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1. Introduction

The origins of the Discontinuous Galerkin Finite Element Method (DGFEM, for

short) can be traced back almost half a century ago to the work undertaken on

the weak enforcement of Dirichlet boundary conditions for second–order elliptic

partial differential equations; see, for example, Refs. 15, 19, 53, 58. In particular,

we highlight the works of Nitsche and Baker, see Refs. 58, 20, respectively, which

form the basis of the now popular class of so–called interior penalty (IP) DGFEMs,

cf. also Refs. 11, 70. Independently, DGFEMs were formulated for the numerical

solution of first–order hyperbolic problems in the early 1970s by Reed & Hill in

Ref. 60; see also Ref. 52. Despite this early progress on DGFEMs, much of the

subsequent research in the field of numerical analysis of partial differential equations

concentrated on the development and analysis of conforming finite element methods

for self-adjoint elliptic problems, stabilized continuous finite element methods for

convection-diffusion equations, and finite difference and finite volume methods for

hyperbolic problems. However, the past couple of decades has witnessed a resurgence

of interest in discontinuous schemes. Indeed, tremendous progress has been made on

both the analytical and computational aspects of DGFEMs; for a review of some of

the main developments in the subject, we refer to the recent monographs in Refs. 38,

39, 46, 61. For a historical review of DGFEMs, we refer to the articles in Refs. 14,

37.

This paradigm shift has been stimulated by a number of important factors. In

the context of nonlinear hyperbolic conservation laws, DGFEMs have a number

of important advantages over well established finite volume methods. The concept

of higher-order discretization is inherent to the DGFEM. Moreover, the stencil is

minimal in the sense that each element communicates only with its direct neigh-

bours. In particular, in contrast to the increasing stencil size needed to increase

the accuracy of classical finite volume methods, the stencil of DGFEMs is the

same for any order of accuracy which has important advantages for the imple-

mentation of boundary conditions and for the parallel efficiency of the method.

As for finite volume methods, DGFEMs are, by construction, locally conservative.

Moreover, DGFEMs can naturally treat convection-dominated diffusion problems

without excessive numerical stabilization in a unified manner. Due to the simple

communication at element interfaces afforded by DGFEMs, elements with so-called

hanging nodes can easily be treated, a fact that simplifies local mesh refinement

(h–refinement); this is a major advantage of DGFEMs when compared to standard

Galerkin (conforming) finite element methods (CGFEMs, for short). Indeed, this

latter class of methods must exploit appropriate inter–element projections in order

to ensure that the resulting finite element space satisfies the underlying continu-

ity constraints inherent in the physical problem at hand, cf. Ref. 64, for example.

Additionally, the communication at element interfaces is identical for any order of

the method which simplifies the use of schemes with different polynomial orders p

in adjacent elements. This allows for the variation of the order of polynomials over
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the computational domain (p-refinement), which in combination with h-refinement

leads to so-called hp-adaptivity. Finally, in the context of domain decomposition

preconditioners, DGFEMs have significant advantages over CGFEMs. Indeed, in

the recent work undertaken by Antonietti and collaborators, see Refs. 4, 5, 6, 9,

10, for example, it is demonstrated that Schwarz-type preconditioners are particu-

larly well-suited to DGFEMs, in the sense that uniform scalability of the underlying

iterative method may be established without the need to overlap the subdomain

partition of the computational mesh. This is a particularly attractive property, since

the absence of overlapping subdomains reduces communication between processors

on parallel machines. By (uniform) scalability, we mean that the number of iter-

ations needed to compute the solution of the underlying system of equations is

uniform, as the mesh is refined, provided that an appropriate coarse mesh solution

is computed as part of the preconditioning strategy. Of course, for uniformity, the

ratio of the granularity of the fine and coarse meshes must remain fixed under mesh

refinement.

The major criticism of DGFEMs compared with their CGFEM counterparts

is the increase in the number of degrees of freedom for a particular choice of the

underlying computational finite element mesh and polynomial degree distribution.

Moreover, it is typically observed that the discretization error computed using both

schemes with the same discretization parameters (i.e., the same h and p) is roughly

identical, at least, for the discretization of second–order elliptic partial differential

equations; this naturally leads to the conclusion that DGFEMs are computationally

expensive. Such arguments are typically made on the grounds of employing identical

(mapped) elemental polynomial spaces within both numerical schemes. However,

the flexibility of DGFEMs means that we are no longer restricted to employing

standard polynomial spaces mapped from a reference or canonical frame. Indeed,

DGFEMs may be constructed in a simple manner in the physical frame, without

resorting to the use of local element mappings; see, for example, the recent work

by Bassi et al. in Refs. 21, 22, 23. As noted in Ref. 21, one of the key features of

employing DGFEMs based on exploiting polynomial spaces defined in the physical

frame is that the order of convergence of the underlying method is independent

of the element shape; see Refs. 12, 13 for a detailed discussion of this issue, when

element mappings are employed. Thereby, spaces of polynomials of total degree

p, denoted by Pp, may be employed, regardless of the element shape. Indeed, as

we shall see in this work, when the underlying mesh consists of tensor-product

elements, e.g., quadrilaterals in 2D and hexahedra in 3D, the use of Pp polynomial

spaces not only renders the underlying DGFEM more efficient than the standard

DGFEM using tensor-product polynomials of degree p in each coordinate direction

(Qp), but also more efficient than CGFEM, as the polynomial degree p increases.

The exploitation of DGFEMs using polynomial spaces defined in the physical

frame, without the need to employ element mappings from a reference frame, means

that DGFEMs can naturally be extended to computational meshes consisting of gen-
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eral element shapes; indeed, general polygonal/polyhedral elements may easily be

admitted, cf. Refs. 8, 21, 22, 23, 39, 43, 54, 72. In particular, we mention the recent

work by Bassi et al. in Refs. 21, 22, 23 on the application of DGFEMs on meshes

consisting of general agglomerated elements. A closely related technique proposed

in Refs. 8, 43 considers the development of a general class of so-called Composite

DGFEMs; this approach allows for the numerical approximation of partial differen-

tial equations posed on complicated domains which contain ‘small’ geometrical fea-

tures, or so-called microstructures. Moreover, by exploiting these techniques, coarse

meshes can easily be constructed for application within multilevel preconditioners,

cf. Refs. 7, 42. This flexibility of DGFEMs has also been exploited in the context

of fictitious domain methods, whereby overlapping meshes are employed; indeed,

the application of DGFEMs to the discretization of second–order elliptic partial

differential equations on general cut–cell meshes has been considered in Ref. 51. We

also refer to the work presented in the series of articles in Refs. 31, 32, 33, 55 which

exploit ideas from Nitsche’s method in Ref. 58.

In contrast, the extension of conforming finite element methods to general

meshes with polygonal/polyhedral elements is far from straightforward, due to

the intrinsic difficulty encountered in the design of finite element spaces with a

given continuity property. Notable examples are the Composite Finite Element

Method (CFE), see Refs. 44, 45, the Polygonal Finite Element Methods (PFEM),

see Refs. 67, 68, and the Extended Finite Element Method (XFEM), see Ref. 40 and

the references cited therein. These latter two approaches achieve conformity by en-

riching/modifying the standard polynomial finite element spaces, in the spirit of the

Generalized Finite Element framework of Babuška and Osborn in Ref. 16. Typically,

the handling of non-standard shape functions carries an increase in computational

effort. The recently proposed Virtual Element Method (VEM), see Ref. 24, over-

comes this difficulty achieving the extension of CGFEM to polygonal/polyhedral

elements while maintaining the ease of implementation of standard FEMs; see also

the very much related Mimetic Finite Difference method in its primal, see Refs. 28,

27, and mixed, see Refs. 30, 29, 28, 34, 25, 26, formulations.

The aim of this article is to consider the application of DGFEMs on computa-

tional meshes consisting of general polygonal/polyhedral elements. In particular, we

propose a new IP DGFEM characterized by a careful choice of the discontinuity-

penalization parameter, which permits the use of polygonal/polyhedral elements

such that

• mesh element faces may have arbitrarily small measure in two dimensions;

• both mesh element faces and edges may have arbitrarily small measure in

three dimensions.

