = 18º). 

The criterion measurement for distance (tests ii & iv) was provided by a laser total station 

(Leica TS-30, Leica Geosystems, UK), more commonly used within a professional surveying 

environment. The Leica system utilises high quality angle and distance measurements with 

automatic target tracking to produce accurate coordinates (~0.004 m) about the point of 

interest (Bayoud, 2006). The total station was positioned on a balcony overlooking the entire 

court, ensuring a consistent, unobstructed view throughout each test. Wireless timing gates 

(Brower Timing Systems, Draper, UT) were used to record the mean speed (tests ii and iv), 

whilst a wireless inertial sensor (Ellul, Lo, & Yang, 2011), attached to the right axle of the 

wheelchair provided the criterion measurement for peak speed (test iii). In brief, the inertial 

sensor is a small, lightweight device (size = 20 x 30 x 17 mm; mass = 10 g) that transmits 

data wirelessly at a sampling frequency of approximately 50 Hz. This device has previously 
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been validated during linear wheelchair propulsion (Mason, Rhodes, & Goosey-Tolfrey, 

2013a), reporting speed errors < 0.9% CV observed across a range of speeds up to 6 m∙sˉ¹.  

Procedures 

The ITS was set up in an indoor sports hall equipped with wooden sprung flooring to 

replicate the playing surface used during wheelchair basketball and wheelchair rugby. The six 

sensors were located around the perimeter of a regulation size wheelchair basketball and 

wheelchair rugby court (28 x 15 m). The sensors were positioned at each of the four corners 

of the court, with two additional sensors positioned at the half-way line. Each sensor was 

mounted on an extendable tripod, elevated approximately 4 m high. The orientation of each 

sensor was configured so that the pitch was 40° from the horizontal and the rotation about the 

perpendicular line from the sensor face was fixed at 0º, maximising court coverage. Prior to 

data collection the system was calibrated using two reference points of known coordinates, 

which were calculated by a laser distance measurer (PLR 50, Bosch, Germany). This enabled 

precise sensor locations to be determined. A static tag placed in another known location was 

then used to calibrate the system. This procedure takes multiple measurements from the static 

tag using its known x, y and z coordinates to determine the orientation and offset off each 

sensor (Mandeljc, Perš, Kristan, & Kovačič, 2012). During all dynamic tests (tests ii, iii & iv) 

nine tags were monitored, with three tags sampling at a low (4 Hz), medium (8 Hz), and high 

(16 Hz) frequency, which were secured to the wheelchair as demonstrated in Figure 1.  

 

 

 

 

 

 

 

Figure 1: The location of the nine tags fixed to the wheelchair during dynamic tests. Inset is 

the sampling frequency for each tag with regards to its location 
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i) Static measurements 

The accuracy of a motionless tag was assessed by individually placing three tags of different 

sampling frequency  (low, medium and high) in each of the four corners of the court (where 

known coordinates exist). Based on previous protocols (Frencken et al., 2010; Sathyan et al., 

2012) data was collected from each tag for 20 seconds. This assessment was performed at the 

beginning of the session (pre) and then repeated 4 hours later at the end of the session (post) 

to determine whether the system was prone to drift over time.  

ii) Incremental fixed speeds 

The accuracy of the system for detecting distance measurements was assessed over increasing 

fixed speeds using a ‘figure of eight’ course (Figure 2). One participant completed five laps 

of the course at three fixed sub-maximal speeds (4 km∙hˉ¹, 6 km∙hˉ¹, and 8 km∙hˉ¹), with five 

trials conducted at each speed. The speeds selected are commonly used within previous sub-

maximal wheelchair propulsion literature (Vanlandewijck, Spaepen & Lysens, 1994; Mason, 

Lenton, Leicht, & Goosey-Tolfrey, 2013b). This range also covers the speeds typically 

averaged during wheelchair court sports match-play (Sporner et al., 2009; Sarro et al., 2010). 

