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We report on a detailed numerical study of the evolution of semilocal string networks, based on
the largest and most accurate field theory simulations of these objects to date. We focus on the
large-scale network properties, confirming earlier indications (coming from smaller simulations) that
linear scaling is the attractor solution for the entire parameter space of initial conditions that we are
able to probe. We also provide a brief comparison of our numerical results with the predictions of
a previously developed one-scale model for the overall evolution of these networks. Two subsequent
papers will discuss in more detail the analytic modeling of the semilocal segment populations as
well as optimized numerical diagnostics.

I. INTRODUCTION

The formation of networks of cosmic strings [1–4] is a
generic prediction in a wide range of high-energy physics
models of the early universe [3, 5, 6]. Examples include
line-like topological defects in field theories breaking U(1)
symmetry [7], coherent macroscopic states of fundamen-
tal superstrings (F-strings), and D-branes extended in
one macroscopic direction (D-strings). The latter two ex-
amples, collectively referred to as cosmic superstrings [8],
are generically predicted in string theoretic inflationary
models involving spacetime-wrapping D-branes [6, 9–11].
These ‘Brane Inflation’ models often have an effective Su-
pergravity description of the hybrid inflation type, ending
in a phase transition that produces topological defects,
so F- and D-strings can also be modeled as string defects
in a field theory approximation.

A key property of cosmic superstrings is that they in-
teract non-trivially, joining together in Y-shaped junc-
tions to form heavier bound FD-states [8, 12, 13], and
in this respect they are similar to non-Abelian strings
[3]. There is, however, an important distinction be-
tween string defects in ordinary 4D field theories and
their higher-dimensional superstring cousins: field theo-
retic strings are known to interact with probabilities of
order unity [14, 15] (although at ultra-relativistic speeds
the strings can appear to pass through each other due to
multiple intercommutations [16–18]), while cosmic super-
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strings have intercommutation probabilities which can be
much smaller than unity [19, 20]. This has an important
effect on the cosmological evolution of superstring net-
works leading to higher number densities than for ordi-
nary field theory cosmic strings [19, 21, 22].

Understanding the evolution of string networks is cru-
cial for predicting their number densities at late times,
which in turn determine their potentially observable ef-
fects. Since these observational signals depend on pa-
rameters of the underlining theory (notably through their
sensitivity to the string tensions and intercommutation
probabilities), the observational search for cosmic strings
provides a powerful tool for probing and/or constraining
high-energy physics theories of the early universe [23–
25]. However, the quantitatively accurate modeling of
string network evolution is a difficult problem, requiring
the combination of a range of techniques (both numeri-
cal and analytical), and interpolating between physics at
very different energy scales.

For the simplest type of Abelian cosmic strings (e.g.
the Nielsen-Olesen solutions of the Abelian Higgs model
[7]) which interact simply by exchange of partners, it
has long been proposed [26] through analytic model-
ing that the network should reach a self-similar scaling
regime, characterised by a single length-scale (the corre-
lation length) which asymptotes to a constant fraction of
the horizon. This has been confirmed by high-resolution
numerical simulations of both Nambu-Goto [27–29] and
field theory [30–33] models, which are in remarkable
agreement despite the very different techniques employed
in each case. Even in this simplest type of strings, there
still remains significant numerical uncertainty regarding
the relevant importance of decay mechanisms (gravita-
tional radiation vs decay to particles [32, 34]) and the
average size of loops in the network [29, 35–37], but con-
sensus has long been reached regarding the large scale
properties of long strings and their quantitative depen-
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dence on the intercommutation probability and the rate
of cosmic expansion.

The situation is less clear for non-Abelian strings which
do not simply exchange partners but interact in a more
complex fashion, forming Y-type junction configurations.
This was originally though to lead to network “frustra-
tion” implying a cosmologically catastrophic domination
of strings over ordinary matter at late times [38]. Subse-
quent work, however, has indicated that this is not nec-
essarily the case [39], and whether the network reaches
scaling or gets frustrated depends on the relation among
the various intercommutation probabilities of strings car-
rying different charges [40]. In particular, for networks
resembling the properties of cosmic superstrings, all re-
cent studies (see for example [40–48]), covering both an-
alytic and field theory modeling, have found scaling solu-
tions with the relative abundance of light F-strings dom-
inating over the heavier D-strings and FD bound states.
Thus, it is now believed that cosmic superstring networks
do reach late time scaling with light strings being more
abundant, even though to date it has not been possi-
ble to construct both analytic and field theory models of
the ’same’ network so as to quantitatively compare their
abundance predictions.

There is an outstanding case of cosmic string networks
whose cosmological evolution has not been systematically
studied: semilocal strings. These are string solutions in
theories with both local and global symmetries, the stan-
dard semilocal model [49, 50] being a minimal extension
of the Abelian Higgs model by a global SU(2) symmetry.
This model, which has an SU(2) doublet of two equally
charged Higgs fields under a single U(1) gauge field,
admits stable string solutions even though the vacuum
manifold is simply connected. This non-topological na-
ture of semilocal strings endows them with very different
properties than their topological counterparts. In partic-
ular, they appear as finite open segments whose ends
have long-range interactions akin to global monopoles
[51]. Note that such strings are also well-motivated from
the theoretical point of view, arising in supersymmet-
ric grand unified theories of inflation [52] and the corre-
sponding D3/D7 brane inflation models [53]. These are a
natural extension of usual inflationary models, in which
the only extra ingredient is the doubling of a hypermul-
tiplet.

