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Abstract

A robust procedure for the prediction of the dynamic response of layered panels within a SEA wave-context

approach is proposed hereby. The dispersion characteristics of two dimensional composite orthotropic structures are

predicted using a Wave Finite Element method. By manipulating the mass and stiffness matrices of the modelled

structural segment a polynomial eigenvalue problem is formed, the solutions of which correspond to the propagation

constants of the waves travelling within the structure. Thewavenumbers and group velocities for waves comprising

out of plane structural displacements can then be calculated. Using the numerically extracted wave propagation data

the most important SEA quantities of the structure, namely the modal density and the radiation efficiency of each

wave type are calculated. The vibroacoustic response of thestructure under a broadband diffused excitation is then

computed within a SEA approach. The impact of the symmetric and the antisymmetric vibrational motion of the panel

on its sound transmission loss is exhibited and the approachproves robust enough for thin as well as for thick layered

structures.
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1. Introduction

Complex, non-isotropic stratified and sandwich type constructions are widely used in engineering applications

such as in the aerospace and automotive industries, mainly because of their high stiffness-to-mass ratio and the fact

that their mechanical characteristics can be designed to suit the particular purposes. Unluckily this high stiffness-to-

mass ratio being responsible for the increased mechanical efficiency, imparts as well efficient acoustic radiation. The

modelling of the vibrational behaviour of complex composite structures has been a field of extensive study in modern

mechanical engineering. The knowledge of the wave propagation characteristics within a structure seems to provide a

key to decode and model its vibrational behaviour.

Analytic formulas for the dispersion characteristics in orthotropic thin plates can be found in classical publica-

tions [1, 2] starting with the CLPT [3], developped as an extension of the Kirchhoff-Love’s theory for isotropic plates

and suitable for thin panels. Furthermore, the FSDT [4] takes into account the transverse shear deformation of the

panel and can be used for predicting the dispersion characteristics at higher frequencies. Such classical theories have

been successfully used by many authors, as in [5] in order to model the radiation efficiency and the vibroacoustic

response under a reverberant field [6] of thin orthotropic panels. Kurtze and Watters [7] were the first to develop an

asymptotic model for the wave dispersion into symmetric flatthick sandwich structures. They divided the flexural

wave speed of a sandwich panel (frequency-wise) into three sections, the first characterized by the panel vibrating as a

whole, the second by the core’s shear wave speed and the thirdby each of the two facesheets vibrating separately and

loaded with half of the core mass. Nevertheless, the model assumed the core to be incompressible, and the deforma-

tion of the panel in the thickness sense could not be modelled. Dym and Lang [8] were the first to develop a structural

model for an infinite sandwich panel by using the kinematic assumptions of [9] and derived the five equations of

motion corresponding to the symmetric and antisymmetric motion of the panel. Moore and Lyon [10] extended this

structural model to symmetric sandwiches with an orthotropic core. A consistent (HSDT) taking into account the

core’s shear deformation was developped in [11] and used in [12, 13] to construct a structural model of an infinitely

long sandwich panel and calculate its vibroacoustic response within an SEA context.

Calculating the wave propagation characteristics of non conformal structures has been a subject of intense research

over the past years. The author in [14] presents an approach for computing the wave propagation within hollow beam

structures. In [15] the authors predict the dispersion characteristics within composite panels in the framework of a SFE
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approach, overcoming the limitations of a CLPT modelling. In [16], the authors calculated the phase constant surfaces

of periodic composite and stiffened structures using FE and PST. The authors gave an expression of the radiation

efficiency of the panels based on the calculated wave displacement shapes. The STL of the panels was expressed

through the radiation and mechanical impedances of the structures. An insight to the calculation of the same quantities

by a modal approach was also given. The authors in [17, 18] used a multi-layer analytical model based on Mindlin

theory to compute the dispersion characteristics within layered structures. However while the asymmetric mode of

motion was correctly captured, the symmetric mode of motionwas not naturally expressed using a Reissner-Mindlin’s

type of displacement field. The same authors presented an approach for taking into account for the symmetric wavw

motion for thick panels in [19]. The WFEM was introduced in [20]. Its main underlying assumption is the periodicity

of the structure to be modelled. The PST is then coupled to theFEM. Several applications of the WFEM have been

conducted to predict the wave speeds of one-dimensional [21, 22] and two-dimensional structures [23]. A set of

structures including a vehicle’s chassis [24], and a stiffened plate [25, 26] has been modelled using the WFE method.