The speeds were averaged throughout each trial through using a Raleigh SP-20 speedometer 

(Raleigh Ltd, Nottingham, UK). The display monitor was secured to the participant’s knee, 

providing instantaneous feedback about their average speed. The participant was instructed to 

maintain these speeds, on average, throughout each trial.  
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Figure 2: The ‘figure of eight’ drill used to assess distance during incremental fixed speeds. 

The solid middle horizontal line represents the location of the timing gates and the start/finish 

of the drill (a = 8 m, b = 12.25 m; lap = 81 m; total distance = 405 m). 

iii) Peak speeds  

To assess the accuracy of the system for the detection of peak speeds, a 20 m linear 

wheelchair sprint was performed. One participant completed all ten trials from a standstill. 

After each maximal effort, sufficient recovery time was permitted before each subsequent 

sprint.  

iv) Multi-directional movements 

In order to determine the accuracy of a player tracking system, the experimental design has to 

satisfy the demands of the activity to which the system will be exposed (Siegle et al., 2013).  

A multi-directional drill was performed aimed to replicate the frequency and intensity of 

movements performed during wheelchair court sports match-play. Two participants 

performed 4 x 8-min trials in an alternate order to avoid the possibility of fatigue affecting the 

quality of the trials, resulting in a total of 8 x 8-min trials.  The participants were instructed to 

incorporate numerous changes in speed and direction to replicate the acceleration, agility and 

sprinting manoeuvres deemed vital to wheelchair court sport athletes (Vanlandewijck, 

Theisen, & Daly, 2001). The total distances covered and mean speeds were collected during 

each trial.  

Statistical analysis 

Data analysis was performed using the Statistical Package for the Social Sciences (SPSS 

version 19, Chicago, IL). Normality and homogeneity of variance were confirmed by 

Shapiro-Wilk and Levene’s tests, respectively.  

Criterion validity of the performance variables measured by the ITS were analysed 

using 95% limits of agreement (LOA), displaying the systematic bias ± random error 

demonstrated for each variable (Bland & Altman, 1986). During test ii, validity was also 

compared to criterion measures using the typical error of the estimate (TEE) and expressed in 

raw units (± 95% confidence limits). A one-way repeated measures analysis of variance 

(ANOVA) was used to examine the mean differences in performance variables within and 

between each of the three different sampling frequencies compared to criterion measures 
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across all tests. Statistical significance was accepted when P < 0.05. Effect sizes (ES) were 

calculated to determine the meaningfulness of any differences, whereby ES < 0.3 reflected a 

small effect (Cohen, 1992), with 95% confidence intervals for differences (95% CI) also 

presented. Intra-tag reliability was reported as a coefficient of variation (% CV) between the 

tags for each specific test. 

Results 

(i) Static measurements  

The mean absolute error during pre-session measurements did not significantly differ 

between low (0.24 ± 0.27 m), medium (0.26 ± 0.25 m) and high (0.32 ± 0.25 m) frequency 

tags (P ≥ 0.72; ES ≤ 0.1), as demonstrated in Figure 3. No significant differences in post 

session values were revealed between low (0.26 ± 0.24 m), medium (0.26 ± 0.24 m) or high 

frequency (0.19 ± 0.20 m) tags (P ≥ 0.92; ES ≤ 0.2). No significant differences between pre 

and post session measurements were found at any sampling frequency (P ≥ 0.15; ES ≤ 0.2). 

Intra-tag reliability results revealed that sampling frequency had no effect on reliability with a 

1.0% CV demonstrated across all frequencies during pre and post session measurements.  

 

Figure 3: Plot of mean static error for each sampling frequency during pre and post session. 

Error bars represent standard deviation. 

