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Abstract

A robust procedure for the prediction of the dynamic respomislayered panels within a SEA wave-context
approach is proposed hereby. The dispersion charaateredttwo dimensional composite orthotropic structures are
predicted using a Wave Finite Element method. By manipudathe mass and éiiness matrices of the modelled
structural segment a polynomial eigenvalue problem is &fnthe solutions of which correspond to the propagation
constants of the waves travelling within the structure. Wagenumbers and group velocities for waves comprising
out of plane structural displacements can then be calallatsing the numerically extracted wave propagation data
the most important SEA quantities of the structure, namiedéyrhodal density and the radiatioffieiency of each
wave type are calculated. The vibroacoustic response dittheture under a broadbandfdsed excitation is then
computed within a SEA approach. The impact of the symmetritthe antisymmetric vibrational motion of the panel
on its sound transmission loss is exhibited and the appno@xtes robust enough for thin as well as for thick layered
structures.
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1. Introduction

Complex, non-isotropic stratified and sandwich type camsions are widely used in engineering applications
such as in the aerospace and automotive industries, madgluse of their high $fhess-to-mass ratio and the fact
that their mechanical characteristics can be designedttthsuparticular purposes. Unluckily this highftiess-to-
mass ratio being responsible for the increased mechantoakacy, imparts as wellfécient acoustic radiation. The
modelling of the vibrational behaviour of complex compesitructures has been a field of extensive study in modern
mechanical engineering. The knowledge of the wave propagelharacteristics within a structure seems to provide a
key to decode and model its vibrational behaviour.

Analytic formulas for the dispersion characteristics ithotropic thin plates can be found in classical publica-
tions [1, 2] starting with the CLPT [3], developped as an egiten of the Kirchh&-Love’s theory for isotropic plates
and suitable for thin panels. Furthermore, the FSDT [4] dakéo account the transverse shear deformation of the
panel and can be used for predicting the dispersion chaistate at higher frequencies. Such classical theories hav
been successfully used by many authors, as in [5] in orderadefrthe radiation fciency and the vibroacoustic
response under a reverberant field [6] of thin orthotropiogtea Kurtze and Watters [7] were the first to develop an
asymptotic model for the wave dispersion into symmetrictfiitk sandwich structures. They divided the flexural
wave speed of a sandwich panel (frequency-wise) into tteetioss, the first characterized by the panel vibrating as a
whole, the second by the core’s shear wave speed and thdth@alch of the two facesheets vibrating separately and
loaded with half of the core mass. Nevertheless, the modehasd the core to be incompressible, and the deforma-
tion of the panel in the thickness sense could not be modédlgich and Lang [8] were the first to develop a structural
model for an infinite sandwich panel by using the kinematguagptions of [9] and derived the five equations of
motion corresponding to the symmetric and antisymmetriiancof the panel. Moore and Lyon [10] extended this
structural model to symmetric sandwiches with an orthatrepre. A consistent (HSDT) taking into account the
core’s shear deformation was developped in [11] and uset?in][3] to construct a structural model of an infinitely
long sandwich panel and calculate its vibroacoustic resparithin an SEA context.

Calculating the wave propagation characteristics of nariaronal structures has been a subject of intense research
over the past years. The author in [14] presents an approacbinputing the wave propagation within hollow beam

structures. In [15] the authors predict the dispersionattearistics within composite panels in the framework of & SF
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approach, overcoming the limitations of a CLPT modellimg16], the authors calculated the phase constant surfaces
of periodic composite and fiiened structures using FE and PST. The authors gave an arpre$she radiation
efficiency of the panels based on the calculated wave displateshapes. The STL of the panels was expressed
through the radiation and mechanical impedances of thetates. An insight to the calculation of the same quantities
by a modal approach was also given. The authors in [17, 18] asaulti-layer analytical model based on Mindlin
theory to compute the dispersion characteristics withyeidad structures. However while the asymmetric mode of
motion was correctly captured, the symmetric mode of motiaa not naturally expressed using a Reissner-Mindlin’s
type of displacement field. The same authors presented anagpfor taking into account for the symmetric wavw
motion for thick panels in [19]. The WFEM was introduced i®]2lts main underlying assumption is the periodicity
of the structure to be modelled. The PST is then coupled té-Eid. Several applications of the WFEM have been
conducted to predict the wave speeds of one-dimensional22]land two-dimensional structures [23]. A set of
structures including a vehicle’s chassis [24], and fiesied plate [25, 26] has been modelled using the WFE method.
The two-dimensional technigue was successfully used iitf28odel the wave propagation in orthotropic thin panels
and sandwich structures.