The approach is based on exploiting a new inverse inequality relevant to elements

with elemental interfaces whose measure is potentially much smaller than the mea-

sure of the corresponding element. On the basis of this inverse inequality, together
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with appropriate approximation results on general polygons/polyhedra, we derive

a priori error bounds for the proposed IP DGFEM; for related bounds, based on

employing composite DGFEMs, we refer to Ref. 8.

The rest of this article is structured as follows. In Section 2 we introduce the

model problem and the set of admissible subdivisions of the computational do-

main. In Section 3 we formulate the IP DGFEM; Section 4 presents relevant hp–

approximation results and the new inverse inequality. The stability and a priori

analysis of the proposed method is then undertaken in Section 5. In Section 6 we

briefly outline how the proposed IP DGFEM may be efficiently implemented. The

practical performance of the IP DGFEM is studied in Section 7. Finally, in Section

8 we summarize the work presented in this paper and draw some conclusions.

2. Preliminaries

Throughout this article, we use the following standard function spaces. For a Lips-

chitz domain ω ⊂ Rd, d ≥ 1, we denote by Hs(ω) the Sobolev space of index s ≥ 0 of

real–valued functions defined on ω, endowed with the seminorm | · |Hs(ω) and norm

‖·‖Hs(ω). Furthermore, we let Lp(ω), p ∈ [1,∞], be the standard Lebesgue space on

ω, equipped with the norm ‖ · ‖Lp(ω). Finally, with |ω| we denote the d–dimensional

Hausdorff measure of ω.

2.1. Model problem

Let Ω be a bounded open polyhedral domain in Rd, d = 2, 3, and let ∂Ω signify

the union of its (d − 1)–dimensional open faces. We consider the following model

problem: find u such that

−∆u = f in Ω, (2.1)

where f ∈ L2(Ω). We divide ∂Ω into two disjoint subsets ΓD and ΓN whose union

is ∂Ω, with ΓD nonempty and relatively open in ∂Ω. With this notation, we sup-

plement (2.1) with the boundary conditions

u = gD on ΓD,

n · ∇u = gN on ΓN,
(2.2)

where n denotes the unit outward normal vector on the boundary ∂Ω.

2.2. Finite element spaces

Let T be a subdivision of the computational domain Ω into disjoint open polygo-

nal/polyhedral elements κ such that Ω̄ = ∪κ∈T κ̄ and denote by hκ the diameter of

κ ∈ T ; i.e., hκ := diam(κ). In the absence of hanging nodes/edges, we define the

interfaces of the mesh T to be the set of (d− 1)–dimensional facets of the elements

κ ∈ T . To facilitate the presence of hanging nodes/edges, which are permitted in

T , the interfaces of T are defined to be the intersection of the (d− 1)–dimensional
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facets of neighbouring elements. In the case when d = 2, we note that the inter-

faces of a given element κ ∈ T will always consist of (d− 1)–dimensional simplexes,

namely, line segments. In general, for d = 3, this will not be the case; for the pur-

poses of the forthcoming error analysis, we assume that each interface of an element

κ ∈ T may be subdivided by a set of co-planar triangles. With this in mind we use

the terminology ‘face’ to refer to a (d − 1)–dimensional simplex (line segment or

triangle for d = 2, 3, respectively), which forms part of the boundary (interface) of

an element κ ∈ T . For d = 2, the face and interface of an element κ ∈ T necessarily

coincide with each other.

With this construction, we assume that a sub-triangulation into faces of each

mesh interface is given if d = 3. We denote by Γ the union of all open mesh interfaces

if d = 2 and the union of all open triangles belonging to the sub-triangulation of all

mesh interfaces if d = 3. In this way, Γ is always defined as a set of (d−1)–simplexes.

Specific assumptions on the class of admissible meshes will be given in Section 4.

Further, we denote by Γint the union of all open (d−1)–dimensional element faces

F ⊂ Γ that are contained in Ω. With this notation, we may write Γ = ΓD∪ΓN∪Γint,

where ΓD,ΓN ⊂ ∂Ω and Γint := Γ\∂Ω are disjoint.

To each element κ ∈ T , we associate a positive integer pκ, henceforth referred

to as the polynomial degree of the element κ, and collect the pκ in the vector

p := (pκ : κ ∈ T ). With this notation, we define the finite element space Sp
T with

respect to T and p by

Sp
T := {u ∈ L2(Ω) : u|κ ∈ Ppκ(κ), κ ∈ T },

where Pp(κ) denotes the space of polynomials of total degree p on κ. We stress

that, by construction, the local elemental polynomial spaces employed within the

definition of Sp
T are defined in the physical space, without the need to map from

a given reference or canonical frame, as is typically necessary for classical finite

element methods.

3. Interior penalty discontinuous Galerkin method

In this section we introduce the DGFEM discretization of the model problem

(2.1), (2.2). For simplicity of presentation, we consider the popular (symmetric)

IP DGFEM; this will allow us to focus on the key challenges posed by the exploita-

tion of general computational meshes consisting of polygonal/polyhedral elements.

To this end, we define some trace operators that are required for the DGFEM.

Let κ+ and κ− be two adjacent elements of T and let x be an arbitrary point

on the interior face F ⊂ Γint given by F = ∂κ+ ∩ ∂κ−. We write n+
κ and n−κ to

denote the outward unit normal vectors on F , relative to ∂κ+ and ∂κ−, respectively.

Furthermore, let v and q be scalar- and vector-valued functions, respectively, that

are smooth inside each element κ±. By (v±,q±), we denote the traces of (v,q) on

F taken from within the interior of κ±, respectively. Then, the averages of v and q
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at x ∈ F are given by

{{v}} =
1

2
(v+ + v−), {{q}} =

1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ F are given by

[[v]] = v+ nκ+ + v− nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,

respectively. On a boundary face F ⊂ ΓD, we set

{{v}} = v+, {{q}} = q+, [[v]] = v+n,

with n denoting the unit outward normal vector on the boundary ∂Ω.

The standard symmetric IP DGFEM is given by: find uh ∈ Sp
T such that

B(uh, vh) = `(vh) (3.1)

for all vh ∈ Sp
T . Here, the bilinear form B : Sp

T × S
p
T → R is given by

B(w, v) :=
∑
κ∈T

∫
κ

∇w · ∇v dx−
∫

Γ\ΓN

({{∇hw}} · [[v]] + {{∇hv}} · [[w]]− σ[[w]] · [[v]]) ds,

and the linear functional ` : Sp
T → R is defined by

`(v) =

∫
Ω

fv dx−
∫

ΓD

gD(∇hv · n− σv) ds+

∫
ΓN

gNv ds.

Furthermore,∇h denotes the elementwise gradient operator. The non-negative func-

tion σ ∈ L∞(Γ\ΓN) is referred to as the discontinuity-penalization parameter ; the

precise definition of σ will be presented in the forthcoming analysis; cf. Lemma 5.1

below. Historically IP methods were the first to appear in the literature, see Refs. 20,

11, based on exploiting the ideas developed by Nitsche in Ref. 58 in the context of

the weak enforcement of inhomogeneous Dirichlet boundary conditions.

4. Approximation and inverse estimates

Before embarking on the error analysis of the hp–version IP DGFEM (3.1), we

first derive some preliminary results. In particular, we revisit some polynomial ap-

proximation and inverse estimates in the context of general polygonal/polyhedral

elements.

We require the following assumptions on the mesh.

Assumption 4.1. There exists a positive constant CF , independent of the mesh

parameters, such that

max
κ∈T

(card {F ⊂ Γ : F ⊂ ∂κ}) ≤ CF .

Further, we require the existence of suitable coverings of the mesh, as specified

below.

Definition 4.1. A covering T] = {K} related to the polygonal/polyhedral mesh

T is a set of shape-regular d–simplexes K, such that for each κ ∈ T , there exists a
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K ∈ T] such that κ ⊂ K. Given T], we denote by Ω] the covering domain given by

Ω] :=
(
∪K∈T]K̄

)◦
, where, for a closed set D ⊂ Rd, D◦ denotes the interior of D.