The two-dimensional technique was successfully used in [23] to model the wave propagation in orthotropic thin panels

and sandwich structures.

Throughout the applications of the WFEM, simplicity is exhibited as its main advantage compared to other ap-

proaches mentioned above. Indeed, it suffices to develop the FE model of a structural segment comprising a small

number of DoF and inject the extracted matrices into an ordinary mathematics software. Very fast calculation of the

dispersion characteristics for every direction of propagation are observed (see [27]) when using the 2D WFEM as

presented in [23]. Moreover, due to the solid FE formulationof the problem the WFEM can predict all the higher or-

der waves propagating within a structure (including symmetric wave motion) without any former assumptions of the

displacement unknowns in contrast to the analytical approaches. Furthermore, the 3D elasticity theory which governs

the solid FE used results in very accurate results in a broadband frequency range.

In this paper the two-dimensional WFEM is employed in order to compute the STL of thick layered structures by

accounting for their symmetric and antisymmetric wave motion. Anisotropic, multi-layered panels can be accurately

modelled using this generic approach for a broadband frequency range. The resonant transmission coefficient of the

panels is directly expressed in relation to the SEA quantities. A way for computing the reverberant field STL of

the structures directly derived by their SEA properties is also exhibited. The results are successfully compared to

experimental measurements encountered in the open bibliography.

The paper is organized as follows : In sec.2 the process of solving the resulting polynomial eigenproblem as well

as the post-processing of the occurring solutions is discussed. In sec.3 the calculation of the main SEA quantities,

namely the modal density and the radiation efficiency for each wave mode of the layered panels is presented.In sec.4

some numerical applications are exhibited in order to validate the conducted work. The conclusions are eventually

given in sec.5.
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Figure 1: A composite panel modelled within the present approach

2. The two dimensional WFE method

2.1. Description of the method

A rectangular composite panel is considered hereby (see fig.1) with Lx, Ly its dimensions andh its thickness. A

periodic segment of the panel with dimensionsdxanddy (see fig.2) is modelled using FE.

Initially, the mass and stiffness and damping matrices of the segmentM K andC are extracted using classical

FEM algorithms. The entries for each DoF, of every node laying on the same edge of the segment, say edges Q,

R, S and T, are placed in the mass and stiffness matrices so that the vector of displacements can be written as :

u =
{

uQ uR uS uT
}T . Following the analysis presented in [23] the time-harmonic equation of motion of the segment

assuming uniform and structural damping for all the DoF can be written as :

(

K + iωC − ω2M
)

u = F (1)

whereη is the structural damping coefficient,ω is the angular frequency andF the vector of the nodal forces. Then

the dynamic stiffness matrix can be written as :

D = K + iωC − ω2M (2)

therefore eq.(1) may be written as :
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Figure 2: View of the modeled periodic segment with its edges Q, R, S and T
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Using the Floquet theory for a rectangular segment and assuming a time-harmonic response the displacements of

each edge can be written as a function of the displacements atone single edge. Taking edge Q as the edge of reference

we have :

uR = λxuQ, uS = λyuQ, uT = λxλyuQ (4)

Using the same theory, the force vectors can be written as :

FR = λxFQ, FS = λyFQ, FT = λxλyFQ (5)

With λx andλy the phase constants which are related to the wavenumberskx andky through the relation :

λx = e−ikxdx , λy = e−ikydy (6)

The displacement vector can therefore be written as :
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Assuming no external excitation, equilibrium along edge Q implies that :
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Eventually, substituting eq.(7,8) in eq.(1) we end up with the eigenproblem :
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which can be written in the form :
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Various methods exist for the solution of the eigenproblem and are discussed extensively in [16, 23]. In this paper

the scenario in which the frequency and the wavenumber towardsy direction are considered as fixed will be adopted.

