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Abstract

In this paper, a proposed method of analysis of a beam that is continuously supported on a
linear nonhomogeneous elastic foundation and subjected to a harmonically excited mass is p-
resented. The solution is obtained by decomposing the nonhomogeneous foundation properties
and the beam displacement response into double Fourier summations which are solved in the
frequency-wavenumber domain, from which the space-time domain response can be obtained.
The method is applied to railway tracks with step variation in foundation properties. The validi-
ty of this method is checked, through examples, against existing methods for both homogeneous
and nonhomogeneous foundation parameters. The effect of inhomogeneity and the magnitude
of the mass are also investigated. It is found that a step variation in foundation properties
leads to a reduction in the beam displacement and an increase in the resonance frequency, for
increasing step change, with the reverse occurring for decreasing s. Furthermore, a beam on
nonhomogeneous foundation may exhibit multiple resonances corresponding to the foundation
stiffness of individual sections, as the mass moves through the respective sections along the
beam.

Keywords: Nonhomogeneous foundation, Double Fourier Summation, continuously supported
beam, harmonically excited mass, frequency-wavenumber domain

1. Introduction

The model of a beam on an elastic foundation has been extensively used over the years for
modelling the dynamic behaviour of railway tracks [1, 2, 3]. Diverse solutions have been pre-
sented for this problem for varying types of loads; static and dynamic, stationary and moving,
deterministic and stochastic. In their solutions, most authors assume the beam is supported on
a linear elastic foundation with homogeneous stiffness and damping parameters. Solutions to
the homogeneous case are readily available in the literature, for e.g. the Fourier and Laplace
transformation methods as well as direct approaches of solving the differential equations. Al-
though this fundamental assumption of homogeneous parameters provides good understanding
of the dynamic behaviour of a beam on an elastic foundation, it limits the true representation of
the practical situation in most railway based applications. This is because there are many prac-
tical instances of nonhomogeneity in railway tracks. For example, in Hunt [4] several classes of
inhomogeneity/roughness in railway tracks including variations in track-bed profile, foundation
stiffness, sleeper spacing are given.
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The effect of spatial variation of track stiffness on the vibration of infinite beams on elastic
foundation has been studied by several authors, mostly with the use of perturbation techniques
for relatively small variations. Mahmoud and Tawil [5] analysed the quasi-static response of
beams on random elastic foundation using truncated power series expansion of the random
displacements. Dynamic effects were later accounted for by Frýba et al. [6] who used a first-
order perturbation technique with stochastic finite elements to obtain the steady state solution
of an infinite beam on a random foundation with uncertain damping, subjected to a constant
moving force. The results, which are given in the form of variances of the deflection and bending
moment of the beam, show that the coefficient of variation of deflection is larger than that of
the bending moment at the point of application of the force, with randomness of the foundation
stiffness being of greater significance than the uncertainty in the damping. Andersen and Nielsen
[7] analysed an infinite beam resting on a Kelvin foundation with the inclusion of a shear layer
and subjected to a moving SDOF vehicle. The spatial variation of the foundation vertical
stiffness is described by a stochastic homogeneous field consisting of small random variations
around a predefined mean value. A first-order perturbation analysis was proposed to establish
the relationship between the variation of the spring stiffness and the responses of the vehicle
mass and the beam. The accuracy of this method, however, depends on the speed of the vehicle
as well as the degree of variation in the random track stiffness, with fairly poor results obtained
for speeds and stiffness variations over 30%. Verichev and Metrikine [8] studied the instability
of a mass moving along a beam that is supported on an inhomogeneous elastic foundation with
periodically varying stiffness. Perturbation analysis was used to obtain analytic expressions for
the vibration conditions of the beam to become unstable. In all these cases, only small variations
in track stiffness and damping have been considered by the authors in order to guarantee the
accuracy of their solutions when making use of the perturbation technique. For example, in [6],
the coefficients of variation in stiffness and damping are kept small enough compared to unity;
i.e. |ε| � 1 and |γ| � 1 respectively. The same assumption is also emphasized in [8] where
the small parameter µ� 1, for the same reason stated above. Also, most of these models only
considered variation in stiffness whereas the damping in treated as constant. However, large
levels of inhomogeneity can be present in railway track supporting structures; for e.g. moving
from one track type to another as from a ballasted track to a bridge structure or vice versa.

Other methods have also been employed in studying beams on nonhomogeneous founda-
tions. Pavlović and Wylie [9] investigated the free vibration of a beam on Winkler foundation
with linearly varying modulus along the beam span using a power series approach. They con-
cluded that the free response is mainly divided into two regions; up to a certain value of the
stiffness below which the response of the beam can be determined by averaging the linearly
varying stiffness and adopting equivalent homogeneous models and the region beyond this value
in which this cannot be done. Wave propagation in a beam on a Winkler foundation with
random spatial variation of spring stiffness has been studied by Schevenels et al [10] with the
focus on understanding the influence of correlation length. Their results show that even small
spatial variations can have an influence on the response at large distance from the source if the
correlation length and the wavelength are of the same order of magnitude.

Generally, there are two categories of methods used in solving the differential equation
governing the dynamic behaviour of a beam on elastic foundation. The first category is based
on discretisation techniques such as the finite element and finite difference methods carried
out in the space-time domain, whereas the second group adopts transformation techniques in
the frequency and/or wavenumber domains; see for e.g. Knothe and Grassie [11]. Advances
in discretisation methods have been immense with applications to solving beams on linear
homogeneous foundations; see for e.g. [12], nonhomogeneous foundations; see for e.g. [13],
[14], nonlinear foundations; see for e.g. [15], etc. However, the applications of frequency-
wavenumber domain methods have been limited to linear homogeneous problems or periodically
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nonhomogeneous ones, see for e.g. [16]. It is intended in this work to extend the applications of
frequency-wavenumber domain technique to incorporate other forms of nonhomogeneity in the
differential equation.

In this paper, an alternative approach is proposed for analysing a beam on elastic foundation
with nonhomogeneous stiffness and damping under a moving harmonically excited mass. The
method addresses some of the limitations of the aforementioned methods as large levels of vari-
ation in both foundation stiffness and damping are considered. The effects of nonhomogeneity
on the beam response are analysed. In section 2, the model is presented together with the gen-
eralised differential equation describing the beam dynamic behaviour, and the proposed method
of solution, involving the use of Fourier sums is presented in section 3. The method is applied
to railway tracks with continuous elastic foundation with step variation in properties in section
4. Results are then presented in section 5, including validation of the current method against
existing methods such as the Fourier transformation method for homogeneous parameters and
also standard finite elements approach in the space-time domain.

