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Abstract—The automatic design of Synchronous Reluctance 
(SyR) machines is considered in this paper by means of Finite 
Element Analysis and Multi-Objective Optimization 
Algorithms (MOOA). The research focuses on the design of the 
rotor geometry which is the key aspect of the SyR machine 
design. In particular, the performance of three popular 
MOOAs is analyzed and compared in terms of quality of the 
final design and computational time. A procedure to minimize 
the computational burden of the optimized design process is 
introduced and applied to a three layer and to a five layer 
rotors. Two prototypes demonstrate experimentally the 
feasibility of the design procedure. 

Index Terms – Synchronous Reluctance Motor, Motor Design, 
Automatic Design, Optimization Algorithms, Multi-Objective 
Optimization. 

 INTRODUCTION I.
Synchronous Reluctance (SyR) motors are a viable 

alternative to inverter driven Induction Motors (IM) because 
they allow a size reduction and/or an improvement in 
efficiency [1,2]. While the stator is like that of a standard IM, 
the rotor geometry is non-conventional and characterized by 
multiple flux barriers. Many configurations are possible, in 
terms of the number of barriers, their shape and dimensions. 
The literature on  SyR motor design is vast and includes 
different design methodologies [3-4]. Optimization 
Algorithms (OA) and FEA were used twenty years ago [5] 
but then rarely again due to the fact that the numerous 
degrees of freedom make the optimization problem big, 
requiring thousands of individual evaluations prior to 
convergence. With such a large scale of evaluations, FEA 
can be time consuming. More commonly, FEA and OAs 
have been associated for single and double layer rotor 
structures with Permanent Magnets [6] as they can be 
handled with a lower number of geometric variables. 

Nevertheless, FEA is mandatory in the design of SyR 
machines, as confirmed by all authors in the literature, 
including the ones that base the design on analytical models 
[7-8]. Linear magnetic models are too inaccurate due to steel 
saturation. In addition to the progressive saturation of the 
magnetic core with load, local saturation (e.g. in the 
structural bridges) also occurs from very light loads and 
impacts  motor performances. 

For an effective  optimization using jointly FEA and 
MOOA it is critical to: 1) simplify as much as possible the 

description of the rotor geometry; 2) minimize the FEA 
evaluation time of the candidate solutions; 3) choose the 
MOOA and its settings properly, for a tradeoff between time 
and accuracy.  

In this respect, we have presented in [9-10] the Multi-
Objective Genetic Optimization of multi-barrier rotors based 
on FEA aiming at defining a comprehensive approach to 
SyR rotor design within a reasonable computation time. The 
fast FEA evaluation of the candidate machines [9] and the 
two-step application of the Multi-Objective Optimization 
Algorithm (MOOA) [10] were the focus of these preliminary 
works. The goals of this paper are: 

• To compare three different MOOAs and evaluate the 
impact of their settings on the efficiency of the 
optimization. 

• To formalize a procedure for the fast and reliable 
convergence of the OAs. 

• To evaluate how convergence time is affected by the 
number of rotor layers. 
The optimization algorithms under investigation are 

Genetic Algorithm (GA), Differential Evolution (DE) and 
Simulated Annealing (SA). They are applied here to the 
design of SyR motors of small size. The optimization goals 
are the maximization of the torque per Joule loss ratio and 
the minimization of the torque ripple. A procedure for the 
robust convergence of the optimization within a given 
number of function calls is formalized for the three OAs and 
general conclusions on the comparison are drawn. The 
design examples are for two SyR rotors having three layers 
and five layers respectively. The latter is useful to evaluate 
how the fast MOOA+FEA procedure is robust towards a 
significant increase in the number of input variables with 
respect to three-layer rotors. The two machine examples 
were prototyped and experimentally evaluated. Iron losses 
are computed using FEA, compared and commented upon. 
The 3-layer rotor produced by the OAs is similar to some 
existing designs in the literature, whereas the 5-layer one has 
a non-conventional barrier distribution from which 
interesting insights can be drawn. 