A first study of the cosmological evolution of semilo-
cal strings was presented in [54] and [55]. The dynamics
of these networks is very different than for both Abelian
and non-Abelian topological strings, be it global or lo-
cal. In particular, the long range forces between the
monopoles mean that the segments can shrink and anni-
hilate or grow by joining with other segments. In a re-
cent paper [56] we initiated the analytical study of such
networks by modeling them as local strings ending on
global monopoles, and attempted a preliminary compari-
son with numerical simulations. Here, we present the first
detailed numerical study of semilocal string networks. In
this paper (Paper I), which is the first in a series of three,

we will discuss in detail the large-scale properties of simu-
lated semilocal networks, covering couplings in the range
0.01 ≤ β ≤ 0.09, and damping terms corresponding to
expanding universes dominated by radiation and matter.

Our goal is to demonstrate scaling behavior for semilo-
cal networks. We note, however, that the notion of scal-
ing has to be interpreted carefully in this context. When
describing these networks we may simply be interested in
the evolution of the overall energy density contained in
the semilocal string configurations, or we may be inter-
ested in the detailed distribution of semilocal string seg-
ments. The former (which will be the focus of this paper)
is the simplest in the sense that it can, to a good approx-
imation, be described by a single lengthscale, while the
latter is somewhat more complex. We will explore this
distinction further in the subsequent papers of this series,
but for the moment we emphasize that overall scaling of
the network’s energy density is necessary but not suffi-
cient to ensure scaling of the segment distribution.

In Paper II, we will present the results of detailed
comparison of our simulations with the analytical mod-
els of Ref. [56]: starting from an initial configuration of
a semilocal network we group all string segments into
length bins and evolve the segments in each bin both us-
ing our field theory simulation and our analytic models.
We then compare the number density in each bin between
the two approaches. An important source of uncertainly
in this comparison is related to our lack of knowledge of
the transverse string velocity in simulations of semilocal
strings. In Paper III we will present a novel method for
measuring velocities from semilocal string simulations.

II. SEMILOCAL STRINGS

Semilocal strings [49, 50, 57] were introduced as a
minimal extension of the Abelian Higgs model with two
complex scalar fields—instead of just one—that make an
SU(2) doublet. This leads to U(1) flux-tube solutions
even though the vacuum manifold is simply connected.
The strings of this extended model have some similarities
with ordinary local U(1) strings, but they are not purely
topological and will therefore have different properties.
For example, since they are not topological, they need
not be closed or infinite and can have ends. These ends
are effectively global monopoles with long-range interac-
tions [51] that can make the segments grow or shrink.
The monopoles at the ends of the strings have some ex-
otic properties by themselves [58].

The relevant action for the simplest semilocal string
model, the one we will use in the numerical simulations
of section V, reads

S =

∫
d4x

[
[(∂µ − iAµ)Φ]

2 − 1

4
F 2 − β

2
(Φ+Φ− 1)2

]
(1)

where Φ = (φ, ψ), F 2 = FµνF
µν and Fµν = (∂µAν −

∂νAµ) is the gauge field strength. It can be easily seen
that setting one of the two scalar fields to zero, we recover
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the Abelian Higgs model. We can therefore build from
the analytical models applied to usual cosmic strings to
tackle this new problem.

The symmetry breaking pattern that leads to the
formation of strings in this model is SU(2)global ×
U(1)local → U(1)global so this model can be thought of as
a particular limit of the Glashow-Weinberg-Salam elec-
troweak model in which the SU(2) symmetry is global,
i.e. the Weinberg angle is cos θW = 0 and there are no
SU(2) gauge fields. The vacuum manifold is the three
sphere, so one would not expect strings to form if the
dynamics is dominated by the potential energy. On the
other hand, the magnetic field is massive and magnetic
flux is conserved, which would suggest the existence of
magnetic flux tubes when the magnetic mass is large.
This is the regime in which strings form and are stable.

The stability of the strings is not trivial, and it will de-
pend on the value of the parameter β = m2

scalar/m
2
gauge:

for β < 1 the string is stable, for β > 1 it is unstable, and
for β = 1 it is neutrally stable [49, 57]. As we will see
in section V, only low values of β will be of interest for
the comparison, because otherwise the string network is
either unstable or disappears very fast [54, 55, 59].

After a cosmological phase transition in such a model,
it is expected that segments of semilocal strings will form.
The cosmological evolution of a semilocal segment net-
work will be quite different from the evolution of ordi-
nary Abelian-Higgs strings [50, 60]. The fact that semilo-
cal strings have a different cosmological evolution is in-
teresting because CMB predictions can be different [61]
and can be relevant to inflationary model building [52].
Semilocal strings also have interesting gravitational prop-
erties [62, 63].

The network evolution depends on the interplay be-
tween string dynamics and monopole dynamics. When a
string segment ends, it must end in a cloud of gradient
energy. Those string ends behave like global monopoles
providing an interaction between strings that is indepen-
dent of distance. Therefore, depending on the interplay
between string dynamics and monopole dynamics, the
segments can contract and eventually disappear, or they
can grow to join a nearby segment and form a very long
string, and also the two ends of a segment can join to
form a closed loop [51, 54, 55].