For each set of fixedω,ky the entirety ofkx values are sought and values for intermediateω,kx andky can be found by

interpolating on the known results. For a set of fixedω,ky the non-linear eigenproblem of eq.(10) is reduced to :
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The above quadratic eigenproblem can also be converted as shown in [28] into an ordinary linear generalized

eigenproblem of twice the size, by defining a new vectorz = λyuQ :
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with I the identity matrix. The propagating wavenumbers are then calculated as :

kx =
log(λx)
−idx

and ky =
log

(

λy

)

−idy
(14)

The process of correlating the computed wavenumbers for each frequency and each direction of propagation is

exhibited in the next section.

2.2. Post-processing the results of the solution

The solutions of the eigenproblem in eq.(10) can be categorized into :

– Propagating and evanescent waves.

– Different wave modes.

In order to distinguish the propagating from evanescent waves an evanescent wave rejection criterion is adopted.

Supposing that a calculated wavenumber is in the formk = α + βi, we consider that under the condition :|α|/|β| > p

the wave is propagating, withp an empirical parameter greater that unity. To validate the results, the number of the
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captured propagating waves can be compared to the number of propagating waves whenC = 0 (thusβ = 0 for any

propagating wave). Ap = 3 is used throughout this work with no inconsistencies observed.

In order to identify the eigenvalues and eigenvectors corresponding to the same wave mode, each propagating

wave mode shape is compared to the whole set of wave mode shapes for each angle and each frequency. The MAC

criterion which expresses the correlation of two vectorsΦi andΦj was used for this purpose and can be written as :

MAC =

(

Φ
T
i Φ̄ j

) (

Φ
T
j Φ̄i

)

(

Φ
T
i Φ̄i

) (

Φ
T
j Φ̄ j

) (15)

whereT stands for the transpose and− for the conjugate of each vector. A high MAC value should firstly be

attempted. If no correlated wave modes are found, a lower MACvalue is used until all propagating wave modes are

correlated to a set of wave types. The wave modes employing out of plane motion (typically the symmetric and the

antisymmetric out of plane waves) are then used to conduct the SEA analysis of the structure.

3. Computation of the energy analysis quantities

3.1. Calculation of the modal density

Using the Courant’s formula [29], the modal density of each propagating wave typew can be written for each

angleφ as a function of the propagating wavenumber and its corresponding group velocitycg :

nw (ω, φ) =
A kw (ω, φ)

2π2 |cg,w (ω, φ) |
(16)

whereA is the area of the panel and the group velocity is expressed as:

cg (ω, φ) =
dω

dk (ω, φ)
(17)

The angularly averaged modal density of the structure is eventually given as a function of frequency :

nw (ω) =
∫ π

0
nw (ω, φ) dφ (18)

3.2. Calculation of the radiation efficiency

In order to calculate the radiation efficiencyσ (k (ω)) for each propagating wave typew, relations presented in the

open bibliography are employed. For continuous structuresmode shapes of sinusoidal form can be assumed in order

to avoid any FE discretization errors in the solution. The set of asymptotic formulas given in [5] can be used in order

to computeσ (k (ω)). Within an SEA context, energy equipartition amongst the resonant modes is assumed so that the

radiation efficiency is written as :

σrad (ω) =
1

n (ω)

∫ π

0
σ (κ (ω, φ)) n (ω, φ) dφ (19)
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Figure 3: The configuration to be modelled by SEA analysis.

For a periodic discontinuous structure the assumption of sinusoidal mode shapes is no longer valid, therefore the

radiation efficiency should be calculated directly from the WFEM derived wave mode shapes. The radiation efficiency

expression given in [16] can therefore be employed.

3.3. Calculation of the Sound Transmission Loss (STL) of a panel by an SEA approach

The STL (or TL) is one of the most important indices of the vibroacoustic performance of a structure. The sys-

tem to be modelled comprises two reverberant chambers separated by the modelled composite panel attached to a

rigid baffle. No flanking transmission is considered in the SEA model. A graphical representation of the modelled

subsystems is given in fig.3. The energy balance of the subsystems as it is considered within an SEA approach (see

[30]) is illustrated in fig.4, in whichE1,E3 stand for the acoustic energy of the source room and the receiving room

respectively andE3 for the vibrational energy of the composite panel. MoreoverPin is the injected power in the source

room, P1d,P2d and P3d stand for the power dissipated by each subsystem andP13 is the non-resonant transmitted

power between the rooms. Considering each wave typew = a, b, c...n propagating within the composite panel as a

separate SEA subsystem we have :

P12 =
n
∑

w=a
P12,w

P23 =
n
∑

w=a
P23,w

(20)

whereP12 andP23 stand for the power flow between the rooms and the panel.