 PROBLEM STATEMENT II.
The two objectives of the optimization are the torque per 

Joule loss ratio and the torque ripple. The stator geometry is 
defined and originates from a PM-assisted machine for 
compressor application that was available in our labs. The 



ratings of the original PM-assisted machine are 2.5 Nm at 
5400 rpm and liquid cooled with an inlet temperature 90°C. 
The target ratings of the SyR motor designed here and 
reported in Table II are 4 Nm at 5000 rpm with forced 
ventilation. The continuous peak current i0 is 16.8 A and 
corresponds to the rated Joule losses. The rated dc-link 
voltage is 270 V. The windings are distributed, not chorded 
and with two slots per pole per phase. The airgap thickness is 
0.5 mm. The design is optimized with reference to a current 
value that is two or three times i0, corresponding to transient 
overload conditions. It has been demonstrated in [11] that 
optimizing for overload conditions produces machine 
designs whose torque ripple is more insensitive to load 
variations. 

Other potential objectives to be optimized for could have 
been efficiency, the cost of the materials or the weight of the 
active parts [12-13]. The latter two objectives would need to 
reconsider the stator geometry and the stator to rotor split 
ratio. This is out of scope for the exercise presented in this 
paper, however the conclusions drawn from the research 
presented in this paper can be translated to any optimization 
problem. When dealing with the efficiency it is important to 
point out that the torque maximization at given current and 
stator geometry inherently maximizes the torque per Joule 
loss ratio. This will have a major impact on efficiency. 
However, if a comprehensive optimization of efficiency is to 
be done one would require the evaluation of core losses at 
each function call of the MOOAs. Such objective is critical 
for PM-assisted SyR machines and multi-layer IPM 
machines especially if operated within their extended flux 
weakening speed range. [14-16]. However, this is less 
critical for SyR machines and particularly for the considered 
speed range in this paper. As previously mentioned the 
maximum torque per copper conducting loss has already a 
major impact on efficiency and torque ripple cannot be 
dismissed as high ripple readily occur when this is not taken 
into account. This is not an acceptable compromise. 

One final remark is about the maximization of the power 
factor which is of importance for SyR machines. This is 
inherently around its best after the maximization of the 
average torque for a given current, that corresponds to the   
maximization of the dq inductance difference, not far from 
the saliency (and power factor) maximization condition, 
given the constrained stator geometry [17].  

A. Parametrization of the rotor geometry 
The rotor geometry is defined in Fig. 1 for an example 

motor with two pole-pairs and 5 layers. The set of 
parameters used to describe the rotor geometry has a critical 
role in the design optimization. The barrier shape types in the 
literature are various and full of parameters and a strong 
simplification is needed here to keep the optimization 
process as simple as possible. Each variable should have a 
reasonable impact on at least one of the performance indexes 
of the optimization. It was demonstrated in [10] that circular 
barriers, with two input variables per layer can get close to 
the performance of more complex geometries despite their 
very basic set of parameters. For circular layers the 
geometric inputs are:  

• the layer angular positions at the airgap ∆αj; 
• the layer heights hcj; 
Last but not least, the phase angle γ of the current vector 

with respect to the synchronous d axis (maximum 
permanence axis), is also included in the optimization 
variables. Each motor is evaluated using a single current 
angle. At the end of the optimization γ  was always very 
close to the Maximum Torque per Ampere (MTPA) angle 
condition γMTPA, which is the one maximizing the torque per 
Joule loss. 

The number of variables to be optimized is then 2 nlay +1, 
nlay being the number of rotor layers. This means a 7-
dimensional and an 11-dimensional space of inputs for the 3- 
and 5-layer machines respectively. 