We thus see that, at least to a first approximation,
we can envisage these networks as being made of local
strings attached to global monopoles, and, as such, pre-
viously developed analytic modeling techniques [64, 65]
should be applicable. This being said, it is also clear that
these networks possess additional dynamical properties,
beyond those of standard hybrid networks [64–66].

Specifically, the evolution of the string network will
depend both on the string tension and on the dynamics
of the gradient energy: the latter may be thought of as
providing a long-range interaction between the strings.
(Note that the force between global monopoles is inde-
pendent of distance.) In Ref. [56] we presented analyt-
ical models for the cosmological evolution of semilocal

networks, taking into account these long-range interac-
tions through the addition of phenomenological terms in
hybrid (local strings + global monopole) networks. We
provide a quick summary of this analytical approach in
the next section, before moving to the presentation of our
numerical study on Section IV.

III. SEMILOCAL NETWORK EVOLUTION
MODELING

We now discuss an analytic model for the evolution
of semilocal string networks, which will be subsequently
compared to our numerical simulations. This is mostly
a summary of [56], where the model was first presented;
we refer the reader to that work for additional details.

Our analysis focuses on the behavior of the network
as a whole, starting from the premise that it can be
treated as a network of local strings attached to global
monopoles. Therefore previously developed models for
each of these cases can be applied, with suitable changes,
to this case. Our model for the evolution of these net-
works is based on explicitly modeling the dynamics and
interactions of the monopoles. This is justified since (as
has been shown in previous work [55]) it is indeed the
monopoles that control the evolution of the network.

A complementary approach (also developed in [56])
models the evolution of individual semilocal segments,
discussing under what conditions these segments can
grow—a process that has been clearly identified in nu-
merical simulations—or shrink. We will not discuss this
here since a detailed study of this approach, including
comparisons with the numerical simulations discussed in
this paper, will be the focus of Paper II.

Analytic modeling of defect networks generally starts
from the microscopic equations of motion for the de-
fects and uses statistical averaging procedures leading
to a macroscopic energy evolution equation (which can
be traded for an equation for the network’s characteris-
tic lengthscale) and an equation for the RMS network
velocity. These equations will necessarily be coupled,
and together they describe the network at large-scales
in a ‘thermodynamical’ sense. Suitable defect interac-
tions are then added to these equations in a phenomeno-
logical way. This procedure was originally followed in
the case of cosmic strings, where it leads to the so-called
velocity-dependent one-scale (VOS) model [64, 67], which
has been well-tested against simulations and is used for
predicting CMB signals of string networks [68].

Similar techniques can be used in the case of
monopoles. The idea is to obtain an evolution equation
for the monopole density (neglecting interactions) and
then re-express it in terms of a characteristic lengthscale,
L (which in this case should be thought of as the average
inter-monopole distance). The effects of monopole forces
and friction are then included in this equation (as well as
in the relevant velocity equation) by adding extra phe-
nomenological terms. It has been shown in [65, 66] that
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the evolution equation for the characteristic monopole
lengthscale has the form

3
dL

dt
= 3HL+ v2

L

`d
+ c?v , (2)

where c? is a free parameter (to be calibrated by simula-
tions) quantifying energy loss, and where we have defined
a damping lengthscale, ld that includes the effects of ex-
pansion (due to the Hubble parameter H) and of friction
due to particle scattering (with a generic lengthscale lf )

1

ld
= H +

1

lf
. (3)

The evolution equation for the RMS velocity v of the
monopoles is

dv

dt
= (1− v2)

[
km
L

(
L

dH

)3/2

+
ks
L

η2s
η2m
− v

`d

]
, (4)

where the first term in square brackets is the force due
to the monopoles

fm =
km
L

(
L

dH

)3/2

(5)

and the second describes the force due to the strings

fs =
ks
L

η2s
η2m

. (6)

For an expansion rate of the generic form

a(t) ∝ tλ (7)

the Hubble parameter and horizon distance are respec-
tively

H =
λ

t
, dH =

t

1− λ
. (8)

The constants km and ks parametrize the monopole and
string forces, and ηs, ηm are the relevant symmetry
breaking scales. Since in what follows we are mostly in-
terested in late-time scaling solutions we will (unless oth-
erwise stated) neglect the effect of friction due to particle
scattering, which is only relevant in the early stages of
the network’s evolution.

Note that the fact that the string and monopole sym-
metry breaking scales appear in Eq. (4) is a consequence
of the fact that these equations of motion are obtained
by modeling semilocal strings as local strings attached to
global monopoles (as previously mentioned), and appro-
priately adapting the equations of motion for both. Phys-
ically one knows that it is the monopoles that dominate
the semilocal string dynamics, and this can be modeled
by assuming that ηs � ηm. Similarly, the horizon enters
in the monopole force term in Eq. (4) due to a number
counting argument: this force depends on the number of

monopoles (and antimonopoles) inside the horizon; for a
detailed discussion see [65] and references therein.

We shall mostly consider standard expansion rates,
corresponding to the parameter range 0 < λ < 1, and
in particular λ = 1/2 in the radiation-dominated era and
λ = 2/3 in the matter-dominated era. This is justified
since observational constraints [61, 68] show that semilo-
cal string networks cannot be the dominant component
of the universe’s energy budget, but can only contribute
a small fraction to it.