The STL is defined as :
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Figure 4: A schematic representation of the SEA power exchanges andenergies for the modelled system.

STL = 10 log10

(

1
τ

)

(21)

whereτ is the transmission coefficient which represents the ratio between the transmitted and the incident sound

powers. It can be written as the sum of the resonant and the non-resonant transmission coefficient :

τ =
P23 + P13

Pinc
=

n
∑

w=a

P23,w

Pinc
+

P13

Pinc
(22)

wherePinc stands for the acoustic power incident on the layered panel,which for a reverberant sound field can be

written as :

Pinc =

〈

p2
1

〉

A

4ρc
(23)

where
〈

p2
1

〉

the mean-square sound pressure. An attempt to calculate theresonant coefficient for each wave typew

is hereby made. Assuming no energy exchanges between different wave types within the structure, the energy balance

of a structural wave subsystem can be written as :

P12,w = P2d,w + P23,w (24)

The power dissipated can be written as :
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P2d,w = E2,wωη2,w (25)

with η2,w the structural loss factor of the wave typew. When the loss factors of each individual layer of the panel

are known, the structural loss factor of the entire panel canbe computed using the relations provided in [31]. The

vibrational energy of the panel due to wave typew can be written as :

E2,w = ρsA
〈

υ2
w

〉

(26)

whereρs is the mass per unit of area,A is the total area of the panel and
〈

υ2
w

〉

is the mean-square panel vibration

velocity due to wave typew.

The power flowP12,w can be written using the SEA reciprocity rule, as :

P12,w = ωη12,wn1

(

E1

n1
−

E2,w

n2,w

)

= ωη21,wn2,w

(

E1

n1
−

E2,w

n2,w

)

(27)

wheren1,n2,w are the modal density of the source room and of the wave typew respectively andη21,w the coupling

loss factor between the receiving room and the wave typew which can be written as :

η21,w = η23,w =
ρcσrad,w

ρsω
(28)

Whereρ is the acoustic medium density of the room. The total acoustic energy of the source room can be written

as :

E1 =

〈

p2
1

〉

V

ρc2
(29)

A generally acceptable approximation for the modal densityof the source room is made as :

n1 =
V1ω

2

2π2c3
(30)

then the modal energy of the source room can be written as :

E1

n1
=

2π2c
〈

p2
1

〉

ρω2
(31)

Using the SEA reciprocity rule again, the power flow from the composite panel to the receiving room can be

written as :

P23,w = ωη23,wn2,w

(

E2,w

n2,w
−

E3

n3

)

= ωη23,w

(

E2,w −
E3n2,w

n3

)

(32)
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It is hereby assumed thatn3 >> n2,w (reasonable for typically sized cavities and especially for medium and high

frequencies) and it is also logical thatE2,w > E3 for an acoustically efficient, out of plane wave. Therefore presuming

thatE2,w >>
E3n2,w

n3
, eq.(32) can be written as :

P23,w = E2,wωη23,w (33)

Eventually, after manipulating eq.(23) and eq.(25)-(33) and substituting them into eq.(24) we get :

〈

υ2
w

〉

〈

p2
1

〉 =
2πc2σrad,wn2,w

ρsω2A(ρsωη2,w + 2ρcσrad,w)
(34)

Using eq.(26),(28),(33),(34),(23) and substituting theminto eq.(22) we get the expression for the transmission

coefficient of the wave typew :

τw =
8ρ2c4πσ2

rad,wn2,w

ρsω2A(ρsωη2,w + 2ρcσrad,w)
(35)

The total transmission coefficient of the panelτ can now be written as :

τ =

n
∑

w=a

τw +
P13

Pinc
(36)

The non resonant transmission coefficientτnr = P13/Pinc for a diffused acoustic field can be written as in [17] :

P13

Pinc
=

∫ 2π

0

∫ θmax

0

4Z2
0σ(θ,φ,ω) sinθ cos2 θ

|iωρs+2Z0|
2 dθdφ

π(1− cos2 θmax)
(37)

in which θ andφ are the incidence angle and the direction angle of the acoustic wave respectively, andZ0 =

ρc/ cosθ is the acoustic impedance of the medium. The termθmaxstands for the maximum incidence angle, accounting

for the diffuseness of the incident field. It is considered thatθmax= pi/2 for all the results presented in the current work.