Assumption 4.2. There exists a covering T] of T and a positive constant OΩ,

independent of the mesh parameters, such that

max
κ∈T
Oκ ≤ OΩ,

where, for each κ ∈ T ,

Oκ := card {κ′ ∈ T : κ′ ∩ K 6= ∅, K ∈ T] such that κ ⊂ K} .

As a consequence, we deduce that

diam(K) ≤ Cdiamhκ,

for each pair κ ∈ T , K ∈ T], with κ ⊂ K, for a constant Cdiam > 0, uniformly with

respect to the mesh size.

We note that mesh-regularity is assumed for the mesh covering T], and not for

the mesh T . Assumption 4.2 asserts that the amount of overlap present in the

covering T] remains bounded as the computational mesh T is refined, i.e., as the

diameter of the polygonal/polyhedral elements tends to zero.

Our hp–approximation results and inverse estimates for polygonal/polyhedral

elements are based on considering d–dimensional simplexes, cf. above, where stan-

dard results can be applied.

Definition 4.2. For each element κ in the computational mesh T , we define the

family Fκ[ of all possible d–dimensional simplexes contained in κ and having at least

one face in common with κ. The notation κF[ will be used to indicate a simplex

belonging to Fκ[ and sharing with κ ∈ T a given face F .

As far as approximation is concerned, the standard hp–approximation results,

cf. Ref. 63, for example, are applicable by noting that each polygonal/polyhedral

element is a subset of a d–simplex belonging to the covering T] and that the lo-

cal finite element spaces consist of polynomials without the use of finite element

mappings. With this in mind, we recall some standard hp–approximation results

on d–simplexes from Ref. 17 (d = 2) and Ref. 56 (d = 3); see also Refs. 18, 35 for

similar results.

Lemma 4.1. Let K ∈ T] be a d–simplex, d = 2, 3, of diameter hK. Suppose further

that v|K ∈ Hk(K), for some k ≥ 0. Then, for p ∈ N, there exists Πpv ∈ Pp(K),

such that

‖v −Πpv‖Hq(K) ≤ C
hs−qK
pk−q

‖v‖Hk(K), k ≥ 0, (4.1)

for 0 ≤ q ≤ k, and

‖v −Πpv‖L∞(K) ≤ C
h
s−d/2
K
pk−d/2

‖v‖Hk(K), k > d/2. (4.2)



December 2, 2013 17:11 WSPC/INSTRUCTION FILE
hp-DG˙polygonal˙elements˙v13

hp–Version discontinuous Galerkin methods on polygonal and polyhedral meshes 9

Here, s = min{p + 1, k} and C is a positive constant that depends on the shape-

regularity of K, but is independent of v, hK, and p.

Functions defined on Ω can be extended to the covering domain Ω] based on the

following standard extension operator.

Theorem 4.1. Let Ω be a domain with a Lipschitz boundary. Then there exists a

linear extension operator E : Hs(Ω)→ Hs(Rd), s ∈ N0, such that Ev|Ω = v and

‖Ev‖Hs(Rd) ≤ C‖v‖Hs(Ω),

where C is a positive constant depending only on s and Ω.

Proof. See Stein65.

Given the operator Πp defined in Lemma 4.1 and the extension operator E given

in Theorem 4.1, we now proceed to define a suitable projection operator onto the

finite element space Sp
T . To this end, for v ∈ L2(Ω), we define Π̃v ∈ Sp

T elementwise

as follows: for each κ ∈ T and given the associated element K ∈ T], such that

κ ⊂ K, cf. Definition 4.1, we write

Π̃v|κ := Πpκ(Ev|K)|κ, (4.3)

where Πpκ : L2(K)→ Ppκ(K) as in Lemma 4.1.

Lemma 4.2. Let κ ∈ T , F ⊂ ∂κ denote one of its faces, and K ∈ T] denote the

corresponding simplex such that κ ⊂ K, cf. Definition 4.1. Suppose that v ∈ L2(Ω) is

such that Ev|K ∈ Hkκ(K), for some k ≥ 0. Then, given Assumption 4.2 is satisfied,

the following bounds hold

‖v − Π̃v‖Hq(κ) ≤ C
hsκ−qκ

pkκ−qκ

‖Ev‖Hkκ (K), kκ ≥ 0, (4.4)

for 0 ≤ q ≤ kκ, and

‖v − Π̃v‖L2(F ) ≤ C|F |1/2
h
sκ−d/2
κ

p
kκ−1/2
κ

Cm(pκ, κ, F )1/2‖Ev‖Hkκ (K), kκ > d/2, (4.5)

where

Cm(pκ, κ, F ) = min

{
hdκ

supκF
[
⊂κ |κF[ |

,
1

p1−d
κ

}
.

Here, sκ = min{pκ+1, kκ} and C is a positive constant, that depends on the shape-

regularity of K, but is independent of v, hκ, and pκ.

Proof. We begin by observing that

‖v − Π̃v‖Hq(κ) = ‖Ev −Πpκ(Ev)‖Hq(κ) ≤ ‖Ev −Πpκ(Ev)‖Hq(K).

Thereby, bound (4.4) follows immediately upon application of (4.1), noting As-

sumption 4.2.



December 2, 2013 17:11 WSPC/INSTRUCTION FILE
hp-DG˙polygonal˙elements˙v13

10 A. Cangiani, E.H. Georgoulis, P. Houston

To prove (4.5), we let κF[ ∈ F
κ
[ ; applying a standard scaling argument with

respect to κF[ , the multiplicative trace inequality, and (4.4), we obtain

‖v − Π̃v‖2L2(F ) ≤ C|F |
(

1

|κF[ |
‖v − Π̃v‖2L2(κF

[
)

+|κ[|−1+1/d‖v − Π̃v‖L2(κF
[

)‖∇(v − Π̃v)‖L2(κF
[

)

)
≤ C

|F |
|κF[ |

(
hκ
pκ

+ |κF[ |
1/d

)
h2sκ−1
κ

p2kκ−1
κ

‖Ev‖2Hkκ (K). (4.6)

Given that |κF[ | ≤ h
d
κ and κF[ is arbitrary, from (4.6) we conclude that

‖v − Π̃v‖2L2(F ) ≤ C
|F |

supκF
[
⊂κ |κF[ |

h2sκ
κ

p2kκ−1
κ

‖Ev‖2Hkκ (K). (4.7)

On the other hand, we observe that

‖v − Π̃v‖2L2(F ) ≤ |F |‖v − Π̃v‖2L∞(F );

employing the definition of the projection operator Π̃, cf. above, together with (4.2)

and Assumption 4.2 gives

‖v − Π̃v‖2L2(F ) ≤ C|F |
h2sκ−d
κ

p2kκ−d
κ

‖Ev‖2Hkκ (K). (4.8)

Now (4.5) follows by taking the minimum between the bounds (4.7) and (4.8).

Remark 4.1. We note that (4.7) is valid for kκ ≥ 1, but we omitted this level

of generality in the statement of Lemma 4.2 in the interest of simplicity of the

presentation.

Classical inverse estimates, bounding a norm of a polynomial on an element face

by a norm on the element itself, are an essential ingredient in the error analysis of

DGFEMs. More specifically, the stability and a priori error analysis of standard

hp–version DGFEMs makes use of inverse estimates of the following form

‖v‖2L2(F ) ≤ Cinv
p2|F |
|κ|
‖v‖2L2(κ), (4.9)

where F denotes a face of the simplicial or quadrilateral/hexahedral element κ and

v is a polynomial of degree p. Furthermore, Cinv is a positive constant, which is

independent of v, p, |F |, and |κ|.
It is possible to generalize the above inverse estimate (4.9) to the case when κ

is a general polygonal/polyhedral element, based on employing (overlapping) sub-

triangulations of κ. To this end, we recall the family of simplexes Fκ[ of Definition 4.2

and consider κF[ ∈ F
κ
[ . Then, for v ∈ Pp(κ), applying (4.9) on κF[ , we have

‖v‖2L2(F ) ≤ Cinv
p2|F |
|κF[ |

‖v‖2L2(κF
[

) ≤ Cinv
p2|F |
|κF[ |

‖v‖2L2(κ), (4.10)
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Fig. 1. Illustration of the quadrilateral in Example 4.1

F

κF[

where Cinv is a positive contant, independent of v, |F |, |κF[ |, and p. Further, as in

Lemma 4.2, one can select κF[ to have the largest possible measure |κF[ |, resulting

in an inverse estimate of the form

‖v‖2L2(F ) ≤ Cinv
p2|F |

supκF
[
⊂κ |κF[ |

‖v‖2L2(κ). (4.11)

Apart from the obvious issue of requiring to solve a small optimization problem

to evaluate accurately supκF
[
⊂κ |κF[ |, the inverse estimate (4.11) lacks sharpness in

that it is not sensitive to the magnitude of the face measure relative to the measure

of the polygonal element κ. For illustration, we consider the following example.