In the semilocal case the ratio of the forces due to
strings and monopoles is

fs
fm

=
ks
km

(
ηs
ηm

)2(
dH
L

)3/2

(9)

and since ηs � ηm the string force is always subdomi-
nant. This is in agreement with theoretical expectations
and numerical simulations. Note that this is a distin-
guishing characteristic of these networks: for local strings
attached to local monopoles the force due to the strings
always dominates the dynamics, while for global strings
attached to global monopoles the string force is subdom-
inant at string formation but becomes dominant later in
the network’s evolution [66].

One interesting consequence of the fact that the
monopoles always dominate the dynamics is that the only
attractor solution of these evolution equations in an ex-
panding universe (with a ∝ tλ) is linear scaling. Indeed,
if one looks for generic solutions of the equations of mo-
tion for L and v, allowing for arbitrary power laws of
time in eitheir case, one will find (after a relatively long
but otherwise straightforward calculation) that the only
consistent asymptotic solution is

L = γt , v = v0 , (10)

as in the case of plain global monopoles, and indeed the
analysis in [65] is, to a large extent, applicable here.

There are two possible branches of the scaling solution.
First, there is an ultra-relativistic one with

γ =
c?

3− 4λ
, v0 = 1 , (11)

which only exists for slow expansion rates (λ < 3/4) but
is in principle allowed both on the radiation and matter
eras. Second, a normal solution exists for any expansion
rate, with scaling parameters

γ =
c?v0

3− λ(3 + v20)
(12)

λv0 = km(1− λ)3/2γ1/2 , (13)

and a constraint on the velocities

v20 < 3(
1

λ
− 1) . (14)
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This constraint is trivial for λ < 3/4 (that is, v0 → 1 is
allowed), but restrictive for faster expansion rates. On
the other hand, velocities will generically be significant:
having v0 → 0 requires λ→ 1.

For comparison we also consider the case of Minkowski
space (corresponding to λ = 0 and H = 0) but with a
friction lengthscale proportional to the correlation length
(say, for simplicity, `f ∼ L). This should be an ade-
quate description of some of the numerical simulations
of semilocal strings done so far [55]. In this case, lin-
ear scaling is still the attractor solution but the scaling
parameters now obey

3γ = v20 + cv0 , v0 = kmγ
3/2 . (15)

In the opposite limit of fast expansion rate (λ ≥ 1,
or in other words inflation) the linear scaling solution
of Eq. (10) no longer exists. In this case the network
is conformally stretched and gradually frozen, and the
characteristic lengthscale and velocity evolve as

L ∝ a , v ∝ 1

HL
. (16)

These conformal stretching solutions are ubiquitous in
the defects literature.

In the following section we will test these scaling solu-
tions using state-of-the-art numerical simulations.

IV. NUMERICAL SIMULATIONS

We simulated numerically the semilocal model intro-
duced in section II so as to provide us with data to be
used for comparison with the analytic models mentioned
above. The parameter space we want to explore is rather
large, so we carefully chose the cases to study, and tried
to maximize the information we could obtain from our
simulation given the computer resources available to us.

We discretized the action given in equation (1) by
standard techniques (using lattice-link variables and a
staggered-leapfrog method) and evolved the discretized
action in 10243 lattices with periodic boundary condi-
tions, similar to [55]. One very important approxima-
tion we use in our discretization and subsequent evolu-
tion of the equations of motion is the use of the so-called
fat-string algorithm [69]. We adopt this approach since
otherwise it would be computationally very expensive to
perform the simulations, and because it has proved to
work fairly well in previous works; in particular, it has
been shown that it works fine for obtaining information
on large-scale properties, which is our aim in the present
work. (A related discussion for the case of cosmic strings
can be found in [70].)

As in many field theoretic simulations of defect dynam-
ics, the initial conditions are an unknown. It would be
very hard to simulate exactly the phase transition lead-
ing to the formation of the defects, and in many cases it
would not be clear which model to adopt as the underly-
ing phase transition model. However, this is not the goal;

instead, our aim is to study the asymptotic (long-term)
behavior of these networks, and in particular whether
(and under what conditions) the expected scaling solu-
tion is reached. The art of performing the simulations
therefore lies in obtaining some initial conditions which
may approach this putative scaling solution as fast as
possible. Bear in mind that the periodic boundary con-
ditions force us to have a stringent upper bound on the
time that the system can be evolved before it feels the
effects of the boundaries. The simulations can only be
believed up to the half light-crossing time, i.e., if we sent
a light ray in opposite directions in the box, the simu-
lation would be accurate up to when the two rays meet
again.

The initial condition chosen for these simulation is the
following: the gauge field, gauge field velocities and scalar
field velocities are set to zero. This choice already ensures
that Gauss’s law is satisfied in the discretized equations
and will be satisfied during the dynamical evolution of the
system. The scalar fields are chosen to lie in the vacuum
manifold, but have randomly chosen orientations. After
a transient time with an ad-hoc damping term for the
system to lose energy, the system relaxes into the scaling
regime.