(ii) Incremental fixed speeds 

The TEE for distance revealed that minimal errors existed during high and medium fixed 

speeds (0.98-1.09 m), however values increased during low fixed speed (1.85-2.11 m) as 
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displayed in Table 1. A significant difference existed between criterion measures and low (P 

= 0.0005; ES = 0.9; 95% CI = 7.3 to 10.4), medium (P = 0.005; 95% CI = 6.2 to 8.2; ES = 

0.8), and high (P = 0.005; 95% CI = 4.5 to 6.6; ES = 0.8) sampling frequencies during low 

fixed speeds. However, no significant differences were observed during the medium and high 

fixed speeds (P ≥ 0.12; ES ≤ 0.7). Typical error of the estimate values for mean speed 

demonstrate the ITS to be consistent (0.01 m·sˉ¹) across all sampling frequencies at each 

fixed speed. Although low frequency tags displayed the greatest absolute differences to 

criterion values (Table 1), no statistically significant difference was observed between 

sampling frequencies for mean speed (P ≥ 0.15; ES ≤ 0.4). Intra-tag reliability results 

indicated that the error range across fixed speeds to be greatest within low frequency tags 

(0.1-0.6% CV). This error range decreased at both medium (0.2-0.4% CV) and high (0.2-0.3% 

CV) sampling frequencies.  

****SEE TABLE 1 ON FINAL PAGE**** 

(iii) Peak speeds 

Mean criterion values were found to be 4.00 ± 0.09 m·sˉ¹ during maximal sprint trials. In 

comparison, mean tag values for each sampling frequency were 4.07 ± 0.14 m·sˉ¹ (low), 4.05 

± 0.15 m·sˉ¹ (medium), and 4.00 ± 0.12 m·sˉ¹ (high). A significant difference was revealed 

between both low (P = 0.001; 95% CI = -0.17 to -0.01; ES = 0.3) and medium (P = 0.005; 95% 

CI = -0.19 to -0.03; ES = 0.2) sampling frequencies in relation to the criterion measure, with 

positive systematic bias ± random errors of 0.08 ± 0.17 m·sˉ¹ and 0.05 ± 0.10 m·sˉ¹ 

respectively (Figure 4). Intra-tag reliability was greater within low frequency tags (2.7% CV), 

and improved as sampling frequency increased (medium = 2.0% CV; high = 1.6% CV).   
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Figure 4: Plot of mean error (bias) for each frequency during maximal sprint tests (m·sˉ¹). 

Error bars represent 95% LOA. * represents a significant difference between sampling 

frequency and criterion. 

(iv) Multi-directional movements 

Mean criterion distance measurements were 999 ± 65 m during the multi-directional test. In 

comparison, mean distance values for each sampling frequency were 997 ± 63 m (low), 999 ± 

63 m (medium) and 998 ± 62 m (high). Criterion values for mean speed were 2.08 ± 0.14 

m·sˉ¹. Alternatively, ITS mean speed values showed 2.08 ± 0.13 m·sˉ¹ (low), 2.08 ± 0.13 

m·sˉ¹ (medium), and 2.07 ± 0.13 m·sˉ¹ (high). Systematic bias and random error values for 

distance and mean speed during the 8-minute multi-directional test are illustrated in Figure 5. 

Distance results show the low and medium frequency tags to demonstrate similar systematic 

bias ± random error (5 ± 10 m), which were improved in the high frequency tags (3 ± 6 m). 

Yet, no significant difference was observed between any tag frequency and the criterion 

measure for distance covered (P ≥ 0.54; ES ≤ 0.1). Systematic bias ± random error results for 

mean speed remained consistent across all sampling frequencies (0.01 ± 0.02 m·sˉ¹). Again, 

no significant differences were identified between all sampling frequencies and the criterion 

measure for mean speed (P ≥ 0.71; ES ≤ 0.1). Intra-tag reliability results revealed 0.5% CV 

for both distance and mean speed in low and medium frequency. High frequency tags 

revealed values of 0.2% CV and 0.4% CV for distance and mean speed respectively.  
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Figure 5: Plot of mean error (bias) for distance (m) and mean speed (m·sˉ¹) during the multi-

directional test. Error bars represent 95% LOA. 

Discussion  

The aim of the current study was to investigate the validity and reliability of a radio- 

frequency based system for accurately tracking wheelchair athletes during their expected 

movements of on-court match-play. The results confirmed that the ITS was a suitable system 

for quantifying both static and dynamic measurements specific to wheelchair court sports. It 

was also revealed that sampling frequency influenced validity, particularly at peak speeds, 

which has implications on optimal tag frequency selection for wheelchair court sports 

applications.  