Throughout the applications of the WFEM, simplicity is ebitéd as its main advantage compared to other ap-
proaches mentioned above. Indeed, ffises to develop the FE model of a structural segment comgraismall
number of DoF and inject the extracted matrices into an argimathematics software. Very fast calculation of the
dispersion characteristics for every direction of prop@geare observed (see [27]) when using the 2D WFEM as
presented in [23]. Moreover, due to the solid FE formulatbthe problem the WFEM can predict all the higher or-
der waves propagating within a structure (including synmiimetave motion) without any former assumptions of the
displacement unknowns in contrast to the analytical apgves. Furthermore, the 3D elasticity theory which governs
the solid FE used results in very accurate results in a baratifrequency range.

In this paper the two-dimensional WFEM is employed in ordezdmpute the STL of thick layered structures by
accounting for their symmetric and antisymmetric wave oratAnisotropic, multi-layered panels can be accurately
modelled using this generic approach for a broadband fremyueange. The resonant transmissionfiorent of the
panels is directly expressed in relation to the SEA quastitA way for computing the reverberant field STL of
the structures directly derived by their SEA propertiesls® &xhibited. The results are successfully compared to
experimental measurements encountered in the open hiafiby.

The paper is organized as follows : In sec.2 the process wihgpthe resulting polynomial eigenproblem as well
as the post-processing of the occurring solutions is degsmlisin sec.3 the calculation of the main SEA quantities,
namely the modal density and the radiatidiiogency for each wave mode of the layered panels is presdntsdc.4
some numerical applications are exhibited in order to @idche conducted work. The conclusions are eventually

given in sec.5.



Ficure 1: A composite panel modelled within the present approach

2. The two dimensional WFE method

2.1. Description of the method

A rectangular composite panel is considered hereby (seg figth Ly, Ly its dimensions and its thickness. A
periodic segment of the panel with dimensiehsanddy (see fig.2) is modelled using FE.

Initially, the mass and dtness and damping matrices of the segnddr andC are extracted using classical
FEM algorithms. The entries for each DoF, of every node lgyan the same edge of the segment, say edges Q,
R, S and T, are placed in the mass andéfrstiss matrices so that the vector of displacements can benves :

U = {ug Ur Us uT}T. Following the analysis presented in [23] the time-harro@tjuation of motion of the segment

assuming uniform and structural damping for all the DoF camvhitten as :

(K +iwC-w™M)u=F (1)

wheren is the structural damping cticient,w is the angular frequency adthe vector of the nodal forces. Then

the dynamic sttness matrix can be written as :

D=K +iwC - w?M (2)

therefore eq.(1) may be written as :
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Ficure 2: View of the modeled periodic segment with its edges Q, Ry&Ta
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Using the Floquet theory for a rectangular segment and a@rsguartime-harmonic response the displacements of
each edge can be written as a function of the displacemeoteatingle edge. Taking edge Q as the edge of reference

we have :

UR = AXUQ, Ug = /lyUQ, Ut = ﬂx/lyUQ (4)

Using the same theory, the force vectors can be written as :

Fr = AxFq, Fs = AyFq, Fr = AxdyFq )

With A, and.y the phase constants which are related to the wavenurkparslk, through the relation :

Ay = e ) = gty 6)

The displacement vector can therefore be written as :

ug |
UR Ayl
) L ()

Assuming no external excitation, equilibrium along edger@lies that :

{l AN A /1;1/1;1|} =0 (8)

{ [ i N b B B }D ug =0 9)

which can be written in the form :



(Dqo + Drr + Dss+ Dr7) + (Dor + Dst) A« + (Drg + Drs) A%
+(Dgs + Dgrr) dy + (Dsq + D1r) 4, + Dot Axdy+ ug =0 (10)
DAy Ay + Dsraxdyt + Drsdy 'y
Various methods exist for the solution of the eigenproblechare discussed extensively in [16, 23]. In this paper
the scenario in which the frequency and the wavenumber tisyadirection are considered as fixed will be adopted.
For each set of fixed ky the entirety ok, values are sought and values for intermediate, andk, can be found by

interpolating on the known results. For a set of fixg#, the non-linear eigenproblem of eq.(10) is reduced to :