Once the system reaches scaling, quantities of inter-
est can be measured. Semilocal strings are not topolog-
ical entities; therefore, we cannot use topology to detect
semilocal strings. For example, in the usual Abelian-
Higgs strings, one can use the windings of the string to
pinpoint where the core of the string is. However, we
cannot use the windings in the semilocal strings since the
winding is not topologically protected. As mentioned ear-
lier, semilocal strings can be though of as concentrations
of magnetic energy, and that is the strategy we follow,
inherited from previous works [55, 71, 72]: we first cal-
culate the maximum of the magnetic field strength, and
the radius, of a straight and infinite Abelian Higgs string
for a given β. We use those values for the simulated
semilocal string network: if the magnetic field strength
of a simulated semilocal model measured at a point of
the box exceeds the 25% of the maximum of the corre-
sponding Abelian-Higgs string, we consider that point to
be part of a semilocal string segment. The output of our
simulation is thus an array of points from the simulated
box which have a considerable concentration of magnetic
field strength.

One typical simulation snapshot is shown in Fig. 1. It
is very clear that semilocal strings have ends (as opposed
to Abelian-Higgs strings which are either infinite or form
loops). We then group together the points that have been
output by the simulations into segments. These segments
are mostly tube-like, but some are sphere-like instead of
tube-like, i.e., they are blobs of energy. These can be
formed, for example, after a segment has collapsed into
itself. We do not wish to count these blobs as part of
our network, and we introduce a lower cut-off: those seg-
ments that are not longer than a given factor (α) times
the typical radius of a string are considered to be blobs,
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FIG. 1. Semilocal string network, in matter domination with β = 0.04. The top figure shows two types of structures: on the
one hand we have tube-like structures (proper strings) and on the other short blobs. These blobs we disregard in our analysis.
The bottom figure shows the network without blobs, and also each segment has been identified and plotted with a different
color. As there number of segments is large, the colours are unfortunately used for more than one string segment. Note also
that the blob removal procedure does sometimes fail to identify some sphere-like structures, since their volume is large.
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and are discarded. Different choices of α have been con-
sidered as explained later. Fig. 1 shows the output of a
typical simulation where we have differentiated between
structures that we consider blobs and proper semilocal
string segments. We also show in that figure the network
of segments with each segment plotted with a different
colour.

It is now possible to obtain the necessary quantities for
our comparison: the total string length (that is, the sum
of all the segment lengths), the number of monopoles and
the segment length distribution. The procedure we have
described so far only gives the volume of string points,
so in order to obtain string lengths, we divide the num-
ber of string points by the typical string width for each
β. The number of monopoles is obtained by multiplying
the number of segments by two, as each segment has a
monopole and an antimonopoles at its ends (more on this
point below). In what follows we do not directly com-
pare the velocities in the model and simulations, since
reliable numerical measurements of these velocities are
highly non-trivial and require the development of addi-
tional numerical algorithms, which we will address in Pa-
per III. For analogous issues in the more standard case
of Abelian-Higgs string networks, see [32]; for the case of
domain wall simulations with the Press-Ryden-Spergel
algorithm see [73].

Given a box size (in our case 10243) one would want to
have as big a dynamical range as possible, with as much
accuracy as possible. There is clearly tension between
these two aims: on the one hand we would want a big
lattice spacing (δx) to increase the dynamical range and
on the other a small one to increase accuracy in the dis-
cretization. We have performed two sets of simulations
trying to accommodate both needs: one set of simula-
tions have δx = 0.5 and the other δx = 1.0. The first
set provides a more accurate discretization of the equa-
tions, but pays the price of having a shorter dynamical
range. The second has a larger dynamical range, but
may lack in accuracy and there might be discretization
effects creeping into the simulation. As will be shown
below results obtained by the two approaches are clearly
compatible, and we believe that they are accurate enough
for the purposes of this paper.

It is well known [55] that rather low values of β are
needed to form a reasonably populated network of semilo-
cal strings, and in this work we chose to perform the
simulations for β = 0.01, β = 0.04 and β = 0.09.The
magnetic and scalar string cores for even lower β are too
different in size and are difficult to simulate, since they
are difficult to resolve and can overlap. Higher β gives
too scarce a network.

We have performed simulations using two different
scale factors ruling the expansion of the universe tλ: ra-
diation (t1/2) and matter (t2/3). Since we are using the
fat-string algorithm, this amounts to changing the damp-
ing term in each simulation accordingly. All in all, we
have performed 12 simulations for each combination of
the following parameters

• δx = (0.5, 1)

• β = (0.01, 0.04, 0.09)

• Cosmological era = (radiation, matter)

There are several systematic errors that the reader
should be aware of. On the one hand, there are numer-
ical errors inherent to the simulation of the dynamics of
the system. By these we mean errors arising because of
the discretization of the equations (which will depend on
the lattice spacing δx), errors coming from the fat-string
algorithm and errors due to the limited dynamical range
that can be obtained.

On the other hand, there are systematic errors in
the identification and characterization of strings and
monopoles from the simulation. The string lengths are
obtained by dividing the string volume by the width of a
static straight string, whereas our strings can be moving
fast (and will therefore have Lorentz contraction), and
have turns. In addition, the strings appear more fuzzy
depending on the value of β and the cosmology (meaning,
amount of damping) we use. This fuzziness can some-
times be understood by considering that as strings move
there is some radiation left behind, and if such lumps of
radiation are touching the string, they are considered as
string points by our algorithm. The end result is that the
lower the value of β and the smaller the damping term,
the fuzzier the strings become, and also the bigger the
energy blobs are.