2. Model formulation

Figure 1(a) shows an infinitely long Euler-Bernoulli beam supported on a continuous linear
elastic foundation resting on a rigid base. The vertical foundation stiffness and damping are
modelled, using springs and dashpots respectively, as generally nonhomogeneous in the spatial
domain along the length of the beam. The beam is traversed by a vehicle, excited by an
oscillating load, at constant velocity in the direction shown. The vehicle is represented only by
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Figure 1: (a) Moving mass on an Euler-Bernoulli beam on nonhomogeneous elastic foundation, (b) equilibrium
conditions at the mass-beam interface

a mass, assumed to be a simplification of a train in which only the unsprung part is included,
i.e. assuming the suspensions isolate the dynamics of the sprung components of the vehicle in
the frequency range of interest. The general boundary conditions associated with the infinite
beam theory are adopted here; i.e. the deflection, slope and bending moment at an infinitely
long distance, on either side of the moving load, vanish at all times.

2.1. Equation of motion

Fig. 1(b) shows the equilibrium conditions at the mass-beam interface. It is assumed that
perfect contact between the mass and the beam is maintained at all times. The partial differ-
ential equation of motion governing the dynamic behaviour of the beam on nonhomogeneous
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elastic foundation subjected to an arbitrary force, p(x, t), can be written as

EI
∂4u(x, t)

∂x4
+m

∂2u(x, t)

∂t2
+ c(x)

∂u(x, t)

∂t
+ k(x)u(x, t) = p(x, t), (1)

where EI and m are the bending stiffness and mass per unit length of the rail respectively, k(x)
and c(x) are the nonhomogeneous foundation stiffness and damping respectively; u(x, t) is the
displacement of the rail at any point, x, at an instant, t. The external force, p(x, t), in this case
is the mutual force at the mass-beam interface and can be obtained from the equilibrium of the
mass such that

p(x, t) =
[
P0e

iω0t −Md2u(x, t)

dt2

]
δ(x− vt), (2)

where M is the magnitude of the moving mass; P0 and ω0 are the amplitude and angular
frequency of the harmonic load, moving with speed, v; ω0 = 2πf0, f0 being the excitation
frequency and δ(.) is the Dirac delta function. For convenience, the harmonic load has been
expressed in a complex form (i.e. eiω0t), i being the imaginary unit with value of

√
−1.

Substituting Eq. (2) into Eq. (1) and replacing the full derivative associated with the moving
frame with its equivalent partial derivatives in the fixed frame, results in

EI
∂4u(x, t)

∂x4
+m

∂2u(x, t)

∂t2
+ c(x)

∂u(x, t)

∂t
+ k(x)u(x, t)

=
[
P0e

iω0t −M
(∂2u(x, t)

∂t2
+ 2v

∂2u(x, t)

∂x∂t
+ v2

∂2u(x, t)

∂x2

)]
δ(x− vt).

(3)

Equation (3) is best solved, using the proposed method, when the delta function on its Right
Hand Side (RHS) is expressed only as a function of time. This is achieved by transforming it
from the fixed frame of reference (x, t) to the moving frame of reference (z = x − vt, t), see
[1]. Consider the following transformation of the partial derivatives between the two frames of
reference, see for e.g. [7]

∂/∂x = ∂/∂z; ∂/∂t = ∂/∂t|z − v∂/∂z;
∂2/∂t2 = ∂2/∂t2|z − 2v∂2/∂z∂t+ v2∂2/∂z2; (4)

Applying Eq. (4) to Eq. (3), Eq. (3) can be rewritten in the moving frame of reference as
follows

EI
∂4u(z, t)

∂z4
+m

(
∂2u(z, t)

∂t2
− 2v

∂2u(z, t)

∂z∂t
+ v2

∂2u(z, t)

∂z2

)
+ c(z, t)

(
∂u(z, t)

∂t
− v∂u(z, t)

∂z

)
+ k(z, t)u(z, t) =

[
P0e

iω0t −M∂2u(z, t)

∂t2

]
δ(z)

(5)

Equation (5) is the coupled differential equation for a moving mass on a beam on nonhomoge-
neous elastic foundation. The solution procedure, using the proposed method, is presented in
the next section.

3. Solution of the equation of motion

The procedure for solving Eq. (5) involves decomposing the nonhomogeneous foundation
stiffness and damping; k(z, t) and c(z, t), the displacement response of the beam u(z, t) and the
external forcing function into DFS forms.
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3.1. Formulation of the Double Fourier Sum (DFS)

Let the beam displacement u(z, t) be continuous on z, on the interval z ∈ {−zm, zm},
deferring for a moment the dependence of u on time t, with zm being the maximum distance
on either side of the moving load. It should be noted that zm must be chosen large enough for
a given set of excitation frequency and load speed in order to satisfy the prevailing boundary
conditions stated in section (2). For the purpose of performing Fourier transformation on u(z, t)
from the space domain to the wavenumber domain, it is assumed that u(z, t) is zero outside
the predefined boundaries of z, hence the Fourier transform needs only be performed on the
specified limits of z. With this supposition, the Fourier transform of u(z, t) in the wavenumber-
time domain û(ξ, t) is

û(ξ, t) =

zmw

−zm

u(z, t)e−iξzdz, (6)

where ξ is the wavenumber, ξ = 2π/λ; λ being the wavelength of each harmonic component of
the response.
Now considering the dependence of u on time t, the temporal Fourier transformation on û(ξ, t)
to the frequency domain results in the wavenumber-frequency domain counterpart of u(z, t) as
follows

ũ(ξ, ω) =

tmw

−tm

zmw

−zm

u(z, t)e−iξze−iωtdzdt, (7)

where ω is the angular frequency of each harmonic component of the response and tm is the
maximum time included in the computation.
The corresponding inverse double Fourier transform of Eq. (7) is given as

u(z, t) =
1

4π2

ωmw

−ωm

ξmw

−ξm

ũ(ξ, ω)eiξzeiωtdξdω, (8)

where ξm and ωm are respectively the maximum wavenumber and frequency included in the
computation.
Similar expressions can be written for the nonhomogeneous stiffness and damping as functions
of their wavenumber-frequency domain counterparts as in Eq. (9) and (10) below:

k(z, t) =
1

4π2

ωmw

−ωm

ξmw

−ξm

k̃(ξ, ω)eiξzeiωtdξdω, (9)

c(z, t) =
1

4π2

ωmw

−ωm

ξmw

−ξm

c̃(ξ, ω)eiξzeiωtdξdω. (10)