Example 4.1. We consider the domain κ := {(x, y) ∈ R2 : x > 0, y > 0, x + y <

1} ∪ {(x, y) ∈ R2 : x > 0, y ≤ 0, x − y < ε}, for some ε > 0; we refer to Figure 1

for an illustration. Given v ∈ Pp(κ), let F := {(x, y) ∈ R2 : x − y = ε}, then upon

application of (4.11), we deduce that

‖v‖2L2(F ) ≤ Cinv

√
2p2ε

|κF[ |
‖v‖2L2(κ), (4.12)

with κF[ := {(x, y) ∈ R2 : x > 0, x + εy < ε, x − y < ε}. Thereby, given that

|κF[ | = ε(1 + ε)/2, inequality (4.12) becomes

‖v‖2L2(F ) ≤ Cinv
2
√

2p2

1 + ε
‖v‖2L2(κ).

Now as ε → 0, the left-hand side ‖v‖2L2(F ) → 0, whereas the right-hand side
2
√

2p2

1+ε ‖v‖
2
L2(κ) → 2

√
2p2‖v‖2L2(κ) 6= 0 in general.

This lack of sharpness in the inverse estimate (4.11), with respect to faces of

degenerating (Hausdorff) measure, may lead to the definition of an excessively large

penalization term when considering the stability of the IP DGFEM (3.1); this in

turn, may result in ill conditioning of the underlying stiffness matrix. To overcome

this issue, we proceed as follows: from the first inequality in (4.10), we have

‖v‖2L2(F ) ≤ Cinvp
2|F |‖v‖2L∞(κF

[
), (4.13)



December 2, 2013 17:11 WSPC/INSTRUCTION FILE
hp-DG˙polygonal˙elements˙v13

12 A. Cangiani, E.H. Georgoulis, P. Houston

Fig. 2. Illustration of quadrilateral in Definition 4.3

K1

K2

κ

using the trivial bound ‖v‖2
L2(κF

[
)
≤ |κF[ |‖v‖

2
L∞(κF

[
)
. We now aim to provide an

upper bound on ‖v‖2
L∞(κF

[
)
; to this end, we introduce the following definition.

Definition 4.3. Let T̃ denote the subset of elements κ, κ ∈ T , such that each

κ ∈ T̃ can be covered by at most mT shape-regular simplexes Ki, i = 1, . . . ,mT ,

such that

dist(κ, ∂Ki) < Cas diam(Ki)/p
2,

and

|Ki| ≥ cas|κ|,

for all i = 1, . . . ,mT , for some mT ∈ N and Cas, cas > 0, independent of κ and T .

We refer to Figure 2 for an illustration of a polygonal element κ ∈ T̃ cov-

ered by two triangles K1 and K2. This definition allows for very general polygo-

nal/polyhedral meshes to be included in the a priori error analysis given below: it is

of relevance when the polygonal/polyhedral elements κ ∈ T contain faces/edges and

faces whose (Hausdorff) measure is arbitrarily small. Note that, in particular, the

polygon of Example 4.1 satisfies Definition 4.3, when ε < Cas/p
2 for some constant

Cas > 0.

The motivation for Definition 4.3 comes from the following result, which is a

straightforward generalization (via a standard scaling argument) of Lemma 3.7 in

Ref. 41.

Lemma 4.3. Let K be a shape-regular simplex. Then, for each v ∈ Pp(K), there

exists a simplex κ̂ ⊂ K, having the same shape as K and faces parallel to the faces of

K, with dist(∂κ̂, ∂K) < Cas diam(K)/p2, for some constant Cas > 0, independent

of v, K and p, such that

‖v‖L2(κ̂) ≥
1

2
‖v‖L2(K).

We are now ready to present an inverse estimate for a general poly-

gon/polyhedron, which appears to be sharp with respect to degeneration of one

or more of its faces.
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Lemma 4.4. Let κ ∈ T , F ⊂ ∂κ denote one of its faces, and T̃ be defined as in

Definition 4.3. Then, for each v ∈ Pp(κ), we have the inverse estimate

‖v‖2L2(F ) ≤ CINV(p, κ, F )
p2|F |
|κ|
‖v‖2L2(κ), (4.14)

with

CINV(p, κ, F ) := Cinv


min

{
|κ|

supκF
[
⊂κ |κF[ |

, p2d

}
, if κ ∈ T̃ ,

|κ|
supκF

[
⊂κ |κF[ |

, if κ ∈ T \T̃ ,

and κF[ ∈ F
κ
[ as in Definition 4.2 and (4.11). Furthermore, Cinv is a positive

constant, which if κ ∈ T̃ depends on the shape regularity of the covering of κ given

in Definition 4.3, but is always independent of |κ|/ supκF
[
⊂κ |κF[ | (and, therefore, of

|F |), p, and v.

Proof. For κ ∈ T \T̃ the above inverse inequality follows immediately from (4.11).

Let us now turn our attention to the case when κ ∈ T̃ . To this end, recalling

Definition 4.3, for κ ∈ T̃ , we have a covering of κ by shape-regular simplexes Kj ,

j = 1, . . . ,mT . Hence, for κF[ ∈ F
κ
[ , we have κF[ ⊂ κ ⊂ ∪

mT
j=1Kj , with |Kj | ≥ cas|κ|,

for κF[ as in (4.13).

We recall the standard inverse estimate

‖v‖2L∞(Kj)
≤ C∞

p2d

|Kj |
‖v‖2L2(Kj)

, (4.15)

where C∞ is a positive constant, independent of p, |Kj |, and v; see, e.g., Schwab 63.

Employing (4.15) and Definition 4.3 again, we deduce that

‖v‖2L∞(κF
[

) ≤
mT∑
j=1

‖v‖2L∞(Kj)

≤ C∞p
2d

mT∑
j=1

‖v‖2L2(Kj)

|Kj |

≤ C∞
cas

p2d

|κ|

mT∑
j=1

‖v‖2L2(Kj)
. (4.16)

We now define κ̂j ⊂ Kj to denote the simplex relative to Kj as outlined in

Lemma 4.3; thereby, exploiting Lemma 4.3 and Definition 4.3, gives

1

4
‖v‖2L2(Kj)

≤ ‖v‖2L2(κ̂j)
≤ ‖v‖2L2(Kj∩κ), (4.17)

since κ̂j ⊂ κ, and hence κ̂j ⊂ Kj ∩ κ ⊂ Kj . Combining (4.16) and (4.17), we arrive

at the inequality

‖v‖2L∞(κF
[

) ≤
4C∞mT
cas

p2d

|κ|
‖v‖2L2(κ), (4.18)
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upon observing the trivial relation Kj ∩ κ ⊂ κ. Inserting (4.18) into (4.13) gives

‖v‖2L2(F ) ≤ Cinv,2
p2d+2|F |
|κ|

‖v‖2L2(κ), (4.19)

with Cinv,2 = 4CinvC∞mT /cas.

Taking the minimum between (4.11) and (4.19), we deduce the desired result,

with a different constant, also denoted by Cinv > 0. Finally, we remark that Cinv

is, indeed, independent of |F | as is the ratio |κ|/ supκF
[
⊂κ |κF[ |.