An illustration of the effect of damping can be found in
Fig. 2, where we show snapshots of two simulations, one
in radiation era and the other in matter era. In radiation,
the strings appear to be more fuzzy, with some energy
lumps attached to the strings; whereas in the matter era
strings are noticeably smoother. Note that these cubes
are only one part of the total simulation, which we have
zoomed into to show the fuzziness more clearly; therefore
the segments close to the boundaries would actually be
continued in other parts of the box.

As for the effect of β, for lower β the strings are ex-
pected to be more stable, as a result of the competition
between gradient energy and potential energy [57]. Pro-
ducing a blob without topology costs the same gradient
and magnetic energy regardless of the value of β, but it
does cost less potential energy for smaller β, thus again
producing fuzzier strings.

As mentioned earlier, the number of monopoles is di-
rectly read from the number of segments. Some of the
segments will in fact form a closed loop, so monopoles
would be slightly overcounted by this procedure. Besides,
even though we tried to factor out the energy blobs, some
of them escaped our algorithm, and we are still counting
those blobs as segments, and thus overcount monopoles
again. Finally, the definition of segment is somewhat ar-
bitrary, since those segments that are not longer than α
times the typical radius of a string are discarded. Differ-
ent choices for α can give different number of segments.

Ways of quantifying some of these uncertainties will
be briefly discussed in the following section, and in more
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FIG. 2. Two snapshots of the simulations with β = 0.04 in radiation (top) and matter (bottom). The top figure shows that
strings in the radiation era are fuzzier, and many of the segments have energy lumps attached to them. The bottom figure
shows segments that are in general smoother—an obvious consequence of the additional damping (there is less radiation in the
box). Note that in either snapshot only part of the simulated box is depicted.
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detail in Papers II and III. For the moment, we pro-
vide one specific example, concerning the choice of the
segment cutoff α. We have analysed our data using
α = 1, 3, 5, 8, 10, and we have found that the differences
are bigger for smaller values of α, but for α = 5, 8, 10
the results are more consistent. Also, this uncertainty
decreases at later times, when there are fewer blobs and
strings are longer. Tables I and II, which are described
in the next section, show results for different α.

Despite these numerical uncertainties, our methodol-
ogy and sample size is sufficient to establish that the
networks reach the expected scaling solution in all the
cases studied. We discuss our results and compare them
with our analytic models in the next section.

V. SIMULATION RESULTS AND
COMPARISON TO ANALYTIC MODELS

As described above, we have performed 12 simulations
for each case of our set of parameters, and used results
from the various sets of simulations to obtain basic statis-
tics about the properties of the networks. Each one of the
12 simulations in a given set has the same values for the
parameters but a different initial random configuration,
so that we can use them to obtain a purely statistical
error. All in all, for each one of those simulations, and
for specific values of the simulation time, we obtain the
total string length L(t) and monopole number N (t) in
the box. Both of these provide simple diagnostics for the
large-scale evolution of the network, and specifically for
the presence of scaling, as we will now discuss.

Figs. 3 and 4 provide two examples of the evolution of
these quantities, for the cases (β = 0.09, δx = 1) and
(β = 0.01, δx = 0.5); both are matter era simulations.
These are representative of all the sets of simulations we
have performed. This analysis therefore shows that all
the networks have reached the scaling solution by the
corresponding final timesteps. The time needed for the
different sets of networks to reach scaling is sligthly dif-
ferent, but this is to be expected given the different un-
derlying conditions, such as the amount of damping in
the simulation boxes.

The obtained string lengths and number of monopoles
can easily be translated into VOS-type lengthscales using
Eq. (10)

γs ≡
Ls
t

=
1

t

√
V

L
, (17)

γm ≡
Lm
t

=
1

t

(
V

N

)1/3

. (18)

It follows from our discussion in Section III that once a
network reaches scaling both γs and γm should become
constants. Note that while we do expect them to have
comparable values of order (but slightly smaller than)
unity, there is no expectation that they must be equal.

FIG. 3. Scaling plots for L and N for β = 0.09, in the matter
era, with δx = 1. The error bars show statistical errors over
the 12 simulations.

FIG. 4. Scaling plots for L and N for β = 0.01, in the matter
era, when δx = 0.5. The error bars show statistical errors
over the 12 simulations.

From our simulations, each of γs and γm can be nu-
merically calculated in various different ways. This turns
out to be a simple but useful way of quantifying statis-
tical and systematic uncertainties. We can average the
values of Ls(t) and Lm(t) obtained in each simulation,
and then calculate γs and γm using Eqns. (17) and (18)
on the averaged quantities; or, we can obtain one γs and
γm for each simulation, and then average the γs and γm
over all simulations. Moreover, if we are in (or approach-
ing) scaling, the slopes of Ls(t) or Lm(t) evolution plots
can also be used as numerical diagnostics for the corre-
sponding γ. This is the prescription we actually use, by
considering only the latter part of each set of simulations.

The result of both prescriptions is shown in Table I for
γs and Table II for γm. The values γs (sim) show the
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values when the averaging has been done at the simula-
tion level, and γm (slope) when it is the γ’s which have
been averaged. In all cases the errors quoted are statis-
tical errors, which are smaller than the systematic error
and so not directly indicative of the full uncertainty. In-
stead, they should be understood as lower bounds on the
uncertainties in these simulations.

Both Table I and Table II show comparisons of the
simulations with δx = 1.0 and δx = 0.5. As mentioned
before, the low value of δx is a more accurate approx-
imation to the continuous case, but lacks in dynamical
range; whereas the higher value of δx has a larger dy-
namical range though a poorer discretization.