The Fourier transform of δ(z) on the RHS of Eq. (5) results in unity, which means that the
inverse transform can be expressed simply as a function of wavenumber as

δ(z) =
1

2π

ξmw

−ξm

eiξzdξ. (11)

Since the system is linear, we can back substitute Eqs. (8)-(11) into Eq. (5); the resulting
equation is an integral equation that governs the beam dynamics, with unknowns being the
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response amplitudes in the ξ − ω domain as follows

1

4π2

ωmw

−ωm

ξmw

−ξm

(
EIξ4 −m(ω − ξv)2

)
ũ(ξ, ω)eiξzeiωtdξdω

−
(

1

4π2

ωmw

−ωm

ξmw

−ξm

Mω2ũ(ξ, ω)eiξzeiωtdξdω

)(
1

2π

ξmw

−ξm

eiξzdξ

)

+

(
1

4π2

ωmw

−ωm

ξmw

−ξm

(
i(ω − ξv)c̃(ξ, ω) + k̃(ξ, ω)

)
eiξzeiωtdξdω

)

×
(

1

4π2

ωmw

−ωm

ξmw

−ξm

ũ(ξ, ω)eiξzeiωtdξdω

)
=
P0e

iω0t

2π

ξmw

−ξm

eiξzdξ (12)

In Eq. (12), the presence of the nonhomogeneous foundation properties couples the response at
different frequencies and wavenumbers thus preventing a simplified solution for ũ(ξ, ω). There-
fore the inverse Fourier transforms in Eq. (12) must be evaluated, and this is most simply done
using numerical integration such as the trapezium rule.
Dividing the wavenumber-frequency domain into an evenly spaced grid with 2α + 1 points on
the interval {−α∆ξ, α∆ξ} and 2β+ 1 points on the interval {−β∆ω, β∆ω}, where α and β are
integers, yields the wavenumber and frequency sequences given below

ξp = p∆ξ; for p ∈ {−α, α}; where ∆ξ = π/zm, (13a)

ωq = q∆ω; for q ∈ {−β, β}; where ∆ω = π/tm. (13b)

Using Eq. (13a) and (13b), the integrals in Eq. (12) can be replaced by approximate Fourier
sums to obtain the algebraic form in Eq. (14), which governs the beam behaviour with the
unknowns being the response amplitudes in with the ξ − ω domain

β∑
q=−β

α∑
p=−α

(
EIξ4p −m(ωq − ξpv)2

)
Up,qe

iξpzeiωqt

+
τ∑

e=−τ

σ∑
d=−σ

β∑
s=−β

α∑
r=−α

(
i(ωs − ξrv)Cd,e +Kd,e

)
Ur,se

iξd+rzeiωe+st

−D
γ∑

o=−γ

β∑
b=−β

α∑
r=−α

Mω2
bUr,be

iξo+rzeiωbt = P0

β∑
q=−β

α∑
p=−α

Gp,qe
iξpzeiωqt. (14)

Note that r and b,s are synonymous indices to p and q respectively, but have been differentiated
from the latter in order to conveniently account for the contributions of the nonhomogeneous
components and the presence of the mass to the response amplitudes Up,q; D is an integration
constant (= ∆ξ/2π) and the index o is associated with the transformation of the delta function
on the LHS of Eq. (12), differentiated from that on the RHS for convenience.
In defining the parameters in Eq. (14), it is essential to show how they relate to their respective
continuous integral forms given in Eqs. (8) to (11).
The double inverse Fourier transform of the response given in Eq. (8) can be recast in DFS
form as follows

u(z, t) ≈
β∑

q=−β

α∑
p=−α

Up,qe
iξpzeiωqt, Up,q =

ũ(ξp, ωq)∆ξ∆ω

4π2
. (15)
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Similarly, DFS expressions can be written for the nonhomogeneous stiffness and damping given
in Eqs. (9) and (10) such that

k(z, t) ≈
τ∑

e=−τ

σ∑
d=−σ

Kd,ee
iξdzeiωet, Kd,e =

k̃(ξd, ωe)∆ξ∆ω

4π2
(16)

and

c(z, t) ≈
τ∑

e=−τ

σ∑
d=−σ

Cd,ee
iξdzeiωet, Cd,e =

c̃(ξd, ωe)∆ξ∆ω

4π2
, (17)

where ũ(ξp, ωq), k̃(ξd, ωe) and c̃(ξd, ωe) are the respective double Fourier transformations of
u(z, t), k(z, t) and c(z, t) from the z − t domain to the ξ − ω domain.
In order to conform to the general DFS form, the forcing function on the RHS of Eq. (12) is
also expressed as a Fourier sum as follows

eiω0t

2π

ξmw

−ξm

eiξzdξ ≈
β∑

q=−β

α∑
p=−α

Gp,qe
iξpzeiωqt, (18)

where

Gp,q =

{
0 for ωq 6= ω0

∆ξ/2π for ωq = ω0
(19)

This implies that for all range of wavenumbers ξp, the external load is only concentrated at the
excitation frequency.

Equation (14) can be simplified by adopting the following restrictive conditions

d+ r = p, e+ s = q; −α ≤ r ≤ α, −β ≤ s ≤ β, (20)

and additionally specifying that o+ r = p and b = q, such that the summation indices d,o and
e are simply replaced by p− r and q − s respectively as in Eq. (21)

β∑
q=−β

α∑
p=−α

(
EIξ4p −m(ωq − ξpv)2

)
Up,qe

iξpzeiωqt

+

β∑
s=−β

α∑
r=−α

(
i(ωs − ξrv)Cp−r,q−s +Kp−r,q−s

)
Ur,se

iξpzeiωqt

−D
β∑

q=−β

α∑
r=−α

Mω2
qUr,qe

iξpzeiωqt = P0

β∑
q=−β

α∑
p=−α

Gp,qe
iξpzeiωqt. (21)

Equation (20) strictly restricts the formulation to within the boundaries of the ξ − ω domain
mesh system and no contribution from values outside this region is considered. It is therefore
important that the size of this mesh is large enough to encompass all significant values.