(A22% + Ardy + Ag)ug = 0 (11)

where :

DQT/@ + (DQR + DST)/ly + DSR s i=2

Ai = (DQQ + DRrR + Dss+ D71 + DQS + DRT)/ly + DSQ +Dtr , i=1 (12)

DRS/lg + (DRQ + DTs)/ly + DTQ s i=0

The above quadratic eigenproblem can also be convertedoamsh [28] into an ordinary linear generalized
eigenproblem of twice the size, by defining a new veeteriyug :

—AO 0 ]{ Ug }:Ay { Uug } (13)
0 | z Z

with | the identity matrix. The propagating wavenumbers are tladcutated as :

A1 Az
I 0

log( A
_ Iog_(/lx) and k = g.( y) (14)
—idy —idy

The process of correlating the computed wavenumbers fdr #aquency and each direction of propagation is

kx

exhibited in the next section.

2.2. Post-processing the results of the solution

The solutions of the eigenproblem in eq.(10) can be categdiinto :
— Propagating and evanescent waves.
— Different wave modes.
In order to distinguish the propagating from evanescenewan evanescent wave rejection criterion is adopted.
Supposing that a calculated wavenumber is in the foema + Bi, we consider that under the conditiofa/|8| > p
the wave is propagating, with an empirical parameter greater that unity. To validate ésalts, the number of the
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captured propagating waves can be compared to the numbeomdgating waves whe@ = 0 (thusg = 0 for any
propagating wave). A = 3 is used throughout this work with no inconsistencies olesr

In order to identify the eigenvalues and eigenvectors spoading to the same wave mode, each propagating
wave mode shape is compared to the whole set of wave modessfuasach angle and each frequency. The MAC

criterion which expresses the correlation of two vectbrand®; was used for this purpose and can be written as :

(0] @) (@] @)

" (era) (o7 a)

(15)

whereT stands for the transpose ardfor the conjugate of each vector. A high MAC value should lfréte
attempted. If no correlated wave modes are found, a lower M&lGe is used until all propagating wave modes are
correlated to a set of wave types. The wave modes employihgfqalane motion (typically the symmetric and the

antisymmetric out of plane waves) are then used to conda@BA analysis of the structure.

3. Computation of the energy analysis quantities

3.1. Calculation of the modal density

Using the Courant’s formula [29], the modal density of eaobpagating wave type can be written for each

angleg as a function of the propagating wavenumber and its correipg group velocityc, :

A ky (w, ¢)

Ny (W, ¢) = =——"— 16
) = o Tegu (.0 (0
whereA is the area of the panel and the group velocity is expressed as
dw

Co (@, ) = ©.9 (17)

The angularly averaged modal density of the structure intexadly given as a function of frequency :
n@ = [ . 0)do 1)

0

3.2. Calculation of the radiationfgciency

In order to calculate the radiatiofffieiencyo (k (w)) for each propagating wave type relations presented in the
open bibliography are employed. For continuous structomede shapes of sinusoidal form can be assumed in order
to avoid any FE discretization errors in the solution. Theo$@symptotic formulas given in [5] can be used in order
to computer (k (w)). Within an SEA context, energy equipartition amongst tl®nant modes is assumed so that the

radiation dficiency is written as :

1 T
(o) = s fo o (k (@, 6)) N (. 6) dp (19)
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Ficure 3: The configuration to be modelled by SEA analysis.

For a periodic discontinuous structure the assumptionmafssiidal mode shapes is no longer valid, therefore the
radiation éficiency should be calculated directly from the WFEM derivev@mode shapes. The radiatidghiacency

expression given in [16] can therefore be employed.

3.3. Calculation of the Sound Transmission Loss (STL) ofreeplay an SEA approach

The STL (or TL) is one of the most important indices of the wi#roustic performance of a structure. The sys-
tem to be modelled comprises two reverberant chambersatepany the modelled composite panel attached to a
rigid baffle. No flanking transmission is considered in the SEA modelrd@phical representation of the modelled
subsystems is given in fig.3. The energy balance of the stdragsas it is considered within an SEA approach (see
[30]) is illustrated in fig.4, in whictE;, E3 stand for the acoustic energy of the source room and theviergaioom
respectively anét; for the vibrational energy of the composite panel. Mored¥grs the injected power in the source
room, P14, P2y and P34 stand for the power dissipated by each subsystemRagds the non-resonant transmitted
power between the rooms. Considering each wave typea, b, c...n propagating within the composite panel as a

separate SEA subsystem we have :

n
Pi2= 2 Piow
w=a
(20)
n
P23 = 3., Paaw
w=a
whereP;, andP,3 stand for the power flow between the rooms and the panel.
The STL is defined as :



/|
E
lPZd

Ficure 4: A schematic representation of the SEA power exchangesredies for the modelled system.