The tables also show a comparison of the results ob-
tained with two different values for the definition of seg-
ment; namely for α = 3 and α = 8. We investigated
values of α = 1, 3, 5, 8, 10, and found that for the lat-
ter three the results are quite similar. The table shows
that the magnitudes related to the string lengths do not
change much with respect to the value of α, whereas the
monopole lenghtscale changes more. Not only the cases
with a higher value of α are more similar to each other,
but also the differences between δx = 0.5 and δx = 1.0
are smaller for higher α. Therefore, the systematics seem
to be under better control for higher values of α.

Given the way they were numerically determined, Ls
should be thought of as the typical inter-string distance
(or perhaps the typical segment size), while Lm is a char-
acteristic inter-monopole distance. These are therefore
not correlation lengths in the same strict sense as the
term is used, for example, in Goto-Nambu string sim-
ulations. In particular, the fractal distribution of the
semilocal networks (and more specifically the assump-
tion of a Brownian network) is an issue that warrants
further study.

Bearing in mind the caveats we discussed, one should
proceed with caution if trying to extract quantitative in-
formation from these scaling properties. (A further dif-
ficulty stems from the fact that we have as yet no ac-
curate measurement of the defect velocities—this will be
addressed in Paper III.) Nevertheless, it is encouraging
that the overall behavior is in agreement with our under-
standing of the relevant underlying physical mechanisms.
Specifically, we note that

• For a given cosmology (damping term), γs grows
with β and γm gets smaller. This is to be ex-
pected since for lower β we expect the system to
behave more like an Abelian-Higgs network, which
has longer strings and fewer segments (note that
γs and γm are inversely proportional to L and N ,
respectively). Analogous results have recently been
found for cosmic strings [70].

• For a given β, γs is higher for higher damping
terms, and γm is lower. This is also to be expected
since a lower damping term means that monopole
velocities will be higher. Segments can therefore
move faster to either grow and meet with other

segments or collapse, giving a longer typical string
length and smaller number of monopoles. One nat-
urally expects that the additional length lost by
segment collapse is more than compensated by that
gained by the extra growth. (Note that increasing
the string correlation length Ls corresponds to de-
creasing the string density, and therefore the total
length in string.)

• One set of simulations (corresponding to radiation
era, δx = 1 and β = 0.01) is an outlier, in the sense
that it doesn’t obviously follow the above trends.
However, we note that this is the case where there
is a smaller effective damping (and therefore more
radiation) in the simulation box, and hence this
is also the case that is most vulnerable to hidden
systematics.

We should also point out that the scaling properties we
have obtained for the string segments and monopoles are
somewhat less sensitive to the value of β than one might
have expected. It is possible that this is a feature of the
PRS algorithm, as has been recently discussed in [70].
Nevertheless, our results are consistent with an earlier
set of semilocal simulations, discussed in [56].

As in the case of the analysis in [56] a full direct calibra-
tion of the parameters of the analytic model for the evo-
lution of the overall network cannot be done until we can
numerically determine the velocities of the monopoles
and segments—a task which we leave for paper III. Still,
we can use the results of Table II to provide a prelim-
inary comparison with the model, and specifically with
the scaling solution described by Eqs. (12-13). We will
neglect the β dependence, which as we saw is numerically
found to be quite small when allowing for statistical and
systematic uncertainties, and we will focus on the results
for the α = 8 case for the reasons discussed above.

With these assumptions our free parameters are the
analytic model parameters, c? and km, as well as the
monopole scaling velocities in the radiation and matter
eras, which we will denote vrad and vmat. Using our nu-
merically determined values of γm, we find

vrad ∼ 0.48km (19)

vmat ∼ 0.20km ; (20)

we have deliberately not included error bars in these
numbers since we are unable to quantify possible system-
atic uncertainties in the γ’s. These values are consistent
with the results of our earlier simulations [56], where for
a faster expansion rate (λ = 3/4) we had found

vfast ∼ 0.12km . (21)

As expected, faster expansion rates lead to smaller ve-
locities. On the assumption that the analytic model
is correct, we therefore infer that the ratio of the scal-
ing monopole velocities in the matter and radiation eras
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β λ δx γs(sim)(α = 3) γs(slope)(α = 3) γs(sim)(α = 8) γs(slope)(α = 8)

0.01 Rad 0.5 0.27± 0.02 0.27± 0.04 0.29± 0.02 0.29± 0.04

0.01 Rad 1.0 0.280± 0.003 0.27± 0.06 0.285± 0.001 0.29± 0.01

0.01 Mat 0.5 0.30± 0.01 0.30± 0.05 0.30± 0.01 0.30± 0.05

0.01 Mat 1.0 0.292± 0.002 0.29± 0.01 0.295± 0.002 0.30± 0.01

0.04 Rad 0.5 0.301± 0.005 0.30± 0.04 0.294± 0.006 0.30± 0.04

0.04 Rad 1.0 0.283± 0.004 0.28± 0.01 0.284± 0.004 0.28± 0.01

0.04 Mat 0.5 0.302± 0.001 0.30± 0.03 0.301± 0.001 0.30± 0.03

0.04 Mat 1.0 0.291± 0.005 0.29± 0.01 0.291± 0.005 0.29± 0.01

0.09 Rad 0.5 0.327± 0.001 0.33± 0.05 0.325± 0.002 0.33± 0.05

0.09 Rad 1.0 0.303± 0.005 0.30± 0.01 0.303± 0.005 0.30± 0.01

0.09 Mat 0.5 0.337± 0.006 0.33± 0.07 0.336± 0.006 0.33± 0.06

0.09 Mat 1.0 0.307± 0.006 0.31± 0.01 0.306± 0.006 0.31± 0.01

TABLE I. The measured values (with one-σ statistical errors) of the string scaling parameter γs for the various series of
simulations described in the text.