3.2. Computation of Up,q

The calculation for Up,q is done numerically. A 2D mesh similar to the one shown in Fig.
2 is generated by specifying the range of frequencies and wavenumbers to be included in the
computation, based on the range of z and t, see Hussein [17] for example. The range of frequen-
cies should be centred at the excitation frequency and the wavenumbers centred at zero, i.e.
{ω0−β∆ω : ∆ω : ω0 +β∆ω} and {−α∆ξ : ∆ξ : α∆ξ} respectively. This is because, for a linear
system, the largest response amplitudes are concentrated around the excitation frequency. In
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Figure 2: A 2D mesh for the computation of Up,q, Kd,e and Cd,e

order to obtain accurate results, these range of values should be large enough to cover the range
of wavenumbers and frequencies where Up,q is significant. To avoid aliasing when sampling,
suitable values of ∆ω and ∆ξ are calculated with particular emphasis on satisfying Nyquist
criterion. This is expressed mathematically as [17]

1

∆ω
≥
∣∣∣∣ tπ
∣∣∣∣, or − π

∆ω
≤ t ≤ π

∆ω
; and

1

∆ξ
≥
∣∣∣∣ zπ
∣∣∣∣, or − π

∆ξ
≤ z ≤ π

∆ξ
(22)

In order to explain how the computation of Eq. (21) is done, consider the mesh shown in Fig.
2, which is 2D projection of the picture in the ξ − ω domain. For any arbitrary point on the
mesh (p, q), the governing equation can be written as

(
EIξ4p −m(ωq − ξpv)2

)
Up,q −DMω2

q

α∑
r=−α

Ur,q

+

β∑
s=−β

α∑
r=−α

(
i(ωs − ξrv)Cp−r,q−s +Kp−r,q−s

)
Ur,s = P0Gp,q. (23)

To avoid negative indices in the computation of Eq. (23), the extent of the mesh sizes for the
coefficients Kd,e and Cd,e, i.e. for k̃(ξd, ωe) and c̃(ξd, ωe), should be made twice the size of that
required for Up,q, i.e. for ũ(ξp, ωq). Therefore, σ = 2α and τ = 2β. Also the summation indices
are shifted from (p = −α, q = −β) to (p = 1, q = 1) or in the case of Kd,e and Cd,e from
(d = −2α, e = −2β) to (d = 1, e = 1).
Let the number of sample points on the wavenumber and frequency domain be Np and Nq

respectively. The computation of Eq. (23) requires rearranging it into the form below

HŪ = P, (24)

where H is a matrix that contains the coefficients of Ū and has size NpNq × NpNq, Ū and P
are vectors of length NpNq, Ū contains the displacement response in the ξ−ω domain whereas
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and P holds the external load. The elements of matrix H can be computed as follows

H(g, h) = (EIξ4α+p+1 −m(ωβ+q+1 − ξα+p+1v)2
)

+ i(ωβ+s+1 − ξα+r+1v)C2α+p−r+1,2β−q+s+1

+K2α+p−r+1,2β−q+s+1; for r = p and s = q (25a)

H(g, h) = (EIξ4α+p+1 −m(ωβ+q+1 − ξα+p+1v)2
)
−DMω2

β+q+1

+ i(ωβ+s+1 − ξα+r+1v)C2α+p−r+1,2β−q+s+1

+K2α+p−r+1,2β−q+s+1; for all r and b = q (25b)

H(g, h) = i(ωβ+s+1 − ξα+r+1v)C2α+p−r+1,2β−q+s+1

+K2α+p−r+1,2β−q+s+1; elsewhere (25c)

where g and h are indices obtained by repeating {−α : α} and {−β : β}T Nq and Np times
respectively. Note that the index b is also the same as s in this instance as they are both
associated with frequency summations over the same interval. The force vector, P, is composed
of elements that are zero for (ξp, ωq 6= ω0) and ∆ξ/2π for (ξp, ωq = ω0).
Having obtained the response amplitudes, Up,q, the response in the space-time domain is then
calculated using Eq. (15).

4. Application of the DFS method: step variation in foundation properties

In this section, the DFS formulation is applied to a step variation in foundation stiffness and
damping for continuously supported beams. A step variation in track foundation properties can
occur in cases where a track section has been removed and replaced for maintenance purposes,
and for which the resulting foundation has different stiffness and damping properties from the
existing one surrounding the replaced section. Another practical case is when a different track
design (e.g. floating slab) is adopted in one section of the track compared to the rest of the
track. This can be done in order to reduce vibration levels near structures with more stringent
vibration criteria.
Fig. 3 is a schematic diagram of a step variation in stiffness. In order to allow for smooth
change in stiffness from one section to the next, two transition zones described by half-cycle
cosine waves have been included. In Fig. 3 the subscripts ‘S’ and ‘T’ represent ‘step’ and
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Figure 3: Variation of track foundation stiffness for continuously supported beam

‘transition zone’ respectively. It should be noted that k2 has been symmetrically placed about
the beam’s origin merely for convenience and can be located anywhere along the beam length
depending on the prevailing boundary conditions of one’s problem. The stiffness, k2, is related
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to k1 through the nonhomogeneity parameter, µ, such that k2 = (1 + µ)k1, where µ is the ratio
of the difference in stiffness, (k2 − k1), to the uniform stiffness, k1.
The track foundation stiffness variation is described by

k(x) =


k1 if |x| > xS + xT ,

k2 if |x| 6 xS ,

k1
(
1 + 0.5µ(1 + cos(π(x− xS)/xT ))

)
if xS 6 |x| 6 xS + xT .

(26)

The foundation damping follows the same variation as in Fig. 3 with ci = 2ζ
√

(mki); for
i = 1, 2, where ζ is the damping ratio and has been assumed to have the same value for both
sections. It follows therefore that c2 =

√
(1 + µ)c1.

Now k(x) and c(x) should be transformed into k(z, t) and c(z, t) before being substituted into
Eq. (5). In the fixed frame of reference, the foundation stiffness is independent of time and
so the nonhomogeneous section is always at a constant position along the beam length (i.e.
−xS − xT , xS + xT ), see Fig. 4(a) for the case where xT = 0. In the moving frame of reference
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Figure 4: The foundation stiffness variation in (a) the fixed frame and (b) the moving frame of reference

in (b), on the other hand, the load ‘perceives’ the nonhomogeneous section to be at +∞ as
t → −∞. As the load moves, it gets closer to this section (at a constant rate of −v), until, at
t = 0, where the moving frame coincides the fixed frame. The load then moves to the opposite
side of the section for positive values of t. The same analogy also applies for the foundation
damping.