The set of search bounds used in the paper is reported in 
Table I. Wherever p.u. is indicated, it means that the value is 
in per-unit of the aggregate height or angle available for all 
the layers. The first angular input ∆α1 is in degrees and 
determines the angular space left to the other angular inputs: 
the other p.u. angles ∆αj (j = 2 to nlay) define the layer tips 
distribution over the remaining part of the half pole angular 
pitch. Once the barrier ends positions ∆αj are set, the p.u. 
thicknesses hci are interpreted as follows: if they are all 1 
p.u. then the air barriers are all the same thickness  and 
occupy as much radial space as they can. A minimum 
thickness of the flux guides is fixed, 1 mm for the examples 
here. The 1 mm clearance condition avoids overlapping 
barriers and non-feasible rotors, manufacturing-wise, that 
could come from incompatible combinations of the inputs. If 
all the p.u. heights are of a different value, say the minimum 
( 0.2), then the barriers are again all the same thickness and 
of a value which is of  20% of the previous example. All 
other situations are combination of the previous ones. 

TABLE I - LIMITS OF THE SEARCH SPACE FOR THE GLOBAL SEARCH (GS) 

Parameter Min value Max value Units 

hci (i=1,..,nlay) 0.2 1 p.u. 
∆α1

 15 27 degrees 

∆αj (j=2,..,nlay) 0.33 0.67 p.u. 
γ 20 80 degrees 

B. Fast FEA Evaluation of the Candidate Machines 
The performance indexes to be optimized, torque and 

torque ripple, are evaluated in a single current condition 
(amplitude and phase angle γ in synchronous coordinates) so 
as to minimize computation. The current amplitude selected 
in the examples is twice the machine rated current (2 i0), as a 
trade-off between continuous torque and maximum overload 
conditions (3 i0). This also guarantees a low torque ripple at 
lower load levels [11].  

C. Two-Objective Cost Function Evaluation 
The torque of each candidate solution is calculated using 

FEA in n equally spaced rotor positions, covering one stator 
slot pitch (τst). The average value and the standard deviation 
of such n-points waveforms are the two cost functions of the 
optimization. The stator slot pitch was chosen because it is 



representative of the most significant harmonic component 
of the torque ripple. The choice of n is discussed in [9]. 
Despite the very few positions considered (e.g. five 
positions are used in this paper), the aliasing of significant 
torque harmonics is avoided via a random position offset at 
each evaluation [9]. 

TABLE II – SYR MACHINES PROTOTYPES RATINGS 
Continuous torque 4.5 Nm 

Rated speed 5000 rpm 
Rated voltage 270 V (dc-link) 

Continuous current 16.8 A (pk) 
Stack outer diameter 101 mm 

Rotor diameter 58.6 mm 
Airgap 0.5 mm 

Stack length 65 mm 
Stator Slots 24  

Steel grade M470-50 
M270-35 

(Stator) 
(Rotor) 

In turn, the MOOAs evaluate the candidate solutions via 
the FEA calculation of the electromagnetic torque for a 
single current amplitude and phase condition over five rotor 
positions with the first position decided randomly. All the 
final Pareto fronts evaluated so far showed that: 

1) The γMTPA angle is correctly estimated by the MOOA. 
2) The torque ripple of all output machines is minimized. 
3) Interestingly, the torque ripple is minimum along the 

MTPA trajectory at all values of the current amplitude. 

 
Figure 1.  Rotor geometry with 5 layers: the ∆αj angles define the layer 

angular positions, hci are the layer heights. 

D. Optimization procedure and MOOA settings 
The proposed MOOA-based design procedure consists of 

a first stage called Global Search (GS) and a successive 
Local Search refinement stage (LS). During the GS, the 
bounds of the search space are coarse, meaning that all the 
feasible rotors are considered as potential solutions. Table I 
reports the bounds values used for the GS optimization. The 
GS is repeated several times to avoid local minima, as 
explained in Section III. 

After the GS stage one of the GS-optimized machines is 
selected for further refinement. The LS stage is an 
additional MOOA run, with the input bounds restricted 
around the set of the GS-selected machine inputs. The GS + 
LS procedure is quicker and more reliable than a single long 
run of the MOOA. 