β λ δx γm(sim)(α = 3) γm(slope)(α = 3) γm(sim)(α = 8) γm(slope)(α = 8)

0.01 Rad 0.5 0.549± 0.007 0.6± 0.1 0.586± 0.005 0.6± 0.2

0.01 Rad 1.0 0.34± 0.01 0.34± 0.02 0.44± 0.01 0.44± 0.03

0.01 Mat 0.5 0.544± 0.007 0.55± 0.08 0.555± 0.008 0.56± 0.08

0.01 Mat 1.0 0.41± 0.01 0.41± 0.02 0.47± 0.01 0.48± 0.03

0.04 Rad 0.5 0.45± 0.02 0.4± 0.1 0.5± 0.2 0.5± 0.1

0.04 Rad 1.0 0.359± 0.009 0.36± 0.02 0.469± 0.006 0.46± 0.02

0.04 Mat 0.5 0.48± 0.02 0.47± 0.09 0.49± 0.01 0.5± 0.1

0.04 Mat 1.0 0.424± 0.006 0.43± 0.02 0.466± 0.004 0.46± 0.02

0.09 Rad 0.5 0.45± 0.09 0.45± 0.09 0.46± 0.02 0.5± 0.1

0.09 Rad 1.0 0.397± 0.007 0.40± 0.01 0.460± 0.005 0.46± 0.02

0.09 Mat 0.5 0.44± 0.01 0.45± 0.06 0.45± 0.02 0.46± 0.08

0.09 Mat 1.0 0.419± 0.004 0.42± 0.03 0.442± 0.003 0.44± 0.03

TABLE II. The measured values (with one-σ statistical errors) of the monopole scaling parameter γm for the various series of
simulations described in the text.

should be

vmat

vrad
∼ 0.4 . (22)

If one assumes a curvature parameter km of order unity
as in the case of Goto-Nambu strings [67], our estimated
velocities are comparable to (though possibly somewhat
lower than) the ones typically encountered in other field
theory defect simulations [32, 73]. Thus, even though
this comparison is somewhat simplistic, the results are at
least encouraging. A full comparison (and thus a proper
calibration of the analytic model) requires the numerical
implementation of a reliable method to measure defect
velocities in our simulations, which will be the subject of
Paper III.

VI. CONCLUSIONS

We took advantage of recent progress in computing fa-
cilities to carry out a more detailed numerical study of
the evolution of semilocal string networks, the first results
of which have been discussed above. These are based on
the largest and most accurate field theory simulations of
these objects to date, with sets of 10243 simulations. Sev-
eral of these sets have been simulated, thereby exploring
a parameter space spanning different cosmological eras,
values of the coupling β and spatial resolutions, as well
as thresholds for identification of the semilocal segments.

In the present work we have focused on the large-scale
properties of these networks, our main result being a con-
firmation of earlier indications that linear scaling (anal-
ogous to the well-known one for cosmic strings) is the
attractor solution for the entire parameter space of ini-
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tial conditions that we have been able to reliably probe.
A brief comparison of our numerical results with the pre-
dictions of a previously developed one-scale model for
the overall evolution of these networks [56] is encourag-
ing, though a proper comparison must be left for future
work. We found the dependence of the scaling parame-
ters on the coupling β to be somewhat weaker than one
may have naively anticipated. This may be a side-effect
of our usage of the ’fat strings’ algorithm [69], as recently
discussed in a different context in [70].

As previously mentioned, the dynamics of these net-
works is more complex than that of plain Goto-Nambu
strings, and therefore it cannot be fully described by a
simple analytic model for the overall defect density. This
must be complemented by a description of the evolution
of the distribution of the individual semilocal segments.
Indeed, the fact that the overall energy density of the
network is scaling (which is, physically, what is being
quantified by the evolution of Ls or Lm) does not by it-
self ensure that the segment distribution is also scaling.
In this sense one can say that a one-scale model is not suf-
ficient to describe the full evolution of the network. To
some extent this is analogous to the presence of small-
scale structures on cosmic string networks, which can be
characterized in Goto-Nambu simulations [29].

The characterization of the semilocal segment popula-
tion will be the subject of Paper II. Indeed, a new way
of detecting segments should also be a good way to im-
prove on the possible systematic uncertainties which have
been discussed above. Segment identification is clearly
the dominant contribution to these, and therefore this
is one of the limiting factors preventing a more accurate
calibration of the analytic model. The other current bot-

tleneck is a reliable method of measurement of the defect
velocities. Note that the two are to some extent related,
since velocity measurements will in principle require the
direct detection of the positions of the monopoles. Some
possible methods to carry out these measurements will be
presented and discussed in Paper III, leading to a deeper
comparison between the analytic models and the numer-
ical simulations, and thus to a proper calibration of the
models themselves.
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