Remark 4.2. We stress that (4.14) is sharp with respect to the polynomial degree

p. Indeed, as p→∞, the minimum in (4.14) will be equal to |κ|/ supκF
[
⊂κ |κF[ |; this

will be of crucial importance in the error analysis below. Further, (4.14) is sensitive

with respect to the measure of the face F relative to that of the element κ. In three

dimensions, face degeneration may occur when a face or one of its edges shrinks to

a point (recall that here mesh faces are triangular). The inverse estimate (4.14) is

sharp in both cases of face and edge degeneration. For instance, going back to the

setting of Example 4.1, we can see that both the left– and right–hand sides of (4.14)

degenerate at the same rate as ε→ 0. In summary, the two cases in the constant of

(4.14) serves the two extremes of one degenerating face, for fixed p, and enrichment

of the polynomial order p, while the element κ is kept fixed.

Remark 4.3. We point out that 1/ supκF
[
⊂κ |κF[ | can be estimated in practice by

selecting a simplex with face F and the remaining vertex given by any of the non-

adjacent vertices to F of the polygon/polyhedron κ.

5. A priori error bound

Following the work presented in Ref. 59 for the local DGFEM, the a priori error

analysis of the IP DGFEM (3.1) is undertaken based on introducing an appropriate

inconsistent formulation. To this end, we begin by defining suitable extensions of

the forms B and `. In particular, we define the bilinear form

B̃(w, v) :=
∑
κ∈T

∫
κ

∇w · ∇v dx−
∫

Γ\ΓN

({{Π2(∇hw)}} · [[v]] + {{Π2(∇hv)}} · [[w]]) ds

+

∫
Γ\ΓN

σ[[w]] · [[v]] ds,

and linear functional

˜̀(v) =

∫
Ω

fv dx−
∫

ΓD

gD(Π2(∇hv) · n− σv) ds+

∫
ΓN

gNv ds.

Here, Π2 : [L2(Ω)]d → [Sp
T ]d denotes the orthogonal L2-projection onto the fi-

nite element space [Sp
T ]d. In this manner, the face integrals involving the terms

{{Π2(∇hw)}}, {{Π2(∇hv)}} and Π2(∇hv) are well defined for all v, w ∈ S :=
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H1(Ω) + Sp
T , as these terms are now traces of elementwise polynomial functions.

Moreover, it is evident that

B̃(w, v) = B(w, v) for all w, v ∈ Sp
T ,

and

˜̀(v) = `(v) for all v ∈ Sp
T .

Thereby, B̃(·, ·) and ˜̀(·) are extensions of B(·, ·) and `(·) to S×S and S, respectively.

Hence, we may rewrite the discrete problem (3.1) in the following equivalent form:

find uh ∈ Sp
T such that

B̃(uh, vh) = ˜̀(vh) ∀vh ∈ Sp
T . (5.1)

However, we point out that the IP DGFEM formulation (5.1) is no longer consistent

due to the discrete nature of the L2–projection operator Π2.

For the proceeding error analysis, we introduce the DG-norm |‖·|‖ by

|‖w|‖ :=
(∑
κ∈T

∫
κ

|∇w|2 dx +

∫
Γ\ΓN

σ|[[w]]|2 ds
)1/2

,

for w ∈ S and σ > 0.

With this notation, we establish the following coercivity and continuity proper-

ties of the bilinear form B̃(·, ·).

Lemma 5.1. Let σ : Γ\ΓN → R+ be defined facewise by

σ(x) :=


Cσ max

κ∈{κ+,κ−}

{
CINV(pκ, κ, F )

p2
κ|F |
|κ|

}
, x ∈ F ⊂ Γint, F = ∂κ+ ∩ ∂κ−,

CσCINV(pκ, κ, F )
p2|F |
|κ|

, x ∈ F ⊂ ΓD, F = ∂κ ∩ ΓD,

(5.2)

with Cσ > 0 large enough, depending on CF , and independent of p, |F |, and |κ|.
Then, given Assumption 4.1 holds, we have that

B̃(v, v) ≥ Ccoer|‖v|‖2 for all v ∈ S, (5.3)

and

B̃(w, v) ≤ Ccont|‖w|‖ |‖v|‖ for all w, v ∈ S, (5.4)

where Ccoer and Ccont are positive constants, independent of the discretization pa-

rameters.

Proof. The proof of (5.3) follows a standard argument, though for completeness,

we outline the key steps. For v ∈ S, we have

B̃(v, v) = |‖v|‖2 − 2

∫
Γ\ΓN

{{Π2(∇hv)}} · [[v]] ds

≡ I + II. (5.5)
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In order to bound term II, we first note that for F ⊂ Γint, we have∫
F

{{Π2(∇hv)}} · [[v]] ds ≤ ‖σ−1/2{{Π2(∇hv)}}‖L2(F )‖σ
1/2[[v]]‖L2(F )

≤ 1

2

(
‖σ−1/2Π2(∇v+)‖L2(F ) + ‖σ−1/2Π2(∇v−)‖L2(F )

)
×‖σ1/2[[v]]‖L2(F )

≤ ε
(
‖σ−1/2Π2(∇v+)‖2L2(F ) + ‖σ−1/2Π2(∇v−)‖2L2(F )

)
+

1

8ε
‖σ1/2[[v]]‖2L2(F );

here, we have employed the Cauchy–Schwarz inequality, together with the

arithmetic–geometric mean inequality. Employing the inverse inequality stated in

Lemma 4.4, we deduce that∫
F

{{Π2(∇hv)}} · [[v]] ds ≤ ε

(
CINV(pκ+ , κ+, F )

p2
κ+ |F |
|κ+|

‖σ−1/2Π2(∇v)‖2L2(κ+)

+CINV(pκ− , κ
−, F )

p2
κ− |F |
|κ−|

‖σ−1/2Π2(∇v)‖2L2(κ−)

)
+

1

8ε
‖σ1/2[[v]]‖2L2(F )

≤ ε

Cσ

(
‖∇v‖2L2(κ+) + ‖∇v‖2L2(κ−)

)
+

1

8ε
‖σ1/2[[v]]‖2L2(F ), (5.6)

where we have used the definition of the interior penalty parameter σ, cf. (5.2),

together with the L2-stability of the projector Π2.

In an analogous fashion, for F ⊂ ΓD, we have that∫
F

{{Π2(∇hv)}} · [[v]] ds ≤ ε

Cσ
‖∇v‖2L2(κ+) +

1

4ε
‖σ1/2[[v]]‖2L2(F ). (5.7)

Thereby, exploiting Assumption 4.1 above, inserting (5.6) and (5.7) into (5.5) gives

B̃(v, v) ≥
(

1− 2CF
Cσ

ε

)∑
κ∈T
‖∇v‖2L2(κ) +

(
1− 1

2ε

) ∑
F⊂Γ\ΓN

‖σ1/2[[v]]‖2L2(F ),

and the bilinear form B̃(·, ·) is coercive over S × S, assuming that ε > 1/2 and

Cσ > 2CF ε.

The proof of continuity immediately follows based on employing analogous ar-

guments.

From Lemma 5.1 and Strang’s second lemma, see, for example, Refs. 66, 36, we

immediately deduce the following abstract error bound.

Theorem 5.1. Assuming the hypotheses of Lemma 5.1 hold, we have that

|‖u− uh|‖ ≤
(

1 +
Ccont

Ccoer

)
inf
v∈Sp

T

|‖u− v|‖+
1

Ccoer
sup
w∈Sp

T

|Rh(u,w)|
|‖w|‖

,
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where the residual Rh is given by

Rh(u,w) = B̃(u,w)− ˜̀(u,w).

With this bound, we now proceed to prove the main result of this section.