 META-HEURISTIC ALGORITHMS III.
Meta-heuristic optimization algorithms use a set of Np 

candidate solutions (population) that are iteratively 
modified according to probabilistic rules aiming at finding 
the global minimum of the chosen objective function. There 
exists no best algorithm that is valid for any class of 
problems (no free-lunch theorem [18]). In addition no 
algorithm can avoid the risk of falling into sub-optimal 
solutions (local minima). Genetic algorithms [19] simulated 
annealing [20] and differential evolution [21] represent three 
popular class of algorithms that have been considered and 
compared in this paper to find the best trade-off between 
computational cost and reliability of the final results. They 
can be easily implemented thanks to the wide open-source 
references available in the literature [22]. 

All the mentioned algorithms can solve multi-objective 
problems by introducing the concept of dominance. A 
solution is non-dominated when there is no other solution 
having better values for all the cost functions or objectives. 
We adopted the approach proposed in the NSGA-II 
algorithm for non-dominated and crowing distance sorting 
[23]. 

A. Genetic Algorithms Settings 
In genetic algorithms (GAs) the populations evolve using 

the biology-inspired operators of crossover and mutation. 
We adopted the GA implemented in the Matlab optimization 
toolbox using the intermediate crossover and adaptive 
feasible mutation which are the default operators. The 
parameter that guides the crossover is the crossover fraction. 
This specifies the fraction of each population that will be 
generated using the crossover operator. The value used in the 
tests was 0.8. 

B. Differential Evolution Settings 
According to the original definition of DE [21], each 

individual xk of the Np-members population evolves 
according to the combination of other three individuals out 
of the Np, xr, xs, and xt, randomly extracted from the 
population. The provisional offspring 𝒙𝑜𝑓𝑓′  is generated by 
mutation as: 

 𝒙𝑜𝑓𝑓′ = 𝒙𝑡 + 𝐹(𝒙𝑟 − 𝒙𝑠) (1) 

where the scalar factor F controls the length of the 
exploration vector (𝒙𝑟 − 𝒙𝑠) and thus determines how far 
from the individual xt the offspring can be generated. The 
gain F was randomly selected in the range [0 1.5] using the 
procedure introduced in [24]. Other values of F were tested, 

 

hc1 
hc2 

hc3 
hc4 

hc5 

∆α1 
∆α2 ∆α3 ∆α4 ∆α5 



as reported in subsection IV.F. Finally, the actual offspring 
𝒙𝑜𝑓𝑓  is generated according to the crossover procedure (2): 

 𝒙𝑜𝑓𝑓[𝑖] = �
𝒙𝑜𝑓𝑓′ [𝑖] 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑟
𝒙𝑘[𝑖] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (2) 

where rand is a random number between 0 and 1; i is the 
index of the gene under examination; Cr is the crossover rate 
selected equal to 0.95.  

C. Simulated Annealing Settings 
SA is inspired by annealing in metallurgy and is based on 

the random perturbation of each individual in the population 
according to the following rule: 

 𝒙𝑜𝑓𝑓 = 𝒙𝑘 + �𝑇𝑗  𝑟𝑎𝑛𝑑�𝑁𝑝� (3) 

Where 𝑟𝑎𝑛𝑑�𝑁𝑝� is a vector of Np random numbers, and 
Tj is the current “equivalent temperature”. Starting from the 
initial temperature 𝑇0, at each iteration, this is decreased 
according to (4): 

 𝑇𝑗 = 𝑇0(0.87)𝑗 (4) 

 SIMULATION RESULTS IV.
In this section the three MOOAs are applied to the 

optimization of a five layer SyR rotor, with the machines 
specifications reported in Table II. Three acronyms are 
introduced: 
• MOGA: Multi-Objective Genetic Algorithm; 
• MODE: Multi-Objective Differential Evolution; 
• MOSA: Multi-Objective Simulated Annealing. 

The search space described in Table I is used for all the 
algorithms. A predetermined number of function calls equal 
for all is used as stopping criterion. In this way the 
computational cost is nearly the same for the three and the 
performance comparison is based only on the quality of the 
final results. 