In section 5, results are presented for bean on elastic foundation with step variation in
properties with and without transition zones.

5. Results and discussions

In this section, results are presented for the DFS method. Results are first presented in
section (5.1) for the special case of a harmonic load moving along the beam, i.e. when M = 0.
Later in section (5.2), the effect of the presence of the mass is investigated. In each of these cases,
the DFS method is compared with existing methods. Finally, convergence and computational
considerations of the current method are discussed in section (5.3).

Table 1 contains the parameters used in the numerical examples presented in this section.
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Table 1: Parameters used in the numerical examples

Model components Parameter Parameter value

Rail (60E1)
Mass per unit length, m 60.21 kg m−1

Bending stiffness, EI 6.4 MN m2

Railpad
Distributed stiffness, k1 20 MN m−2

Damping ratio, ζ 0.1

Coupled mass
Mass magnitude, M 600 kg
Force amplitude, P0 1 N

5.1. Results for the moving harmonic load

5.1.1. Validation of the DFS method

Trochanis et al. [18] presented a unified procedure for analysing a beam on homogeneous
elastic foundation subjected to an oscillating moving load. The method which is based on the
Fourier Transformation Method (FTM) is applied to beams posed on Kelvin foundation. Like
the current model, the analysis is carried out in the moving frame of reference. Using this
method for the homogeneous case, the beam displacement response in the space-time domain
can be computed from

u(z, t) =
P0e

iω0t

2π

∞w

−∞
H(ξ, ω0)e

iξzdξ, (27)

where H(ξ, ω0) is the transfer function, given by

H(ξ, ω0) =
1

EIξ4 −m(ω0 − ξv)2 + ic(ω0 − ξv) + k
. (28)

Equation (27) is computed numerically, adopting the same sampling considerations for the DFS
method. This approach is used to check the validity of the results obtained from the DFS
method with uniform stiffness and damping (i.e. for µ = 0).

Fig. 5(a-d) shows a comparison between the DFS and the FTM for the beam response in a
moving frame of reference for selected load velocities and frequencies. In (a), (c) and (d), the
beam displacement at t = 0 for f0 = 10 Hz, v = 36 kmh−1, f0 = 100 Hz, v = 180 kmh−1 and
f0 = 0Hz, v = vcr respectively are shown whereas (b) shows the displacement-time history under
the moving load (i.e. z = 0) for the same parameters as in (a). As can be seen from this figure,
the agreement between the two methods is very good for all the cases shown. For low velocity
and frequency, the beam displacement is symmetrical about the origin as is the dispersion
curves and there are no propagating waves. This is because all the roots of the dispersion
equation are imaginary and give rise to decaying solutions, see [19]. As the frequency and
velocity increases, waves start to propagate from the load. For very low velocities (v → 0), the
waves start propagating at the cut-on frequency, fco = 1/2π

√
(k1/m) ≈ 92 Hz. As the velocity

increases, however, the cut-on frequency, fco → 0. The velocity at which fco = 0 Hz is known as
the critical velocity and is expressed, for Euler-Bernoulli beams, as vcr = (4EIk1/m

2)1/4. This
gives vcr = 613 ms−1 for the parameters in Table 1. At this velocity waves start to propagate
from a static load (i.e. when ω0 = 0) as shown in (d).

5.1.2. Step variation in foundation properties with no transition zones

Fig. 6(a-d) shows a comparison between the homogeneous and nonhomogeneous cases for
µ = 0 and 0.25 respectively. The transition zone is non existent in this example, i.e. xT = 0
whereas xS = 025zm, for zm = 10 m in (a) and (b) and 20 m in (c) and (d). The beam displace-
ment response due to a load with f0 = 10 Hz and v = 36 kmh−1 is shown in (a) at time t = 0

11
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Figure 5: Beam displacement response in the moving frame of reference for various load velocities and frequencies;
(a), (c) and (d), the beam displacement at t = 0 for f0 = 10 Hz, v = 36 kmh−1, f0 = 100 Hz, v = 180 kmh−1,
and f0 = 0 Hz, v = vcr respectively, (b) displacement-time history under the moving load (i.e. z = 0) for the
same parameters as in (a). ——: DFS, ◦ : FTM

and in (b) for a point directly under the moving load, i.e. z = 0. In (a), it is clear that the
peak displacement amplitude of the beam is lower for the nonhomogeneous case than for the
homogeneous case, due to the higher stiffness of k2. This effect may however be considered to
be local as the displacement amplitudes away from the region of k2 converge for both cases. In
(b) the response under the load is shown with the region of k2 bounded within the vertical bold
black lines. It can be seen that the steady state response is altered with the effect of increased
stiffness within the region being a reduction in the amplitude of the response.
For the higher frequency case shown in (c), with f0 = 100 Hz and v = 80 kmh−1, the nonhomo-
geneous case exhibits a larger peak response because the excitation frequency almost coincides
with the resonance frequency for this case. This frequency can be seen in (d) to be around 100
Hz whereas the resonance frequency for the homogeneous case is at 92 Hz. Observation of the
results also shows that the responses are out of phase. The variations of the displacement at
z = 0, t = 0 with frequency are shown in (d). The increased stiffness in the vicinity of z = 0
leads to a reduction in the peak displacement of 1.8 dB. This also leads to increased resonance
frequency.

5.1.3. Step variation in foundation properties with transition zones

In this section the effect of step variation in foundation properties with transition zones is
studied. The results obtained with the DFS method are compared with standard Finite Element
Method (FEM) in the space-time domain, see [20, 21, 12]. For the FEM, the beam is discretised
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Figure 6: Beam displacements in the moving frame of reference for various load velocities and frequencies. (a)
and (b) beam displacement at t = 0 for f0 = 10 Hz, v = 36 kmh−1 and f0 = 100 Hz, v = 80 kmh−1 respectively,
(c) displacement-time history under the moving load for the parameters in (a), and (d) beam displacement u(0, 0)
plotted against oscillating frequency of a load moving at 36 kmh−1. ——: µ = 0, · · · ·: µ = 0.25

into a finite number of two-noded Euler-Bernoulli beam elements, each of length, L, mass per
unit length, m, and bending stiffness, EI. Each element has four degrees-of-freedom (dof),
i.e. vertical translation and rotation at each node. The foundation stiffness and damping are
respectively modelled with springs and dashpots placed at the vertical dofs of the nodes along
the beam, with values derived from their distributed counterparts as kL and cL respectively.
The global mass, M, damping, C, and stiffness, K, matrices of the beam and elastic foundation
as well as the equivalent nodal force vector, P, are formed.