The termσ(θ, φ, ω) is the corrected radiation efficiency term. It is used in order to account for the finite dimensions

of the panel by accounting for the radiation of the mass controlled non-resonant modes, and it is calculated using a

spatial windowing correction technique presented in [32].In eq.(36) the total transmission coefficient of the layered

panel is expressed merely as a function of its SEA quantitiesand independently of the room dimensions and modal

energies.

4. Numerical examples

In this section numerical applications of the approach described above will be presented. In order to validate the

proposed models, four structures were chosen to be computed; the first being a thin stratified orthotropic composite

panel. Subsequently, two honeycomb sandwich structures aswell as a particularly thick sandwich panel comprising

a soft core are modelled. It should be noted that experimental results for the response of layered panels under a

12



Table 1: Mechanical properties of materials

Material I Material II Material III Material IV Material V Material VI Material VII

ρ = 9740 kg/m3 ρ = 1600 kg/m3 ρ = 160 kg/m3 ρ = 1550 kg/m3 ρ = 110.44 kg/m3 ρ = 629.9 kg/m3 ρ = 16 kg/m3

vxy = 0.028 vxy = 0.15 vxy = 0.15 vxy = 0.3 vxy = 0.45 vxy = 0.15 vxy = 0.34

vxz = 0.001 vxz = 0.15 vxz = 0.15 vxz = 0.3 vxz = 0.45 vxz = 0.15 vxz = 0.34

vyz = 0.434 vyz = 0.15 vyz = 0.15 vyz = 0.3 vyz = 0.45 vyz = 0.15 vyz = 0.34

Ex = 2023.7 GPa Ex = 49 GPa Ex = 0.25 GPa Ex = 48 GPa Ex = 0.1448 GPa Ex = 8.3 GPa Ex = 0.0083 GPa

Ey = 31375 GPa Ey = 49 GPa Ey = 0.25 GPa Ey = 48 GPa Ey = 0.1448 GPa Ey = 8.3 GPa Ey = 0.0083 GPa

Ez = 38000 GPa Ez = 49 GPa Ez = 0.25 GPa Ez = 48 GPa Ez = 0.1488 GPa Ez = 8.3 GPa Ez = 0.0083 GPa

Gxy = 888.79 GPa Gxy = 21.3 GPa Gxy = 0.11 GPa Gxy = 18.1 GPa Gxy = 0.05 GPa Gxy = 3.6 GPa Gxy = 0.0031 GPa

Gyz = 888.79 GPa Gyz = 21.3 GPa Gyz = 0.09 GPa Gyz = 2.76 GPa Gyz = 0.05 GPa Gyz = 3.6 GPa Gyz = 0.0031 GPa

Gxz = 888.79 GPa Gxz = 21.3 GPa Gxz = 0.14 GPa Gxz = 2.76 GPa Gxz = 0.05 GPa Gxz = 3.6 GPa Gxz = 0.0031 GPa

reverberant acoustic field are rare to find in the open bibliography. Consequently, the available options of composite

structures to be modelled while concurrently having test data to compare with were not a lot. The mechanical static

characteristics of each material used for the validation process are mentioned in Table 1, in whichρ is the density

of the material,Ei the Young modulus in directioni, Gi j stands for the shear modulus in directionj on the plane

whose normal is in directioni andvi j for the Poisson’s ratio that corresponds to a contraction indirection j when

an extension is applied in directioni. The FE modelling was conducted within ANSYS 12.1 software.The segments

were modelled using the linear eight-node ANSYS SOLID45 element which comprises a 3D displacement field and

three DoF per node (translations in thex, y, andz directions). A minimum number of one elements per layer was

used in order to minimize the numerical errors produced by the D matrix computation (see [33]). In order to avoid

any interpolation errors, it was also ensured that the elements maximum dimensions were inferior to one tenth of the

minimum structural wavelength propagating within the frequency range of the analysis.