A. Description of the Simulation Set-Up 
As mentioned beforehand, each function call consists of 

five FEA simulations for five rotor positions. Static-magnetic 
simulations were used [25]. One candidate takes 2.6 seconds 
on a Intel Xeon E5-1620 workstation (4 cores, 3.60 GHz, 16 
GB ram), thanks to the 5-core parallel calculation (the fifth 
core is emulated by the Xeon processor). 

All the algorithms were tested in different conditions and 
only the most representative results are shown here for sake 
of brevity. Reference is made to a population size Np = 60 
and to the search bounds reported in Table I, defined as the 
Global Search bounds. 

The results reported in Figs. 2 and 3 refer to the MOOAs 
stopped after 1200 function calls (i.e. 1200 machines 
evaluated, Fig. 2) and after 3000 calls (Fig. 3). The shorter 
runs (1200 calls) require about one hour each, while the 
longer ones (3000 runs) less than 2.5 hours on the selected 
processor. To obtain Pareto fronts with a good density of 
solutions a penalty function was applied despite the small 
population size. The penalty function was applied to  

solutions with a torque ripple over 6% or an average torque 
under 4 Nm as they are way out of specification. In this way 
the final Pareto front is concentrated in the area of interest of 
the torque-torque ripple space. 

B. Effect of noise in cost function evaluation 
It is worth to point out that the cost function is noisy due 

to the random choice of the rotor position offset. On the one 
hand the random offset shortens the evaluation time, as 
already mentioned. On the other hand, however, it implies 
that the machine performance can be accidentally under- or 
over-estimated. If a strong over-estimate occurs, a non-
optimal machine can remain on the Pareto front for long 
enough to be on the final front of solutions illegitimately. 
According to NSGA-II, some of the better solutions from 
the current iteration are kept unaltered to the next iteration 
[23]. This strategy is known as elitist selection. 

Therefore at the end of each optimization run, the Pareto-
optimal machines were re-evaluated accurately over 15 time-
stepped rotor positions instead of the 5 used in the 
optimization stage to filter-off any over-estimated solutions. 
After re-evaluation, the dominated solutions were 
disregarded and they are not represented in Figs. 2 and 3, or 
in all the other reported results. 

C. Analysis of the Simulation Results 
The 1200- and 3000-evaluation results of Figs. 2 and 3 

report ten GS runs for each MOOA. The figures aggregate all 
the obtained Pareto fronts in the torque - torque ripple 
domain. Negative torque values are used as optimization 
algorithms minimize the cost function values. Figures 2 and 
3 give a quick comparative summary of the performance of 
the different algorithms. The best algorithm will be the one 
giving the best machines but also the one giving repeatable 
results for all its GS Pareto fronts. This kind of consistency is 
particularly needed here, because it allows for the reduction 
of the number of GS runs needed to trust the GS stage and 
proceed to the LS refinement. 

A comparison of figures 2 and 3 reveals that, intuitively, 
the Pareto fronts are more concentrated when the number of 
function calls is increased, for all the OAs. The MODE gives 
the best results both in terms of torque/torque ripple values 
and repeatability, as its Pareto fronts are already stable after 
just 1200 evaluations. The MOSA has a great improvement 
when passing from 1200 to 3000 evaluations. The MOGA 
has more sparse fronts and does not improve significantly 
going from 1200 to 3000 evaluations. It is worth mentioning 
that results obtained with over 3000 calls gave no further 
improvement. This may be due to the reduced ability of the 
selected algorithms to face the problems due to the noisy cost 
function. Although the approach proposed here gives 
satisfactory results, it is planned to modify the algorithms in 
the direction of non-persistent elitist selection for future 
work. 

D. Comparison over Ten GS Runs 
Summing up the results of Figs. 2 and 3, the MODE 

gives the best results, and its Pareto fronts are already 



stabilized after 1200 evaluations. As a reference for 
comparison of the three MOOAs the benchmark 
performance is set to 7.8 Nm and 4.0% ripple. Table III rates 
each algorithm according to the percentage of GS runs 

having at least one solution which is over the benchmark. 
For the MODE, 9 runs out of 10 are within the benchmark 
mask at 1200 function calls, and 10 out of 10 after 3000 
calls. All the other MOOAs have a weaker performance. 