The dynamic behaviour of beam on elastic foundation under arbitrary loading conditions
can be described by the time discretised differential equation

Mü + Cu̇ + Ku = P. (29)

For a moving harmonic load, the nodal force vector, P, will have
{
−P0 cos(ω0t− ϕ)NT (x)

}
as

the only non-zero elements placed at the corresponding dofs of the element on which it acts,
where N(x) is the Hermitian shape functions, calculated for each position of the load, (x, t). A
phase shift, ϕ, is introduced to ensure that the load always arrives at the midpoint of the beam
with a peak value. The solution of Eq. (29) for the displacement vector, u, and its derivatives is
obtained using a two sub-step composite implicit time integration scheme, see Bathe and Baig
[22]. In order to reduce boundary and transient effects, additional damping is provided at the
first and last nodes of the beam.
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Figure 7 shows a comparison between the DFS method and FEM in the fixed frame of refer-
ence for beam resting on an elastic foundation with step variation properties with xS = xT = 3
m and µ = 0.5. The spatial variation in stiffness is given in (a). In (b), the displacement under
the moving load for f0 = 30 Hz, v = 160 kmh−1 is shown whereas (c) shows the displacement-
time history for a point at x = 0 on the beam. For the DFS, ∆z = 0.25, α = 60 and β = 10,
giving a total beam length of 30 m. Once matrix H has been computed, the response in the
space-time domain is obtained with a much finer mesh, namely ∆z/N , where N is an integer.
For the FEM, on the other hand, the beam is discretised into 120, 0.25 m elements, i.e. 30 m
length of beam. The time step used is ∆t = L/Nv, with N taken as 10 for both methods.
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Figure 7: (a) Spatial variation of the foundation stiffness used in the simulation, (b) displacement under the
moving load for f0 = 30 Hz, v = 160 kmh−1, displacement-time history in the fixed frame of reference of a point
at x = 0 . ——: DFS; ◦: FEM; −−−: displacement envelope

The results obtained from the two methods display very good agreement, although the FEM
is computationally more efficient in terms of running time and memory usage. These simulations
were carried out on an HP Pavilion computer, model p6-2000ukm, with Intel Core i3 processor
@ 3.3GHz and 8GB of RAM. The FEM runs in 1.2 seconds utilising 680 MB of memory, whereas
the DFS runs in 12.24 seconds utilising 774 MB of memory. Although the system matrices in
both cases need only be inverted once, the size of the matrix in the FEM is considerably smaller
than that of the DFS method, hence the faster running time.
The effect of the transition zones is apparent in (b) as a clear envelope identical to the variation
shown in (a) can be observed. As the load moves along the beam, it perceives an effective
stiffness and damping underneath it. These effective properties can be considered local to the
load - at ∼ 3−4m - on either side of the load. At x→ −∞, far away from the nonhomogeneous
section, the effective stiffness and damping have constant values of k1 and c1 respectively and
the load exhibits a steady state vibration with the largest response amplitude. As the load
approaches the vicinity of the nonhomogeneous section, the stiffness and damping increase
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steadily with a corresponding steady reduction in the response amplitude and the steady state
vibration is altered. The smallest response amplitude is observed around x = 0, as the effective
stiffness is largest. The reverse happens for x > 0 as the load leaves this section.

5.1.4. Effects of the length and magnitude of inhomogeneity

Fig. 8 shows the effects of the length and magnitude of the inhomogeneity on the beam
displacement, u(0, 0), for f0 = 10 Hz, v = 36 kmh−1. In (a) no transition zones are present
where as in (b) transition zones are included. In (a), the homogeneous foundation case can
be seen for two instances; i.e. when µ = 0 and when xS = 0. All other combinations of µ
and xS depict the nonhomogeneous case. For each value of µ, the amplitude of the response
reduces with an increase in xS , as the effective stiffness around z = 0 increases. There is a rapid
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Figure 8: The effects of length and magnitude of the inhomogeneity on the response of a continuously supported
beam u(0, 0) due to a load with f0 = 10 Hz, v = 36 kmh−1; (a) without transition zones (i.e. xT = 0) and (b)
with transition zones (i.e. xT = 2 m).

reduction in the displacement of up to 4.6 dB from xS = 0 to xS = 4 m, after which point the
influence of k2 on u(0, 0) becomes insignificantly small as u(0, 0) changes only slightly by up to
0.1 dB. This is because the effect k2 on u(0, 0) is local to the vicinity of z = 0. As xS becomes
larger, the effective stiffness around z = 0 converges to k2 and the response amplitude u(0, 0)
for the nonhomogeneous case also converges to that of the homogeneous case with stiffness and
damping values corresponding to k2 and c2 respectively. It can also be seen that as µ increases,
the displacement amplitude reduces due to the increase stiffness induced by the step change. In
(b), the homogeneous case is obtained only for µ = 0. When xS = 0, there is a full-cycle cosine
wave inhomogeneity from {−xT : xT }. This is why the response amplitude is not constant but
reduces with increase in µ values. Again, the effect of k2 can be seen to be local to the vicinity
of z = 0 and similar analogy as in (a) also applies here.

5.2. Results for the moving harmonically excited mass

In this section, results are presented to study the dynamic behaviour of a mass moving on
a beam on nonhomogeneous elastic foundation and subjected to harmonic excitation. Compar-
isons of the DFS method with standard FEM in the space-time are carried out. The FEM is
the same as that described in section (5.1.3). However, the presence of the coupled mass results
in time-dependent system matrices due to its changing position as it moves along the beam.

The dynamic behaviour of a mass, M , moving on a beam on elastic foundation at a constant
speed, v, and excited by an arbitrary force can be described by the time discretised differential
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equation [
M +M

[
NT (x)N(x)

]]
ü +

[
C + 2vM

[
NT (x)N ′(x)

]]
u̇

+
[
K + v2M

[
NT (x)N ′′(x)

]]
u = P. (30)

The global nodal force vector, P, has the same description as before. Similarly, the solution
procedure for the displacement vector, u, and its derivatives remains the same.

5.2.1. Comparison between the DFS and FEM for the homogeneous case

In this section, the results obtained for a harmonically excited mass moving on the beam
with homogeneous foundation parameters are presented. The same discretisation parameters
used for Fig. 7 in section (5.1.3) are also used here in order to compare the computational
efficiency of both methods.