1
STL=10 Ioglo(—) (21)
T
wherer is the transmission cdiécient which represents the ratio between the transmittddtanincident sound
powers. It can be written as the sum of the resonant and thegsamant transmission cieient :
_ Px+Piz <o Paw P

S _ + 22
I:)inc F)inc F)inc ( )

w=a

wherePj,c stands for the acoustic power incident on the layered paméth for a reverberant sound field can be

written as :

(pi) A

Pinc =
Inc 4pC

(23)

Where< pi) the mean-square sound pressure. An attempt to calculatestheant coicient for each wave type
is hereby made. Assuming no energy exchanges betwéenatit wave types within the structure, the energy balance

of a structural wave subsystem can be written as :

Piow = Pogw + Pa3w (24)

The power dissipated can be written as :
10



I:)Zd,w = EZ,WwTIZ,W (25)

with 12, the structural loss factor of the wave tyyweWhen the loss factors of each individual layer of the panel
are known, the structural loss factor of the entire panellmacomputed using the relations provided in [31]. The

vibrational energy of the panel due to wave typean be written as :

Eow = psA <U€V> (26)

whereps is the mass per unit of ared,is the total area of the panel aﬁmﬁ) is the mean-square panel vibration
velocity due to wave typw.

The power flowP12, can be written using the SEA reciprocity rule, as :

El EZ,W El EZ,W) (27)

Piow = wniowm | — — ——| = wnarwhow| — - —
12w 12wl ( N nz,w) 21wl2w ( n Now
whereng,n,,, are the modal density of the source room and of the wavewygspectively ang, the coupling

loss factor between the receiving room and the wave typéich can be written as :

PCOrad,
M21w = M23w = = (28)
Psw

Wherep is the acoustic medium density of the room. The total acoestergy of the source room can be written

as:

pi)V
Ei= <plT>2 (29)

A generally acceptable approximation for the modal dernsithe source room is made as :

Viw?
M= 2ea (30)

then the modal energy of the source room can be written as :
E, 2n°c(p?
=1 _< i) (31)

ny pw?

Using the SEA reciprocity rule again, the power flow from tlmmposite panel to the receiving room can be
written as :
E2,w E3

Poaw = 0)7723,wn2,w(_ - —) = wi2aw (Ez,w -
Nw N3

E3”2’W) 32)

n3

11



It is hereby assumed theg >> ny,, (reasonable for typically sized cavities and especialtyriedium and high

frequencies) and it is also logical thas,, > Ej for an acoustically #icient, out of plane wave. Therefore presuming

Es Mow
ng !

thatE,y >>

eg.(32) can be written as :

Pazw = Exwwiaw (33)

Eventually, after manipulating eq.(23) and eq.(25)-(38) aubstituting them into eq.(24) we get :

<U\%v> _ 27T020'rad,wn2,w (34)
<p§> 0sw?A(pswnaw + 20C0radw)

Using eq.(26),(28),(33),(34),(23) and substituting thiato eq.(22) we get the expression for the transmission

codficient of the wave type :

8p2047r0'r2ad’wn2,w (35)
T =
v ,OSWZA(,OS(UUZ,W + 20C0radw)
The total transmission cfifecient of the panet can now be written as :
n
P
R (36)

Pinc

w=a

The non resonant transmission fit@entr,, = P13/Pinc for a diffused acoustic field can be written as in [17] :

21 (Omax 4Z207(6,¢,w) SiNG coS O
Pz fO 0 lwpst2Zof dodg 37)
Pinc - 71'(1 - CO§ Gmax)

in which 6 and ¢ are the incidence angle and the direction angle of the aicowalve respectively, andy =
pc/ cosd is the acoustic impedance of the medium. The téggy stands for the maximum incidence angle, accounting
for the difuseness of the incident field. It is considered thak = pi/2 for all the results presented in the current work.
The termo (6, ¢, w) is the corrected radiatiorfficiency term. It is used in order to account for the finite disiens
of the panel by accounting for the radiation of the mass odlett non-resonant modes, and it is calculated using a
spatial windowing correction technique presented in [B2kq.(36) the total transmission dleient of the layered
panel is expressed merely as a function of its SEA quanttiesindependently of the room dimensions and modal

energies.