Static measurements 

The ITS elicited static errors ranging between 0.19-0.32 m and were not found to be 

influenced by tag sampling frequency. These values are higher than those previously reported 

for the LPM (0.02 m) and WASP (0.12-0.18 m) radio frequency systems (Frencken et al., 

2010; Sathyan et al., 2011). Despite this, the current investigation repeated the static 

measurements at the end of the testing session and importantly revealed that error did not 

significantly drift over a 4 hour time period. From a practical perspective, this demonstrates 

that the ITS is capable of working effectively for the duration of wheelchair basketball (~90 

minutes) and wheelchair rugby (~60 minutes) match-play. In addition, the ITS can also be 

used during prolonged periods, such as multiple tournament games (3-4 matches per day) and 

training camps, without the concern of measurement drift.  

Incremental fixed speeds 

Under controlled testing at incremental fixed speeds (test ii) the ITS demonstrated extremely 

low errors for the assessment of distance covered. As expected, these errors were influenced 

by movement speed. However, it was observed that the magnitude of error was reduced at the 

higher speed, which contradicts the patterns observed by previous GPS (Peterson, Pyne, 

Portus, & Dawson, 2009; Gray, Jenkins, Andrews, Taaffe, & Glover, 2010), radio-frequency 

(Frencken et al., 2010; Ogris et al., 2012), and magnetic reed-switch device literature (Sindall 

et al., 2013b). These differences may be attributed to the filtering process used by the ITS, as 

if a small error exists in a specific court location, the filtering process used may exacerbate 
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the error at low speeds, where more data points are collected for a given area. Since low point 

(< 1.5) wheelchair rugby players exhibit mean speeds of 0.78-1.12 m·sˉ¹ during match-play 

(Sporner et al., 2009; Sarro et al., 2010), it is imperative that the system works effectively at 

these lower speeds. However, despite the fact the distance error was greater at low speeds it 

must be reinforced, that these errors were still extremely small (1.96-2.11 m TEE) and are 

therefore deemed acceptable for the current application.  

The influence of sampling frequency can be seen during this drill, with low frequency 

tags demonstrating the greatest relative distance error values (1.3%), with significantly lower 

relative errors seen in medium (1.0%) and high frequency tags (0.8%). In agreement with this, 

mean speed results also revealed low frequency tags to display the greatest relative 

differences during fixed speed testing (1.4%), with significantly lower relative errors seen in 

medium (0.7%) and high frequency tags (0.5%). Nevertheless, TEE values for mean speed 

were minimal (0.01) and remained consistent across all fixed speeds regardless of sampling 

frequency.  

Peak speeds 

The current study revealed that during maximal sprinting, the ITS displayed relative errors < 

2.0% in peak speeds. This compares favourably to the greater relative error of approximately 

20% for GPS (Duffield et al., 2010), 10% in radio frequency (Ogris et al., 2012) and 10% for 

magnetic reed-switch devices (Sindall et al., 2013b). Previous research has discussed the 

importance of accurately quantifying high intensity movements to facilitate the design of 

athlete training programmes (Dwyer & Gabbett, 2012). Recent studies have implemented the 

use of speed zones relative to an individual’s peak speed in order to monitor performance and 

prescribe training programmes (Venter et al., 2011; Cahill et al., 2013). In order for this 

approach to be effective, the system must be capable of accurately quantifying peak speeds, 

which the present results have confirmed.  