Figure 9(a-b) shows the beam displacement response in the fixed frame of reference due
to a unit harmonic load superimposed on the moving mass for f0 = 40 Hz, v = 250 kmh−1.
Both methods match very closely, although the transient state in the FEM solution results in
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Figure 9: Beam displacement response in the fixed frame of reference for a mass with superimposed load oscillating
with f0 = 40 Hz, v = 250 kmh−1, (a) displacement-time history at x = 0, (b) displacement under the load. ——:
DFS; ◦: FEM.

a slight phase difference from the steady state DFS solution. The computation time of the
FEM drastically increases from 1.2 seconds for the moving harmonic load case to 7.5 seconds in
this. This is because the system matrices are now time dependent and need to be updated and
inverted at each time step. For the DFS, on the other hand, the computing time only increases
from 12.24 seconds to 13.9 seconds, since the matrix, H, still needs to be formed and inverted
only once. This is still longer than the FEM. However, numerical experiments show that by
doubling the value of N from 10 to 20, the computing time for the FEM also doubles to 15.17
seconds whereas the DFS only increases to 14.6 seconds. Therefore, for cases where very small
time steps are required, it may be advantageous to adopt the DFS method instead of the FEM.

Figure 10 shows the maximum beam displacement at x =, plotted as a function of oscillating
frequency of a harmonic load superimposed on a mass moving at v = 36 kmh−1. The beam is
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Figure 10: Maximum beam displacement at a point at x = 0 plotted against frequency for a mass with superim-
posed oscillating load moving with v = 10 ms−1. Comparison between DFS (——) and FEM (◦)

40 m long and a frequency step of 1 Hz has been used. Comparison is also done between the
DFS method and FEM for the homogeneous case. Unlike the moving harmonic load case where
the beam resonance occurs at the ωco =

√
k/m, the presence of the moving mass lowers the

mass-beam resonance to a frequency, ω̄co, that can be estimated by finding the roots of [17]

M4

64EI
ω̄8
co + (mω̄2

co − keq)3 = 0, (31)

where keq is the equivalent foundation stiffness; keq = k1 for µ = 0 and k1 ≤ keq ≤ k2 for µ 6= 0.
For the current set of parameters, f̄co = ω̄co/2π ≈ 39 Hz for the case of µ = 0 which corresponds
to the resonance frequency in the figure. Although Eq. (31) is only valid for a stationary mass,
it can also be used to approximate the resonance frequency for the case of a mass moving with
a velocity that is by far smaller than the critical velocity.

5.2.2. Comparison between the DFS and FEM for the nonhomogeneous case

Results are now presented to show the effect of the mass on the beam with nonhomogeneous
foundation properties. Figure 11(a-b) shows the beam displacement response in the fixed frame
of reference due to a unit harmonic load superimposed on the moving mass for f0 = 40 Hz,
v = 250 kmh−1. The step variation parameters used in Fig. 7 of section (5.1.3) are also
utilised for this example. Since the excitation frequency is greater than the cut-on frequency
of the mass-beam system, propagating waves exist in the beam. This is evident from the lack
of symmetry in both the point response and that under the load, as more waves propagate
behind the load than ahead of it. This wave convection results in a shift in the displacements
corresponding to the step change in stiffness.

Figure 12 shows the maximum beam displacement at x = 0, plotted as a function of oscil-
lating frequency of a harmonic load superimposed on a mass moving at 36 kmh−1. Again, the
beam is 40 m long and a frequency step of 1 Hz has been used for the DFS method. The effect
of increasing and decreasing the stiffness is investigated with µ = −0.5 and 0.5. The homoge-
neous case has also been shown for comparison. It is apparent that the change in stiffness in
the vicinity of k2 increases the peak response amplitude when k2 < k1 and decreases it when
k2 > k1. These also lead to accompanying reduction and increase in the resonance frequency
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Figure 11: Beam displacement response in the fixed frame of reference for a mass with superimposed load
oscillating with f0 = 40 Hz, v = 250 kmh−1, (a) displacement-time history at x = 0, (b) displacement under the
load. ——: DFS; ◦: FEM.
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Figure 12: (a) Maximum beam displacement at a point at x = 0 plotted against frequency for a mass with
superimposed oscillating load moving with v = 10 ms−1, (b) corresponding contact force at the mass-beam
interface. ——: µ = 0, − · −: µ = −0.5, · · · · · · : µ = 0.5

respectively. However, the effect of decreasing stiffness is not the same as that of increasing
it. For example, the peak displacement amplitude at the respective resonances increase by 4.9
dB when k2 = 0.5k1 but only decrease by 2.4 dB when k2 = 1.5k1. The resonance frequencies
can be calculated using Eq. (31), in which keq ≈ k2, for the nonhomogeneous cases. This gives
values of 30 Hz and 46 Hz for µ = −0.5 and 0.5 respectively.
The corresponding contact force at the mass-beam interface is plotted versus frequency in Fig.
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12(b). The contact force is calculated in accordance with Eq. (2), for x = vt. Unlike the
homogeneous case where only one resonance occurs, two distinct resonance peaks exist for the
nonhomogeneous cases. Based on the oscillating frequency of the load, maximum contact force
can be exhibited at different sections along the beam, due to the different stiffness, and hence
different resonance frequencies. One of these peaks occurs when the oscillating frequency of the
load coincides with the resonance corresponding to foundation stiffness, k1, and occurs when
the mass is far away from the region of k2. The other peak occurs when the load’s frequen-
cy matches that corresponding resonance frequency of the mass/beam on equivalent stiffness,
k1 < keq ≤ k2, and occurs when the load is within the region k2. Note that when xS is long
enough, as is in this case, keq = k2 around x = 0, so that this resonance frequency will be the
same as that corresponding to the mass/beam vibrating on k2.

5.2.3. Effect of mass magnitude and level of inhomogeneity

The effect of the magnitude of a coupled mass on the dynamic behaviour of the beam on
elastic foundation with step variation in properties is analysed in this section. Figure 13 shows
the variation of the peak displacements at resonance for a point at x = 0, plotted as a function
of M and µ. The mass magnitudes range from 0 to 1000 kg with a step of 100 kg whereas µ
ranges from -0.75 to 0.75 with a step of 0.25. The length of the beam is 40 m, with xS = xT = 5
m and the speed of the mass is 36 kmh−1.
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Figure 13: The effect of magnitude of the mass and degree of inhomogeneity on the resonant displacement
amplitude of the beam due to a load moving at v = 36 kmh−1.