4. Numerical examples

In this section numerical applications of the approach diesd above will be presented. In order to validate the
proposed models, four structures were chosen to be compiltedirst being a thin stratified orthotropic composite
panel. Subsequently, two honeycomb sandwich structureskhss a particularly thick sandwich panel comprising

a soft core are modelled. It should be noted that experirheesalts for the response of layered panels under a
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TasLe 1: Mechanical properties of materials

Material | Material Il Material Il Material IV Material V Maerial VI Material VII
p=9740 kgm®  p=1600 kgm® p =160 kgm® p=1550 kgm® p=11044 kgm® p=6299 kgm® p =16 kgm?
Vyy = 0.028 Vyy = 0.15 Vyy = 0.15 Viy =03 Vyy = 0.45 Vyy = 0.15 Vyy = 0.34
Vyz = 0.001 Vyz = 0.15 Vyz = 0.15 Vyz = 0.3 Vyz = 0.45 Vyz = 0.15 Vyz = 0.34
vy, = 0.434 Vyz = 0.15 Vyz = 0.15 vy, =03 vy, = 0.45 Vyz = 0.15 vy, = 0.34
E«=20237 GPa Ex =49 GPa E,=025GPa E,=48 GPa E,=01448 GPa E,=83 GPa E,=0.0083 GPa
E,=31375 GPa E,=49 GPa E,=025 GPa E,=48 GPa FE,=0.1448 GPa E,=83 GPa E,=0.0083 GPa
E,=38000 GPa E,=49 GPa E,=025GPa E,=48 GPa E,=01488 GPa E,=83 GPa E,=0.0083 GPa
Gyy = 88879 GPa G,y =213 GPa Gy =011 GPa Gy, =181 GPa Gy =005 GPa G =36 GPa G, =0.0031 GPa
Gy, = 88879 GPa Gy,=213 GPa Gy,=0.09 GPa Gy,=276 GPa G,,=005 GPa Gy,;=36 GPa Gy,=0.0031 GPa
Gy, = 88879 GPa G,,=213 GPa G,,=0.14 GPa G, =276 GPa G, =0.05 GPa G,,=36 GPa G, =0.0031 GPa

reverberant acoustic field are rare to find in the open bibdiplgy. Consequently, the available options of composite
structures to be modelled while concurrently having tesa tia compare with were not a lot. The mechanical static
characteristics of each material used for the validatimtgss are mentioned in Table 1, in whjels the density

of the material E; the Young modulus in direction G;; stands for the shear modulus in directipon the plane
whose normal is in directionandv;; for the Poisson’s ratio that corresponds to a contractiodiriection j when

an extension is applied in directionThe FE modelling was conducted within ANSYS 12.1 softwditee segments
were modelled using the linear eight-node ANSYS SOLID45nelrt which comprises a 3D displacement field and
three DoF per node (translations in tkey, andz directions). A minimum number of one elements per layer was
used in order to minimize the numerical errors produced ByDttmatrix computation (see [33]). In order to avoid
any interpolation errors, it was also ensured that the esmaaximum dimensions were inferior to one tenth of the

minimum structural wavelength propagating within the freqcy range of the analysis.

4.1. Validation on an orthotropic thin monolithic struceur

The wavenumbers for the bending, shear and membrane wage tygre identified for a thin, stratified type
structure for propagation towaradlirection. The panel is made of material I. Its thicknessjigas toh=0.5mm and
its dimensions are 1.4m x 0.9m. The resulting dispersiomegiare presented in fig.5, and the results are compared
with the CPT analytic solutions (see [1]). Excellent aceoreck is observed for the shear and the membrane wave types.
Concerning the flexural wave type, the WFE predictions arg neich in agreement with the analytical formula even
for the high frequency range. To give an idea for the disanepdetween the two models, af@irence of M9% is
observed at Hz Under an acoustic excitation, antisymmetric wave modesesponsible for the transmission of
the vast majority of energy through the structure, thetbey will be the main wave type to be considered in the
SEA analysis.