(a) 

(b) 

 (c) 
Figure 2.  Summary of the Pareto fronts of ten optimization runs, obtained 
using (a) MODE, (b) MOGA, (c) MOSA. The runs were stopped at 1200 

function calls. The markers indicate the different runs. 

(a) 

(b) 

(c) 
Figure 3.  Summary of the Pareto fronts of ten optimization runs, obtained 
using (a) MODE, (b) MOGA, (c) MOSA. The runs were stopped at 3000 

function calls. The markers indicate the different runs..

TABLE III - PERCENTAGE OF SATISFACTORY GS RUNS 
(TORQUE>7.8, TORQUE RIPPLE<4%) 

Algorithm 1200 function calls 3000 function calls 
MODE 90% 100% 
MOGA 40% 80% 

MOSA 20% 100% 

E. Local Search refinement 
From the results of the GS sessions, a single Local 

Search run is performed. Considering that the MODE 
produces 9 satisfactory GS runs out of 10 when stopped at 
1200 calls, the design procedure proposed here uses four of 
the MODE 1200-GS runs to determine the GS-selected 
machine to start the LS refinement. 

Given four Pareto fronts of the GS type, the GS-selected 
machine is selected according to the ripple specification of 
the application. For example, in Fig. 4 the GS-solution was 
chosen after a ≤4% ripple specification. If such a 
specification was more stringent, the GS solution would 
have been traded with one with less torque ripple but also 

with less torque. The search bounds of the LS run are ±15% 
of the GS-selected machine inputs. Figure 4 shows the 
Pareto front of the LS run compared with the four MODE-
GS fronts from which the GS-selected machine has been 
picked up. Both GS and LS fronts have been re-evaluated 
over 15 rotor positions, as previously mentioned. From this 
final LS-Pareto front one machine was selected (hereinafter 
the LS-machine) which improves the average torque by 1% 
and the torque ripple by 35% with respect to GS-selected 
machine. It is important to put in evidence that none of the 
GS runs had any solution better than the final LS-machine. 
Returning to GS stage, the four repetitions of the GS runs 
ensure that the unlucky run out of ten of Fig. 2a and Table 
III is statistically avoided, and that the LS refinement has a 
starting base that is as good as possible: better than with a 
single GS run but not worse than with 10 GS runs or more. 
The whole computation of 4 GS runs and one LS run, 
requires about 5 hours to be completed. When a very low 
ripple is not specifically required by the application, the 



LS-stage can be avoided with no practical penalty in terms 
of average torque. 

F. Sensitivity to the MOOA settings. 
The optimization tests revealed a generally good 

robustness of the results towards the calibration of the 
algorithms. This section reports the analysis of the 
sensitivity of the results to the calibration of the MODE 
parameters. Similar tests are not reported for the other 
algorithms, for the sake of brevity. 

 
Figure 4.  Selected GS run and LS run Pareto fronts obtained using 

MODE and 1200 function calls. GS- and LS-machines are evidenced with 
red diamonds. 

 
Figure 5.  Evolution of the Np=60 popolation of a 1200-call MODE run. 

TABLE III - PERCENTAGE OF SATISFACTORY MODE RUNS (>7.8 NM, 
RIPPLE <4%) USING DIFFERENT CONFIGURATION PARAMETERS. 

Settings  

F ∈ [0 1.5], Cr = 0.99 100% 
F ∈ [0 1.5], Cr = 0.95 90% (*) 

F ∈ [0 1.5], Cr = 0.90 90% 

F ∈ [0 1.5], Cr = 0.80 80% 

F ∈ [0 1.5], Cr = 0.50 70% 

F ∈ [0.1 0.9], Cr = 0.95 100% 

F = 1.5, Cr = 0.95 20% 

F = 1, Cr = 0.95 70% 

F = 0.5, Cr = 0.95 100% 

(*) benchmark settings used in Figs. 2-5. 