The effect of increasing the mass magnitude is an almost hyperbolic increase in the resonance
displacement amplitude. For the range of mass shown, the peak displacement increases by up
to 13.5 dB when k2 is at its lowest value and by 16.4 dB when k2 is largest. Also, the effect of
increasing the foundation stiffness over the range of µ is a reduction in the peak displacement
amplitudes by 13.1 dB for the moving harmonic load and 10.2 dB for the heaviest moving mass.

5.3. Convergence and computational considerations of the DFS method

5.3.1. Convergence

Two fundamental parameters are of interest when using the DFS method; i.e. ∆z and
∆t. The other computational parameters are derived from these in order to satisfy Nyquist
sampling criteria and the prevailing boundary conditions at z = ±∞. For example, ωm and ξm
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are defined as π/∆z and π/∆t respectively where as zm and tm are controlled by the load velocity
and excitation frequency and are chosen large enough to ensure that the boundary conditions
are satisfied. Similarly, α = zm/∆z and β = tm/∆t. For frequencies sufficiently lower than the
cut-on frequency fco and velocities well below the critical velocity vcr, the boundary conditions
are generally satisfied for zm = 8 ∼ 12 m as there are no propagating waves. At frequencies
higher than fco on the other hand, propagating waves exist and the boundary conditions are
only satisfied at larger values zm. It follows therefore that convergence study of the DFS
method is most important for these two parameters. Fig. 14 shows the convergence analyses
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Figure 14: Convergence of the DFS method for various values of ∆z and ∆t for a harmonic load moving on the
beam with f0 = 10 Hz, v = 36 kmh−1 (a) the homogeneous case, (b) the nonhomogeneous case with µ = 0.25,
xS = 4 m and xT = 0

of the beam response on ∆z and ∆t for f0 = 10 Hz, v = 36 kmh−1 in terms of percentage
errors from the converged value. Fig. 14(a) depicts the homogeneous case whereas (b) the
nonhomogeneous case. In (a) it can be seen that the error increases as the spatial step size ∆z
increases. However, no dependence of the response on ∆t can be observed. This is because,
for the homogeneous case, the foundation properties are constant and therefore independent of
time. In the nonhomogeneous case in (b), on the other hand, the foundation properties change
both with time and space. When ∆z is small, the step inhomogeneity is well defined. Also when
∆t is small, it ensures that the load spends enough time in the vicinity of the inhomogeneity
to capture the true dynamic response of the beam. For large values of ∆z and ∆t, however,
the step inhomogeneity is ill defined and the load passes the section very quickly. Hence the
highest absolute errors of up to 2.67% can be observed in these instances.

5.3.2. Computational considerations

Using the DFS method can present some challenges in terms to computing limitations (name-
ly, RAM usage in MATLAB) because of the large coefficient matrix that needs to be formed
and inverted to obtain the solution. The maximum mesh sizes (i.e. in terms of ∆z, ∆t, α and
β) that can be accommodated to give converged results can be restricted. This is particularly
true for high frequency, high velocity cases where the bending waves in the beam propagate
to infinitely long distances along the beam length and therefore zm should be large enough to
satisfy the boundary conditions. For these cases, the time and spatial step sizes need to be
small thus resulting in large sampling frequencies and wavenumbers. However, the size of the
mesh is restricted in terms of α and β values, so one ends up with very large ∆ξ and ∆ω.
Examples of computational values used to obtain the results presented in the preceding sections
are given below. For frequencies sufficiently lower than fco and velocities well below vcr, the
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mesh size is small enough to be easily computed with ∆z = 0.25 ∼ 0.5 m, ∆t = 0.1 ∼ 0.2 s,
α = 30 ∼ 50 and β = 10 ∼ 15. For high frequency, high velocity cases, however, the mesh
size may be large with ∆z = 0.15 ∼ 0.25 m, ∆t = 0.05 ∼ 0.1 s, α ≥ 80 and β ≥ 10. These
parameters have proven to be sufficient as the DFS method compares well with other methods
presented earlier. Two suggestions on managing memory usage and mesh sizes are given below

1. Since the majority of the memory requirement is dominated by the formation and inversion
of the coefficient matrix H, memory can be ‘freed up’ by clearing H once the vector Ū has
been computed as the response in the space-time domain is only a function of the latter.

2. A coarse mesh may be used to obtain the wavenumber-frequency domain solution without
compromising the accuracy of the results. This is because most of significant values of
the response are concentrated only within a small range of frequency and wavenumber.
After this is done, very fine mesh sizes are then used to obtain the space-time domain
responses.

With the ever growing developments in computing capabilities, such as high performance com-
puting, however, all these limitations can be easily exceeded.

6. Conclusions

A new method has been presented for analysing the vibration behaviour of a beam continu-
ously supported on a linear nonhomogeneous elastic foundation under the action of a harmoni-
cally excited mass. The method involves the decomposition of the beam displacement response
and the spatially varying foundation stiffness and damping into Double Fourier Summations
(DFS), which are solved numerically to give the response in the wavenumber-frequency domain.
The corresponding response in the space-time domain is then obtained by back substitution into
the DFS expression of the response. The method has been applied to step variation in foun-
dation properties with and without transition zones, and its validity has been checked against
existing techniques. Some general conclusions derived from this work are summarised below

• The DFS portrays excellent agreement with existing methods for solving the problem of a
beam on elastic foundation with both constant and varying parameters under the action
of a moving load and mass.

• The DFS is not restricted to small variations in foundation properties as does the first
order perturbation technique which has been widely used for such problems. This means
that even larger degrees of inhomogeneity can be analysed with the DFS formulation. This
is because any variation of the nonhomogeneous parameters in the space-time domain can
be decomposed into its harmonic components in the DFS form. Therefore, it is paramount
that the sampling is done in the correct manner in order to obtain accurate results.

• For a harmonically excited mass moving with low speeds, the effects of inhomogeneity in
foundation stiffness can be summarised as a reduction in the amplitude of the response in
the neighbourhood of the change in stiffness and an increase in the resonance frequency
of the beam. This is only true for µ > 0, with the reverse occurring for µ < 0.

• A beam on nonhomogeneous elastic foundation may exhibit multiple resonances corre-
sponding to the foundation stiffness of individual sections. Although this is not evident in
point displacements, it is clear from the displacement, and hence the contact force at the
mass/beam interface as the mass moves through the respective sections along the beam.
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