4.1. Validation on an orthotropic thin monolithic structure

The wavenumbers for the bending, shear and membrane wave types were identified for a thin, stratified type

structure for propagation towardsx direction. The panel is made of material I. Its thickness is equal toh=0.5mm and

its dimensions are 1.4m x 0.9m. The resulting dispersion curves are presented in fig.5, and the results are compared

with the CPT analytic solutions (see [1]). Excellent accordance is observed for the shear and the membrane wave types.

Concerning the flexural wave type, the WFE predictions are very much in agreement with the analytical formula even

for the high frequency range. To give an idea for the discrepancy between the two models, a difference of 0.09% is

observed at 10kHz. Under an acoustic excitation, antisymmetric wave modes are responsible for the transmission of

the vast majority of energy through the structure, therefore they will be the main wave type to be considered in the

SEA analysis.

The flexural wavenumbers are presented as a function of direction and frequency in fig.6. The directional de-

pendence of the wavenumber within a highly orthotropic panel is observed. It is known that each mode of the panel

corresponds to an exact set of wavenumbers depending on the panels boundary conditions. For a simply supported
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Figure 5: Comparison of the WFEM calculated dispersion curves towards x direction (–) with CPT analytical formulas for : flexural (�), shear (⋄)

and membrane (∗) propagating wavenumbers for a thin orthotropic panel

panel this set is :kx = mπ/Lx andky = nπ/Ly wherem, n are integers andLi the length and width of the panel. The

resonance frequency for them, n flexural mode of the panel can be sought by conducting a 2D linear interpolation of

thiskx,ky set to theω,kx,ky relationship as depicted in fig.6.

The modal density of the monolithic orthotropic panel is subsequently calculated using the antisymmetric wave

propagation characteristics presented in fig.6 and eq.(18). Small discrepancies are observed between the values cal-

culated using the WFEM and the CPT because of the fact that thelatter approach does not account for the shear

effects within the laminate. As expected, the two predictions are very similar for the low frequency range. The largest

divergence for the two predictions is 4.1% and is observed at the highest frequency range of the analysis. It is seen

that taking into account for the shear effects within the laminate becomes important as frequency increases.

The radiation efficiency of the monolithic orthotropic panel is calculated using the Leppington’s asymptotic and

transition formulas. The results are shown in fig.8. The beginning of the coincidence range (approximately 2kHz) is

marked by an intensive increase of the radiation efficiency, which continues rising steadily throughout the coincidence

region. The end of the coincidence range (approximately 9.5kHz) is marked with a peak of the radiation efficiency

curve. Fluctuations of the curve throughout the coincidence range were expected and are discussed in [5]. The in-

dividual modal radiation efficiencies are also calculated using the formulas given in [34] and presented in the same

figure. Each mode is separately attributed to a different category depending on its individual characteristics namely the

directional wavenumberskx andky and its resonance frequency. It can be clearly observed thatthe corner modes are

the less radiating ones. On the other hand, the surface modesare particularly efficient due to the fact that the entirety
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Figure 7: Comparison of the predicted modal density for a monolithic panel : present approach (–), CPT (- -)
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Figure 8: Comparison of the radiation efficiency of a monolithic orthotropic panel using : the presentmethodology (–), modal radiation formulas

in [34] (surface modes ’o’, x-edge modes ’+’, y-edge modes ’*’, x-y edge modes ’x’, corner modes ’⋄’), frequency averaged radiation efficiency

according to [35] (- -)

of the surface of the panel radiates in the acoustic medium. The modal radiation values are frequency averaged as

suggested in [35]. The result is presented in the same figure.In the low frequency range the averaged result presents

an intense fluctuation due to the small number of modes taken into account within each frequency band (1/12 octave

frequency bands). Above 2.5 KHz, the surface modes hit in, drastically increasing the radiation efficiency of the panel.

Very good agreement is observed comparing with the Leppington’s formulas predictions.

The STL of the orthotropic thin panel under a reverberant acoustic field is presented in fig.9. On the same figure

experimental data for the same quantity, published in [6] are shown. The results of an asymptotic TL calculation model

presented in [6] are also compared in the same figure. Excellent agreement between the experimental and predicted

results is observed for the sub-coincident frequency rangeas well as for the whole coincidence range. The radiation

efficiency is not overestimated -in contrast to the asymptotic model- at the beginning of the coincidence area. The

fluctuations of the TL curve throughout the coincidence range are due to the radiation efficiency formulas used and

are discussed in [5]. A structural loss factor equal to 0.01 is used. The discrepancy between the numerical prediction

and the experimental results at the end of the coincidence range can either be attributed to an overestimation of the

radiation efficiency or to a higher structural damping coefficient (probably due to large deflections) for the panel

in this frequency range. Fast convergence of the predicted values towards the experimental data is observed in the

post-coincident frequency range.