The flexural wavenumbers are presented as a function oftidineand frequency in fig.6. The directional de-
pendence of the wavenumber within a highly orthotropic panebserved. It is known that each mode of the panel

corresponds to an exact set of wavenumbers depending orattedsgboundary conditions. For a simply supported
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Figure 5: Comparison of the WFEM calculated dispersion curves tdssadirection (—) with CPT analytical formulas for : flexural), shear §)

and membranex| propagating wavenumbers for a thin orthotropic panel

panel this set is ky = mr/Ly andk, = nz/Ly, wherem, n are integers antl; the length and width of the panel. The
resonance frequency for tine n flexural mode of the panel can be sought by conducting a 2@dimgerpolation of
this ky,ky set to thew ky,ky relationship as depicted in fig.6.

The modal density of the monolithic orthotropic panel isseduently calculated using the antisymmetric wave
propagation characteristics presented in fig.6 and eq.Gi8all discrepancies are observed between the values cal-
culated using the WFEM and the CPT because of the fact thdattes approach does not account for the shear
effects within the laminate. As expected, the two predictioasvary similar for the low frequency range. The largest
divergence for the two predictions is146 and is observed at the highest frequency range of the sisallyis seen
that taking into account for the shedfexts within the laminate becomes important as frequencgases.

The radiation &iciency of the monolithic orthotropic panel is calculateéhgghe Leppington’s asymptotic and
transition formulas. The results are shown in fig.8. The eigig of the coincidence range (approximately 2kHz) is
marked by an intensive increase of the radiatiffiitiency, which continues rising steadily throughout thencaence
region. The end of the coincidence range (approximatéigldz) is marked with a peak of the radiatioffieiency
curve. Fluctuations of the curve throughout the coincigerange were expected and are discussed in [5]. The in-
dividual modal radiation fciencies are also calculated using the formulas given ih§8d presented in the same
figure. Each mode is separately attributed toffedént category depending on its individual charactegstamely the
directional wavenumbets andky and its resonance frequency. It can be clearly observedibaiorner modes are
the less radiating ones. On the other hand, the surface naoegsrticularly &icient due to the fact that the entirety

14



4
3.5
5
3 4
)
25+ A ;3
o
c
S
2F 1 8
L
1
15F - 0
0
1 350
0.5 150

150 y direction wave
200 number (1/m)
x direction wave

number (1/m) 0

Ficure 6: 3-dimensional view of the bending propagating wavenusiiagthin the stratified structure as a function to directidpropagation and
frequency

0.171

0.171- N

0.169

0.168

Modal density (modes/Hz)
o o o
[y [y [y
[o2] [e2] 2}
a1 (2] ~

0.164

0.163

0162 1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Frequency (Hz)

Ficure 7: Comparison of the predicted modal density for a mondigi@nel : present approach (-), CPT (--)

15



|
i
T T

10

|
N

Radiation Efficiency
=
o

1 1 1 1 1 1 1 1 1 1 |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Frequency (Hz)

Ficure 8: Comparison of the radiatiorffigiency of a monolithic orthotropic panel using : the presasthodology (), modal radiation formulas
in [34] (surface modes '0’, x-edge modes, y-edge modes ™', x-y edge modes 'x’, corner mode$), frequency averaged radiatiorffieiency

according to [35] (--)

of the surface of the panel radiates in the acoustic mediuma.modal radiation values are frequency averaged as
suggested in [35]. The result is presented in the same figutee low frequency range the averaged result presents
an intense fluctuation due to the small number of modes takeraccount within each frequency bandl octave
frequency bands). Above 2.5 KHz, the surface modes hit astarally increasing the radiatioffieiency of the panel.
Very good agreement is observed comparing with the Leppirigformulas predictions.

The STL of the orthotropic thin panel under a reverberanuatofield is presented in fig.9. On the same figure
experimental data for the same quantity, published in [€sliown. The results of an asymptotic TL calculation model
presented in [6] are also compared in the same figure. ExtelFeement between the experimental and predicted
results is observed for the sub-coincident frequency rasgeell as for the whole coincidence range. The radiation
efficiency is not overestimated -in contrast to the asymptotideh at the beginning of the coincidence area. The
fluctuations of the TL curve throughout the coincidence eaare due to the radiatiorfeiency formulas used and
are discussed in [5]. A structural loss factor equal .@l0s used. The discrepancy between the numerical predictio
and the experimental results at the end of the coincidemzeraan either be attributed to an overestimation of the
radiation dficiency or to a higher structural damping @isent (probably due to large deflections) for the panel
in this frequency range. Fast convergence of the predicifes towards the experimental data is observed in the

post-coincident frequency range.