Theorem 5.2. Let Ω ⊂ Rd, d = 2, 3, be a bounded polyhedral domain, and let

T = {κ} be a subdivision of Ω consisting of general polygonal/polyhedral elements

satisfying Assumption 4.1. Further, T] = {K} denotes the associated covering of

Ω consisting of shape-regular d–simplexes as in Definition 4.1, satisfying Assump-

tion 4.2. Let uh ∈ Sp
T be the IP DGFEM approximation to u ∈ H1(Ω) defined by

(3.1) with the discontinuity-penalization parameter given by (5.2), and suppose that

u|κ ∈ Hkκ(κ), kκ > 1 + d/2, for each κ ∈ T , such that Eu|K ∈ Hkκ(K), where

K ∈ T] with κ ⊂ K. Then, the following bound holds:

|‖u− uh|‖2 ≤ C
∑
κ∈T

h
2(sκ−1)
κ

p
2(kκ−1)
κ

(1 + Gκ(F,CINV, Cm, pκ)) ‖Eu‖2Hkκ (K),

where

Gκ(F,CINV, Cm, pκ) = pκh
−d
κ

∑
F⊂∂κ\ΓN

Cm(pκ, κ, F )σ−1|F |

+ p2
κ|κ|−1

∑
F⊂∂κ\ΓN

CINV(pκ, κ, F )σ−1|F |+ h−d+2
κ p−1

κ

∑
F⊂∂κ\ΓN

Cm(pκ, κ, F )σ|F |,

with sκ = min{pκ + 1, kκ} and pκ ≥ 1. Here, C is a positive constant which is

independent of the discretization parameters.

Proof. From Theorem 5.1, we recall that the error satisfies the following bound

|‖u− uh|‖ ≤
(

1 +
Ccont

Ccoer

)
inf
v∈Sp

T

|‖u− v|‖+
1

Ccoer
sup
w∈Sp

T

|Rh(u,w)|
|‖w|‖

, (5.8)

where the residual Rh(u,w) = B̃(u,w) − ˜̀(u,w). To bound the first term on the

right-hand side of (5.8), we exploit the approximation results stated in Lemma 4.2,

together with Assumptions 4.1; to this end, we deduce that

inf
v∈Sp

T

|‖u− v|‖2 ≤ |‖u− Π̃u|‖2

≤ C
∑
κ∈T

h
2(sκ−1)
κ

p
2(kκ−1)
κ

1 +
h−d+2
κ

pκ

∑
F⊂∂κ\ΓN

Cm(pκ, κ, F )σ|F |


× ‖Eu‖2Hkκ (K). (5.9)

We now proceed to derive a bound on the residual Rh; to this end, we first note that,

upon application of integration by parts elementwise, together with the statement
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of the underlying partial differential (2.1), (2.2), we deduce that

Rh(u,wh) =

∫
Γ\ΓN

{{∇u−Π2(∇u)}} · [[wh]] ds.

Employing the Cauchy Schwarz inequality gives

sup
wh∈Sp

T

|Rh(u,wh)|
|‖wh|‖

≤
(∫

Γ\ΓN

σ−1|{{∇u−Π2(∇u)}}|2 ds
)1/2

. (5.10)

Writing Π̃ to denote the vector-valued generalization of the hp–projection operator

Π̃ given in (4.3), defined componentwise, we note that∫
Γ\ΓN

σ−1|{{∇u−Π2(∇u)}}|2 ds

≤
∫

Γ\ΓN

σ−1|{{∇u− Π̃(∇u)}}|2 ds+

∫
Γ\ΓN

σ−1|{{Π2(Π̃(∇u)−∇u)}}|2 ds

≡ I + II. (5.11)

To bound Term I, we proceed as above; thereby, we have

I ≤ C
∑
κ∈T

h
2(sκ−1)
κ

p
2(kκ−1)
κ

h−dκ
p−1
κ

 ∑
F⊂∂κ\ΓN

Cm(pκ, κ, F )σ−1|F |

 ‖Eu‖2Hkκ (K).

Exploiting the inverse inequality stated in Lemma 4.4, the L2-stability of the pro-

jector Π2, and the approximation results stated in Lemma 4.2 Term II may be

bounded as follows

II ≤ C
∑
κ∈T

h
2(sκ−1)
κ

p
2(kκ−1)
κ

|κ|−1

p−2
κ

 ∑
F⊂∂κ\ΓN

CINV(pκ, κ, F )σ−1|F |

 ‖Eu‖2Hkκ (K).

Hence, (5.10) may be bounded as follows:

sup
wh∈Sp

T

|Rh(u,wh)|
|‖wh|‖

≤ C

∑
κ∈T

h
2(sκ−1)
κ

p
2(kκ−1)
κ

h−dκ
p−1
κ

∑
F⊂∂κ\ΓN

Cm(pκ, κ, F )σ−1|F |

+
|κ|−1

p−2
κ

∑
F⊂∂κ\ΓN

CINV(pκ, κ, F )σ−1|F |

 ‖Eu‖2Hkκ (K)

1/2

. (5.12)

Finally, substituting (5.9) and (5.12) into (5.8), we deduce the statement of the

theorem.

Remark 5.1. We note that the a priori bound stated in Theorem 5.2 for the

IP DGFEM (3.1) holds without the need to impose any assumptions concerning
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the relative sizes of the (d − 1)–dimensional faces F , F ⊂ ∂κ, of a given polygo-

nal/polyhedral element κ ∈ T . Recall that for d = 3, a face F ⊂ ∂κ, κ ∈ T , is a

triangle belonging to an elemental polygonal interface; the interior penalty param-

eter σ is constant on each such triangle, rather than the whole polygonal interface.

This way, a (d − 2)–dimensional edge of an elemental polygonal interface is also

allowed to degenerate, while the (d − 1)–dimensional measure of the interface can

remain positive. This remarkable property highlights the advantages of the interface

subdivision into triangles, which may have appeared to be somewhat arbitrary in

the first instance.

Remark 5.2. As discussed above, for d = 3, the penalty parameter σ will, in gen-

eral, vary on each triangular face of a polygonal interface. This is in contrast with

standard IP DGFEM error analyses, whereby a constant penalty is chosen on each

element interface (even when hanging nodes/edges are allowed, cf., e.g., 49). Allow-

ing for a piecewise penalty parameter on each interface leads to a potentially “finer”

choice of the penalization, by eliminating the incorporation of theoretically relevant

(but impractical) quantities such as, local h or p quasi-uniformity or regularity of

hanging nodes, into the penalisation constant. Moreover, piecewise constant penalty

parameters on the constituent triangular faces of polygonal interfaces for d = 3, are

also practical in terms of implementation. Indeed, quadrature rules on such element

interfaces are typically computed in a piecewise fashion anyway.

Remark 5.3. Assuming standard local quasi-uniformity assumptions, (along with

quasi-uniformity of the triangulation of each polygonal element interface for d = 3),

it would be possible to choose a constant penalisation parameter on each polygonal

interface, thereby reverting to the “standard” IP DGFEM setting. Theorem 5.2

could be easily modified to this effect also, after summation of the interface trian-

gular penalty contributions.

Remark 5.4. For uniform orders pκ = p ≥ 1, h = maxκ∈T hκ, sκ = s, s =

min{p+1, k}, k > 1+d/2, we point out that, under the assumption that the diameter

of the faces of each element κ ∈ T are of comparable size to the diameter of the

corresponding element, i.e., diam(F ) ∼ hκ, F ⊂ ∂κ, κ ∈ T , so that |F | ∼ h
(d−1)
κ ,

we get the bound

|‖u− uh|‖ ≤ C
hs−1

pk−3/2
‖u‖Hk(Ω).

Here, we have employed Theorem 4.1, together with Assumption 4.2, assuming

that for such element domains CINV(pκ, F ) = O(1) and Cm(pκ, F ) = O(1) uni-

formly for each face F ⊂ ∂κ\ΓN for all κ ∈ T . This bound is optimal in h and

suboptimal in p by p1/2. This error estimate coincides with the bounds derived in

Refs. 49, 62, for example, for IP DGFEMs defined on standard element domains.
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
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Fig. 3. Bounding box Bκ of an element κ ∈ T .

6. Implementation issues

In this section we briefly outline some of the implementation aspects of the proposed

IP DGFEM, cf. (3.1).

6.1. Construction of the finite element basis functions on general

polygons/polyhedra

The finite element space Sp
T may be constructed in a number of different ways.

In the case when the computational mesh T consists of standard affine element

domains (simplexes, parallelograms, etc), standard polynomial bases on reference

elements may simply be mapped from the reference frame to the physical element;

indeed, this is the standard approach used within most finite element software pack-

ages. An alternative approach, which directly works on the physical element κ ∈ T ,

without the need to refer to a given reference frame, has been proposed in the recent

article by Bassi et al.22; here, the elemental basis functions are constructed based

on employing a Gram-Schmidt orthogonalization process applied to a given set of

polynomial functions defined on κ. In this way, general polygonal/polyhedral ele-

ments may be treated in a simple fashion; indeed, Ref. 22 considers the application

of this technique to general meshes consisting of agglomerated elements.