4.2. Validation on honeycomb sandwich panels

A sandwich panel is subsequently considered. It comprises acore made of material V and facesheets made of

material IV. The thickness of the core is equal to 12.7mm while the thickness of the facesheets is equal to 1.2mm. The
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Figure 9: Comparison of the diffused field TL of an orthotropic thin panel : present methodology (–), model in [6] (∗), experimental results in [6]

(- -)

dimensions of the panel are equal to 1.37m x 1.65m. The calculated antisymmetric wavenumbers of the panel inx

direction are presented in fig.10. The results in [17] for thesame panel using a LW approach are exhibited in the same

figure and are in excellent agreement with the presented approach. The frequency ranges of the dynamic behaviour

of the sandwich panel are clearly distinguished (see also [12]). A low-frequency region where the panel vibrates as a

whole, an intermediate region where the shear stiffness of the panel dominates its vibrational behaviour and a high-

frequency region where the flexural wavenumber for the panelis converging to the wavenumber of each facesheet

vibrating separately, loaded with half of the core mass. Thedispersion relation predicted by a Mindlin type model

proposed for thick sandwich panels in [36] which takes into account the shear deformation of the panel is depicted in

the same figure. The Mindlin theory diverges quickly when thesandwich panel enters the shear deformation dominated

region. As a result a misguiding coincidence frequency for the antisymmetric wave (fc1 = 560Hz) is predicted, which

is far from the one predicted by the WFEM (fc1 = 1190Hz). At higher frequencies the Mindlin model further diverges,

having a difference of 250% at 40kHz. The asymptotic Kurtze and Watters (KW) model implemented as presented in

[37] is also shown in the same figure. It is seen that the KW prediction agrees asymptotically with the WFEM model,

with the three regions of the panel clearly distinguished. However discrepancies between the two models occur at the

transition regions of the KW model.

In order to validate the WFEM predicted values for the modal density of a sandwich panel, a structure presented in

[38] was modelled. It comprises a honeycomb foam core made ofmaterial III and facesheets made of material II. The

thickness of the core is equal to 6.35mm while the thickness of the facesheets is equal to 0.5mm. The dimensions of
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Figure 10: Comparison of the wavenumber in x direction for a sandwich panel : present methodology (–), results in [17] (∗), a Mindlin type model

(o), Kurtze-Watters model (+), acoustic wavenumber (- -)

the panel are equal to 1.12m x 0.62m, but were reduced to 0.84mx 0.42m when the panel was fixed to the baffle. The

results of the modal density are shown in fig.11. An excellentagreement between the calculations and the experimental

measurements is observed. Within the lower frequency rangethe present approach seems to correctly predict the mean

value around which the measured modal density is dispersed.

The radiation efficiency of the honeycomb foam core sandwich is calculated using the same set of asymptotic

formulas as before and is compared to the predictions of the Crocker’s model and the experimental data presented in

[38]. It is observed that the Leppington’s formula combinedwith the WFEM predictions leads to more accurate results

in a broadband frequency range. Furthermore, the used set offormulas does not overestimate the radiation efficiency

of the panel at the coincidence range.

Furthermore, the diffused field STL of the foam filled honeycomb sandwich structureis calculated. The result is

depicted in fig.13 along with experimental data presented in[38]. The results demonstrate a very good correlation. The

low-frequency response seems to be very well simulated. Thecoincidence frequency band is very well predicted and

above coincidence discrepancies of less than 2dB are observed between the experimental results and the SEA models.