It was also clear that tag frequency played a critical role in accurately identifying peak 

speeds. Higher tag frequencies (8 and 16 Hz) demonstrated a reduction in random error (< 

0.10 m·sˉ¹) compared to low frequency tags (0.17 m·sˉ¹). Given the peak speed values 

obtainable by wheelchair basketball (4.45-4.53 m·sˉ¹) and wheelchair rugby (3.56-3.69 m·sˉ¹) 

players during maximal sprinting (Mason et al., 2009; 2012), coupled with the frequency with 

which high-intensity movements are likely to be performed (Vanlandewijck et al., 2001) low 

sampling frequency tags were therefore not deemed suitable for the current application.  
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Multi-directional movements 

An advantage of the current investigation was the inclusion of a test which assessed the ITS 

during the type and intensity of movements that the system was intended to be used for 

(Siegle et al., 2013) i.e. wheelchair court sports. Distance errors revealed when performing 

multi-directional movements were very low, with absolute errors < 2 m across sampling 

frequencies, resulting in relative errors < 0.2%. The magnitude of error for the ITS was much 

smaller than the relative distance errors of 5.8% associated with GPS (Duffield et al., 2010), 

4.8% with video tracking techniques (Edgecomb & Norton, 2006) and 1.6-2.7% found in 

radio-frequency systems (Frencken et al., 2010; Ogris et al., 2012) during sport specific 

movements.  

During this drill, minimal absolute differences in distance (1-2 m) were seen when 

comparing sampling frequencies. Additionally, similar findings were observed in the mean 

speed results, with relative errors consistent (< 0.3%) irrespective of sampling frequency. 

Clearly, the influence of sampling frequency seems to be more prevalent during the 

incremental fixed speed test (test ii) than the current test. In line with previous research, this 

suggests that the validity of distance measures improves with longer duration activities 

(Jennings et al., 2011; Cummins et al., 2013). Accordingly, the selection of sampling 

frequency for the assessment of distance and mean speed may be less important during 

wheelchair court sport match-play. Despite this, optimal sampling frequency must be 

considered for an accurate detection of peak speeds during this application.   

Determining the optimal tag sampling frequency depends on both the overall 

bandwidth of the system and the nature of the sport. The likelihood of competition testing 

during wheelchair court sports consists of monitoring 8-10 players at a given time, yet given 

the overall bandwidth of the system (137 Hz), high frequency tags (16 Hz) would not be 

feasible for all players. Hence, low or medium sampling frequency tags would be required. 

Yet, by varying the sampling frequencies within the present study, the differences observed 

have established that adopting a methodology that uses high (16 Hz) or medium (8 Hz) 

sampling frequency would be most acceptable for wheelchair court sports match-play. 

Limitations and future recommendations  

A limitation of the current study was the use of linear 20 m sprints to assess high intensity 

activities, since these movements are often multidirectional and interspersed in between 
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lower intensity movements in wheelchair sports (Vanlandewijck et al., 2001). However 

owing to limitations with the availability of alternative equipment available to act as a valid 

and reliable criterion measure this was not possible. Previous research has also discussed the 

importance of quantifying activity into relative and arbitrary speed thresholds to facilitate 

training programme development (Dwyer & Gabbett, 2012; Cahill et al., 2013). It could be 

argued that an assessment of these parameters may have been beneficial in the context of the 

current investigation. However, given the favourable performance in the detection of peak 

speeds, it is anticipated that the ITS should adequately determine these parameters. Given the 

validity and reliability of the ITS in a wheelchair court sport setting, future investigations are 

recommended to utilise the system to quantify the demands of these sports. This would 

facilitate the current need to understand physical capacity differences by means of comparing 

athletes with respect to their Paralympic classification. Despite the current focus on 

wheelchair courts sports, it is possible that the ITS can also be used successfully within other 

indoor sports. However, it is highly recommended that a validation protocol specific to these 

sports are employed first. 

Conclusion    

The results of the present study revealed that a novel radio frequency ITS provided an 

accurate and reliable quantification of the movement parameters specific to the wheelchair 

court sports. Given the greater degree of accuracy for detecting peak speeds, a high sampling 

frequency (≥ 8 Hz) was recommended for use within wheelchair court sports. 
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Table 1. Distance and mean speed values during movement at incremental fixed speeds (test ii) 

 

 

 

 

Mean values (95% confidence limits) 

TEE expressed as raw units 



20 
 

 