Here, we introduce an alternative approach based on employing polynomial

spaces defined over the bounding box of each element; cf. Ref. 42. More precisely,

given an element κ ∈ T , we first construct the Cartesian bounding box Bκ, such that

κ̄ ⊆ B̄κ, cf. Figure 3. On the bounding box Bκ we may define a standard polynomial

space Ppκ(Bκ) spanned by a set of basis functions {φi,κ}, i = 1, . . . ,dim(Ppκ(Bκ)).

With this in mind, we employ tensor-product (scaled) Legendre polynomials; in-

deed, writing I = (−1, 1), we denote the family of L2(I)-orthogonal (Legendre)

polynomials by {Li(x)}∞i=0. Thereby, given a general interval Ib = (x1, x2), the

corresponding scaled Legendre polynomials may be defined by

L
[b]
i (x) = (1/hb)

1/2Li((x−mb)/hb),

where hb = (x2 − x1)/2 and mb = (x1 + x2)/2. With this notation, a polynomial

basis on Bκ may be defined as follows: writing Bκ = I1 × I2 × · · · × Id, where Ij ,
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j = 1, . . . , d, denotes a one–dimensional interval, the space of polynomials Ppκ(Bκ)

of total degree pk over Bκ is given by

Ppκ(Bκ) = span{φi,κ}
dim(Ppκ (Bκ))
i=1 ,

where

φi,κ(x) = L
[1]
i1

(x1)L
[2]
i2

(x2) · · ·L[d]
id

(xd), i1+i2+. . .+id ≤ pκ, ik ≥ 0, k = 1, . . . , d,

and x = (x1, x2, . . . , xd). Thereby, the polynomial basis over the general polyg-

onal/polyhedral element κ may be defined by simply restricting the support of

{φi,κ}, i = 1, . . . ,dim(Ppκ(Bκ)) to κ; i.e., the polynomial basis defined over κ is

given by {φi,κ|κ}, i = 1, . . . ,dim(Ppκ(Bκ)).

6.2. Quadrature rules

As in Ref. 51, quadrature over general polygonal/polyhedral element domains is un-

dertaken based on first constructing a sub-triangulation, followed by the exploitation

of standard integration schemes, cf. Ref. 64, for example. Thereby, given κ ∈ T , we

first construct a non-overlapping sub-triangulation κS = {τκ} consisting of simpli-

cial elements. As an example, if we consider the first term arising in the bilinear

form B(·, ·), restricted to κ, then we compute∫
κ

∇w · ∇v dx =
∑
τκ∈κS

∫
τκ

∇w · ∇v dx

≈
∑
τκ∈κS

q∑
i=1

∇w(Fκ(ξi)) · ∇v(Fκ(ξi)) det(JFκ(ξi))wi,

where Fκ : κ̂ → τκ is the mapping from the reference element (simplex) κ̂ to τκ,

with Jacobi matrix JFκ , and (ξi, wi)
q
i=1 denotes the quadrature rule defined on κ̂.

We point out that the gradient operators are not transformed, as would be the case

if the element κ was mapped to a reference frame.

We point out that alternative integration methods which do not require a sub-

triangulation of the underlying polygonal/polyhedral element have recently been

considered in Refs. 57, 24, 27. For related work, we refer to Refs. 22, 55, and the

references cited therein.

7. Numerical examples

In this section we present a series of computational examples to numerically investi-

gate the asymptotic convergence behaviour of the proposed IP DGFEM on general

meshes consisting of polygonal elements. Throughout this section the IP DGFEM

solution uh defined by (3.1) is computed with the constant Cσ appearing in the

interior penalty parameter σ defined in Lemma 5.1 equal to 10. All the numerical

examples presented in this section have been computed using the AptoFEM package

(www.aptofem.com); here, the resulting system of linear equations is solved based
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on employing the Multifrontal Massively Parallel Solver (MUMPS), see Refs. 1, 2,

3.

7.1. Example 1

In this first example, we investigate the computational efficiency of employing the IP

DGFEM on standard tensor-product elements (quadrilaterals in 2D and hexahedra

in 3D) employing local polynomial bases consisting of either Pp or Qp polyno-

mials; in the following figures, these schemes will be denoted by DGFEM(P) and

DGFEM(Q), respectively. Moreover, we shall compare both IP DGFEM approaches

with the standard continuous Galerkin finite element method (CGFEM).

Firstly, we consider the following two–dimensional problem: let Ω = (0, 1)2 and

select f = 2π2 sin(πx) sin(πy), so that the analytical solution to (2.1) is given by

u = sin(πx) sin(πy). In Figure 4 we investigate the convergence behaviour of the

three schemes, namely DGFEM(P), DGFEM(Q), and CGFEM, under p–refinement

for fixed h. Here, uniform square meshes consisting of 16, 64, and 256 elements are

employed; for each mesh, we plot both the L2(Ω) norm and H1(Ω) seminorm of the

error, against the square root of the number of degrees of freedom in the underlying

finite element space, as the polynomial degree p is uniformly increased. Here, we

clearly observe exponential convergence of all three methods, in the sense that, on

the linear-log scale, the convergence plots become straight lines as p is increased.

Moreover, we observe that the convergence lines for CGFEM and DGFEM(Q) are

roughly parallel, with the former method being more efficient, in the sense that, for

a given number of degrees of freedom (dof), the error measured with respect to both

the L2(Ω) norm and H1(Ω) seminorm is less than the corresponding quantity com-

puted for DGFEM(Q). However, one important observation is that, for each mesh,

the slope of the convergence line for DGFEM(P), i.e., the IP DGFEM employing

local Pp polynomial bases, is actually steeper than the corresponding convergence

line when local polynomial bases consisting of tensor-product Qp polynomials are

employed. Indeed, while for moderate p, we observe that the CGFEM method is

more efficient than DGFEM(P), as the polynomial degree is increased, the conver-

gence line for DGFEM(P) crosses the corresponding line for CGFEM, at least on

the coarser meshes.

To investigate this behaviour further, we now consider the three–dimensional

variant of the above problem. To this end, we let Ω = (0, 1)3 and select f =

3π2 sin(πx) sin(πy) sin(πz), so that the analytical solution to (2.1) is given by u =

sin(πx) sin(πy) sin(πz). In Figure 5 we consider the convergence of the DGFEM(P),

DGFEM(Q), and CGFEM schemes under p–refinement on uniform hexahedral

meshes consisting of 64, 512, and 4096 elements. As in the two–dimensional setting,

we again observe that the convergence lines for both CGFEM and DGFEM(Q)

are roughly parallel, with, again, the former method being more efficient in terms

of leading to a smaller error for a given number of degrees of freedom. Moreover,

the slope of convergence line for the DGFEM(P) scheme is not only steeper than
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Fig. 4. Example 1. Comparison between IP DGFEM exploiting local Qp and Pp polynomial spaces

with CGFEM under p–refinement on uniform meshes consisting of square elements on (0, 1)2 (2D).
Left: ‖u− uh‖L2(Ω); Right: |u− uh|H1(Ω); (a) 4× 4 mesh; (b) 8× 8 mesh; (c) 16× 16 mesh.

the corresponding line for DGFEM(Q), but also that the cross–over point between

DGFEM(P) becoming more efficient than CGFEM occurs much sooner.
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Fig. 5. Example 1. Comparison between IP DGFEM exploiting local Qp and Pp polynomial spaces

with CGFEM under p–refinement on uniform meshes consisting of hexahedral elements on (0, 1)3

(3D). Left: ‖u − uh‖L2(Ω); Right: |u − uh|H1(Ω); (a) 4 × 4 × 4 mesh; (b) 8 × 8 × 8 mesh; (c)

16× 16× 16 mesh.