4.2. Validation on honeycomb sandwich panels

A sandwich panel is subsequently considered. It comprisgs@made of material V and facesheets made of
material IV. The thickness of the core is equal to 12.7mmevtiie thickness of the facesheets is equal to 1.2mm. The
16
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Ficure 9: Comparison of the élused field TL of an orthotropic thin panel : present methogpl6-), model in [6] §), experimental results in [6]
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dimensions of the panel are equal to 1.37m x 1.65m. The eémllantisymmetric wavenumbers of the panetin
direction are presented in fig.10. The results in [17] fordame panel using a LW approach are exhibited in the same
figure and are in excellent agreement with the presentedappr The frequency ranges of the dynamic behaviour
of the sandwich panel are clearly distinguished (see al&}).[A low-frequency region where the panel vibrates as a
whole, an intermediate region where the shedfngtss of the panel dominates its vibrational behaviour andfa h
frequency region where the flexural wavenumber for the pasnebnverging to the wavenumber of each facesheet
vibrating separately, loaded with half of the core mass. dispersion relation predicted by a Mindlin type model
proposed for thick sandwich panels in [36] which takes irdooaint the shear deformation of the panel is depicted in
the same figure. The Mindlin theory diverges quickly whersiéedwich panel enters the shear deformation dominated
region. As a result a misguiding coincidence frequencyHerantisymmetric wavef; = 560Hz) is predicted, which
is far from the one predicted by the WFENL{ = 1190Hz). At higher frequencies the Mindlin model furtheradges,
having a dfference of 250% at 40kHz. The asymptotic Kurtze and WatteVg)(Kodel implemented as presented in
[37] is also shown in the same figure. It is seen that the KWiptieth agrees asymptotically with the WFEM model,
with the three regions of the panel clearly distinguishealwklver discrepancies between the two models occur at the
transition regions of the KW model.

In order to validate the WFEM predicted values for the moealgity of a sandwich panel, a structure presented in
[38] was modelled. It comprises a honeycomb foam core madweatdrial 11l and facesheets made of material Il. The
thickness of the core is equal to 6.35mm while the thicknédlseofacesheets is equal td@hm. The dimensions of

17
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Figure 10: Comparison of the wavenumber in x direction for a santypnel : present methodology (-), results in [24] & Mindlin type model

(0), Kurtze-Watters model), acoustic wavenumber (- -)

the panel are equal to 1.12m x 0.62m, but were reduced to &&1A2m when the panel was fixed to thdita The
results of the modal density are shown in fig.11. An excebignéement between the calculations and the experimental
measurements is observed. Within the lower frequency rdregeresent approach seems to correctly predict the mean
value around which the measured modal density is dispersed.

The radiation éiciency of the honeycomb foam core sandwich is calculatedguisie same set of asymptotic
formulas as before and is compared to the predictions of thekér's model and the experimental data presented in
[38]. Itis observed that the Leppington’s formula combiméth the WFEM predictions leads to more accurate results
in a broadband frequency range. Furthermore, the used ga@thafilas does not overestimate the radiatifficeency
of the panel at the coincidence range.

Furthermore, the dliused field STL of the foam filled honeycomb sandwich strucisiealculated. The result is
depicted in fig.13 along with experimental data present§8dh The results demonstrate a very good correlation. The
low-frequency response seems to be very well simulatedcdhmeidence frequency band is very well predicted and
above coincidence discrepancies of less than 2dB are adzbbetween the experimental results and the SEA models.
Higher experimental STL values around the coincidencaseeaqgy are probably due to an increase of damping for the
panel. In the same figure the results of the SEA model predém{@8] are also shown. The discrepancies between
the two SEA models are due to the better prediction of theatamhi ficiency by the current approach and the spatial

windowing correction hereby used. Above coincidence, éselts of the two SEA models are very well correlated.
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Ficure 13: Comparison of the ffused field TL of a sandwich panel : present methodology (—Hehio [38] (- -), experimental results in [38] (0)