Higher experimental STL values around the coincidence frequency are probably due to an increase of damping for the

panel. In the same figure the results of the SEA model presented in [38] are also shown. The discrepancies between

the two SEA models are due to the better prediction of the radiation efficiency by the current approach and the spatial

windowing correction hereby used. Above coincidence, the results of the two SEA models are very well correlated.
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Figure 11: Comparison of the predicted modal density for a sandwichpanel : present approach (–), model in [39] (- -), experimental results in [38]
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Figure 13: Comparison of the diffused field TL of a sandwich panel : present methodology (–), model in [38] (- -), experimental results in [38] (o)

4.3. Validation on a thick layered panel

For layered panels comprising a thick and soft core, the dilatational motion of the soft layer (also referred to as

symmetric motion) can contribute significantly to the resonant acoustic transmission of the panel (see [8]). In order

to exhibit the robustness of the presented approach considering the modelling of arbitrarily thick panels a sandwich

structure comprising a 38.1mm core made of material VII, coupled to 6.35mm thick facesheets made of material VI

is hereby modelled. The WFEM computed phase velocities for the propagating, out of plane wave motions are shown

in fig.14 and are compared to predictions of an analytic HSDT derived model, presented in [12]. Excellent correlation

is observed between the two predictions.

A cut on frequency is observed for the symmetric motion abovewhich the wave starts propagating within the panel.

Below this cut on frequency the dilatational motion is not expected to influence the transmission coefficient of the

panel due to the particularly low modal density of the wave mode. A lock-up of the symmetric and the antisymmetric

wave motion is observed for higher frequencies. The total transmission coefficient of the panel is calculated using

eq.(36) and the STL of the structure is exhibited in fig.15 along with experimental results provided in [12].

Very good correlation between the computed values and the measurements is observed below the coincidence

range. It is noted that the acoustic coincidence frequency for the antisymmetric motion of the panel occurs at 2900Hz.

At 2000Hz the impact of the dilatational motion of the panel on its TL becomes evident with the values presenting

a sudden decrease of 14dB at the cut on frequency of the symmetric wave. The coincidence range is extended up
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to 3000Hz because of the antisymmetric coincidence phenomenon and because of the fact that the symmetric phase

velocity remains very close to the one of the acoustic medium. A closer look to the contribution of each acoustic

transmission path to the total transmission coefficient is shown in fig.16.

The mass controlled phenomena dominate the low frequency range of the total transmission coefficient. Approach-

ing the coincidence range, the resonant contribution becomes the most important one. The symmetric motion of the

panel dominates its acoustic transmission at the dilatational motion cut on, while close to the antisymmetric coin-

cidence frequency both wave motions contribute to the transmission. In the post coincidence frequency range the

contribution of the two wave motions is almost equal due to fact that the corresponding phase velocities are very

close. It is therefore shown that thick and heavy layers do not always reduce the acoustic transmission of a panel

because of the fact that they also reduce its dilatational cut on frequency. It is observed that the effect of the symmetric

motion on the acoustic transparency of a panel may not be neglected. Care has to be taken therefore when designing

an insulating structure for the existence of more than one out of plane propagating wave modes.

5. Conclusions

The modelling of the vibroacoustic behaviour of composite layered structures of arbitrary layering and orthotropy

was conducted through a wave-context SEA approach. Summarizing the most important points of the presented work :

1) A description of the formulation of the WFE approach was given. The process followed for post-processing the

results of the resulting eigenproblem was described. 2) TheWFEM was applied to composite, arbitrarily layered

panels in order to predict their dispersion characteristics. The predictions were successfully compared to bibliographic
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results. The accuracy of the WFEM compared to analytical predictions, especially with regard to predicting the correct

coincidence frequency of the structures is of great importance for an accurate vibroacoustic analysis. 3) The main SEA

quantities, namely the modal density and the radiation efficiency of the panels were computed following the calculation

of their dispersion characteristics. The calculation was done using analytic formulas in a wave context. The results

showed an excellent correlation between experimental dataand the current approach. 4) For the calculation of the STL

of the panels a SEA approach was adopted. A formula for computing the STL derived directly by the characteristics

of the structures, with no dependence on the room propertieswas given. A generally very good agreement between

experimental measurements and the predictions of the presented method was observed throughout the frequency band,

validating the effectiveness and the robustness of the later. 5) The symmetricand the antisymmetric wave motion

within a thick layered panel was well predicted. It was shownthat adding mass to a panel does not always reduce its

acoustic transmission and that the effect of the symmetric motion on the STL especially during its cut-on frequency

range should not be neglected.
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