7.2. Example 2

Following on from the previous numerical example, here we investigate the conver-

gence behaviour of the DGFEM(P) and DGFEM(Q) approaches for a non-smooth
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Fig. 6. Example 2. Comparison between IP DGFEM exploiting local Qp and Pp polynomial spaces

based on employing adaptive hp–refinement.

problem on hp–adaptively refined computational meshes. To this end, we let Ω be

the L-shaped domain (−1, 1)2\ [0, 1)×(−1, 0], and select f = 0. Then, writing (r, ϕ)

to denote the system of polar coordinates, we impose an appropriate inhomogeneous

boundary condition for u so that

u = r2/3 sin(2ϕ/3);

cf. Ref. 71. We note that u is analytic in Ω \ {0}, but ∇u is singular at the origin;

indeed, here u 6∈ H2(Ω). This example reflects the typical (singular) behaviour that

solutions of elliptic boundary value problems exhibit in the vicinity of reentrant

corners in the computational domain.

The underlying hp–adaptive algorithm exploited within this section is based on

employing the residual–based a posteriori error indicators proposed in Ref. 47. More

precisely, the hp–adaptive meshes are constructed by first marking the elements for

refinement/derefinement according to the size of these local error indicators; this

is done by employing the fixed fraction strategy, with refinement and derefinement

fractions set to 25% and 10%, respectively. The decision to perform local h/p–

refinement/derefinement is based on employing the analyticity testing algorithm

outlined in Ref. 50.

In Figure 6 we present a comparison of the actual error, measured in terms of the

DG-norm |‖·|‖, for both DGFEM(P) and DGFEM(Q), versus the third root of the

number of degrees of freedom in the underlying finite element space on a linear-log

scale, for the sequence of meshes generated by the above hp–adaptive algorithm.

For the initial refinement steps, we observe that the error in both the DGFEM(P)

and DGFEM(Q) schemes is roughly comparable, for a given number of degrees of
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freedom. However, as the adaptive algorithm proceeds, and further p–enrichment is

undertaken, we observe that the convergence line for DGFEM(P) becomes steeper

than the corresponding line for DGFEM(Q), cf. the previous example; consequently,

DGFEM(P) becomes more efficient than DGFEM(Q), in the sense that, for a given

number of degrees of freedom, the error employing the former method is smaller

than the corresponding quantity computed for DGFEM(Q).

7.3. Example 3

In this final example, we now turn our attention to investigate the asymptotic be-

haviour of the proposed IP DGFEM (DGFEM(P) using the previous notation) on a

sequence of successively finer polygonal and square meshes for different values of the

polynomial degree p; we point out that in both cases we employ local spaces consist-

ing of polynomials of degree at most p on each element κ in the mesh T . The polyg-

onal meshes are generated using the general-purpose mesh generator PolyMesher,

cf. Ref. 69. Here, we employ two types of meshes generated by PolyMesher: irregu-

lar meshes (without any mesh smoothing applied), whose elements possess faces of

varying size (referred to as Polygonal Elements I), and regular meshes, generated

by employing a number of smoothing steps within the mesh generator (referred to

as Polygonal Elements II). Typical meshes generated by PolyMesher are shown in

Figure 7.

Here, we again consider the numerical example presented in Section 7.1; namely,

we let Ω = (0, 1)2 and select f = 2π2 sin(πx) sin(πy), so that u = sin(πx) sin(πy).

In Figure 8 we plot the error, measured in terms of both the L2(Ω) norm and

the DG-norm |‖·|‖, against the square root of the number of degrees of freedom

in the underlying finite element space Sp
T for (uniform) p between 1 and 4. Here,

we clearly observe that the quantities ‖u − uh‖L2(Ω) and |‖u− uh|‖ converge to

zero at the optimal rates O(hp+1) and O(hp), respectively, as the mesh size h

tends to zero for each (fixed) p; these latter results clearly confirm the optimality

of Theorem 5.2. In particular, we observe that the error in the underlying IP

DGFEM is smaller when polygonal elements II are employed, when compared to

the corresponding quantity computed based on exploiting either uniform square

elements or the polygonal elements I; this behaviour is more pronounced when the

error is computed with respect to the DG-norm. We remark that similar behaviour

was observed in Ref. 48 when the DG-norm of the error was computed on irregular

quadrilateral meshes constructed by randomly splitting each of the interior nodes

by a displacement of up to 10% of the local mesh size. As in Ref. 48, we attribute the

improvement in the computed error, when polygonal elements II are employed, to

the increase in interelement communication. Indeed, uniform square elements may

only communicate with their four immediate neighbours, while polygonal elements

possess a much greater stencil due to the increase in the number of local element

faces. We note that there is soem degradation of the computed error, when the

sequence of irregular polygonal elements I are employed, as we would expect.
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(a)

(b)

Fig. 7. Example 3. Polygonal element meshes generated using PolyMesher. Left: No mesh smooth-

ing (Polygonal Elements I); Right: With 20 smoothing steps (Polygonal Elements II); (a) Mesh

with 64 elements; (b) Mesh with 1024 elements.

Finally, we investigate the convergence of the IP DGFEM under p–refinement

for fixed h. To this end, in Figure 9 we plot the DG-norm of the error against p

on five different square and polygonal meshes. In each case, we observe that on the

linear-log scale, the convergence plots become straight lines as the degree of the

approximating polynomial is increased, thereby indicating exponential convergence

in p.

8. Concluding Remarks

We have studied the hp–version of the IP DGFEM for second–order elliptic partial

differential equations, based on employing general computational meshes consisting

of polygonal/polyhedral elements. Within this scheme polynomial bases are ex-
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Fig. 8. Example 3. Convergence of the IP DGFEM with h–refinement: (a) ‖u − uh‖L2(Ω); (b)
|‖u− uh|‖.
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Fig. 9. Example 3. Convergence of the IP DGFEM with p–refinement.

ploited within the physical coordinate space, without the need to map from a given

reference or canonical frame. This approach is advantageous from the point of view

that only element spaces consisting of polynomials of total degree p are sufficient

to guarantee optimal convergence of the underlying method. On tensor-product

meshes, the resulting scheme has been shown to, not only be computationally more

efficient than standard DGFEMs based on employing full (mapped) tensor-product

polynomial spaces, but also provide a competitive alternative to CGFEM, under

p–enrichment.
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The a priori error analysis presented in this article extends and generalizes the

error bounds derived in Ref. 8 for composite DGFEMs in a number of ways. In

particular, the careful use of hp–version inverse inequalities and hp–version approx-

imation properties, leads to an a priori error bound whose validity does not require

any angle conditions, or any conditions on the relative sizes of the elemental inter-

faces on the polygonal/polyhedral mesh. Instead, the polygonal/polyhedral mesh is

required to satisfy two weak assumptions (cf., Assumptions 4.1 and 4.2 which as-

serts in particular the existence of a shape-regular simplicial covering) for the error

analysis to be valid. The resulting hp–version a priori bound is formally in accor-

dance with respect to standard error estimates (for meshes consisting of standard

simplicial/tensor-product elements) in the literature.
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volume 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications].
Springer, Heidelberg, 2012.

40. T.-P. Fries and T. Belytschko. The extended/generalized finite element method: an
overview of the method and its applications. Internat. J. Numer. Methods Engrg.,
84(3):253–304, 2010.

41. E.H. Georgoulis. Inverse-type estimates on hp-finite element spaces and applications.
Math. Comp., 77(261):201–219 (electronic), 2008.

42. S. Giani and P. Houston. Domain decomposition preconditioners for discontinuous
Galerkin discretizations of compressible fluid flows. Submitted for publication.

43. S. Giani and P. Houston. hp–Adaptive composite discontinuous Galerkin methods for
elliptic problems on complicated domains. Submitted for publication.

44. W. Hackbusch and S.A. Sauter. Composite finite elements for problems containing
small geometric details. Part II: Implementation and numerical results. Comput. Vi-
sual Sci., 1:15–25, 1997.

45. W. Hackbusch and S.A. Sauter. Composite finite elements for the approximation
of PDEs on domains with complicated micro-structures. Numer. Math., 75:447–472,
1997.

46. J.S. Hesthaven and T. Warburton. Nodal discontinuous Galerkin methods, volume 54
of Texts in Applied Mathematics. Springer, New York, 2008. Algorithms, analysis, and
applications.
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