4.3. Validation on a thick layered panel

For layered panels comprising a thick and soft core, thealitanal motion of the soft layer (also referred to as
symmetric motion) can contribute significantly to the remmracoustic transmission of the panel (see [8]). In order
to exhibit the robustness of the presented approach cairgidhe modelling of arbitrarily thick panels a sandwich
structure comprising a 38.1mm core made of material VIl pted to 6.35mm thick facesheets made of material VI
is hereby modelled. The WFEM computed phase velocitiehfptopagating, out of plane wave motions are shown
in fig.14 and are compared to predictions of an analytic HSBrlvédd model, presented in [12]. Excellent correlation
is observed between the two predictions.

A cut on frequency is observed for the symmetric motion alvavieh the wave starts propagating within the panel.
Below this cut on frequency the dilatational motion is nopested to influence the transmission fiméent of the
panel due to the particularly low modal density of the wavalma lock-up of the symmetric and the antisymmetric
wave motion is observed for higher frequencies. The totalgmission cdécient of the panel is calculated using
eg.(36) and the STL of the structure is exhibited in fig.15glwith experimental results provided in [12].

Very good correlation between the computed values and thesunements is observed below the coincidence
range. It is noted that the acoustic coincidence frequesrdhe antisymmetric motion of the panel occurs at 2900Hz.
At 2000Hz the impact of the dilatational motion of the panelits TL becomes evident with the values presenting

a sudden decrease of 14dB at the cut on frequency of the syifometve. The coincidence range is extended up
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Figure 16: Contribution of each transmission path to the transonssodficient of the panel : total transmission é&ent (—), non-resonant trans-
mission coéicient (- -), resonant transmission ¢eient ( - -), symmetric motion transmission déieient (0), antisymmetric motion transmission
codticient (J)

to 3000Hz because of the antisymmetric coincidence phenomand because of the fact that the symmetric phase
velocity remains very close to the one of the acoustic meditiraloser look to the contribution of each acoustic
transmission path to the total transmissionfiogent is shown in fig.16.

The mass controlled phenomena dominate the low frequenggraf the total transmission diieient. Approach-
ing the coincidence range, the resonant contribution besdire most important one. The symmetric motion of the
panel dominates its acoustic transmission at the dilatatimotion cut on, while close to the antisymmetric coin-
cidence frequency both wave motions contribute to the tnégson. In the post coincidence frequency range the
contribution of the two wave motions is almost equal due t fhat the corresponding phase velocities are very
close. It is therefore shown that thick and heavy layers doalways reduce the acoustic transmission of a panel
because of the fact that they also reduce its dilatatiortadcfrequency. It is observed that thi@ext of the symmetric
motion on the acoustic transparency of a panel may not bectegl. Care has to be taken therefore when designing

an insulating structure for the existence of more than on@bplane propagating wave modes.

5. Conclusions

The modelling of the vibroacoustic behaviour of compositeted structures of arbitrary layering and orthotropy
was conducted through a wave-context SEA approach. Sumimgithe most important points of the presented work :
1) A description of the formulation of the WFE approach wagegi The process followed for post-processing the
results of the resulting eigenproblem was described. 2) Wi&M was applied to composite, arbitrarily layered

panels in order to predict their dispersion charactessfibe predictions were successfully compared to bibljolgia
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results. The accuracy of the WFEM compared to analyticaiptiens, especially with regard to predicting the correct
coincidence frequency of the structures is of great impaetdor an accurate vibroacoustic analysis. 3) The main SEA
guantities, namely the modal density and the radiatiioiency of the panels were computed following the calcufatio
of their dispersion characteristics. The calculation wasedusing analytic formulas in a wave context. The results
showed an excellent correlation between experimentaladatahe current approach. 4) For the calculation of the STL
of the panels a SEA approach was adopted. A formula for compthie STL derived directly by the characteristics
of the structures, with no dependence on the room propevtssgiven. A generally very good agreement between
experimental measurements and the predictions of themqezsmethod was observed throughout the frequency band,
validating the &ectiveness and the robustness of the later. 5) The symnagtdd¢he antisymmetric wave motion
within a thick layered panel was well predicted. It was shahat adding mass to a panel does not always reduce its
acoustic transmission and that théeet of the symmetric motion on the STL especially during its@n frequency

range should not be neglected.
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