The evolution of the population over the iterations of a 
typical GS MODE run is shown in Fig. 5. The population 
size was Np = 60 and 1200 function calls was the stopping 
criterion. The solutions tend to spread along the estimate of 
the Pareto front as the algorithm evolves. This process is 
almost completed after 20 iterations with these MODE 
settings. 

The two key settings of the MODE are F and Cr, defined 
in subsection III.B. Table III reports the percentage of 

satisfactory GS-1200 runs obtained when using different 
values of F and Cr. The increase of Cr is beneficial, but the 
performance remains acceptable in the whole considered 
range. Regarding F, the results in Figs. 2 to 5 refer to F 
randomly selected in the range [0 1.5]. The [0.1 0.9] range 
suggested in [24] actually improves the results, as 
evidenced in Table III. It is also possible to obtain 
comparable performances using a constant value of F, 
provided that this is small enough (0.5 is better than 1.0 and 
1.5). This analysis shows the robustenss of the adopted 
design approach and evidences that a further improvement 
is possible, with a finer tuning of the MODE algorithm.  

Another key aspect of calibration is the tradeoff between 
the population size and the number of function calls. 
Starting from the benchmark population size Np = 60 used 
in Figs. 2 to 5, a smaller population would reduce the 
accuracy, whereas a larger one would increase the 
computational time. Fig. 6 shows that it is true that larger 
populations and larger call numbers tends to more accurate 
results: the reported ten MODE runs with Np = 200 and 
6000 function calls each include many solutions which are 
in the neighborhoods of the LS-machine of Fig. 4. This 
combination of parameters requires a computational time of 
5 hours per run, comparable to a whole 4 times GS + LS 
procedure with Np = 60. Yet a single long run is not 
statistically immune from local minima, as experienced by 
the authors after repeated MOOAs simulations. For 
example the front of red crosses “+” in Fig. 6 is worse than 
the aggregate four GS fronts of Fig. 4.  

 
Figure 6.  Summary of the Pareto fronts of ten optimization runs, 
obtained using Np=200 and 6000 calls. The markers indicate the different 
runs. 

 
Figure 7.  Summary of the Pareto fronts of ten optimization runs, 
obtained using no random position offset for the rotor and 15 rotor 

positions instead of 5. Each run was stopped after 2000 function calls. The 
markers indicate the different runs. 

All considered, four quick runs and one long run give 
similar results, but the former procedure is considered more 
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robust. Finally the impact of the cost function noise 
produced by the random position offset is investigated by 
launching several MODE runs with 15 FEA simulated rotor 
positions, instead of 5, and without the random position 
offset. The results are reported in Fig. 7. Each run was 
stopped after 2000 evaluations, so that the computational 
burden of one run is comparable to a whole 4 GS + LS 
procedure. Again, in this case, a single run is not always 
better than the LS-solution found with the 4 GS + LS 
procedure.  

The aim of this work is to contribute to the formulation 
of a software tool for the support of motor designers from 
the industry. Then the quicker the response of the 
optimization procedure, the more helpful the automatic 
design tool will be. The MODE configuration parameters 
used in the previous sub-sections represent a reasonable 
compromise between fast and accurate results.  

 EXPERIMENTAL RESULTS V.
Two SyR rotor prototypes were built for validating the 

proposed design procedure. The one with 5 layers is the LS-
machine of Fig.4. A three-layer rotor was also MODE 
designed and tested, with the same 4 GS+LS procedure. The 
two machines are indicated with 5C and 3C, respectively. 

(a)   (b) 

(c) (d) 
Figure 8.  a) Rotor laminations of prototype 3C; b) Rotor laminations of 
prototype 5C; c) cross section of the 3C rotor; d) cross section of the 5C 

rotor. 

A. Discussion of the Layers Geometries 
Fig. 8 reports the pictures of the laminations (“a” and 

“b”) and their cross-sections (“c” and “d”). The 3C rotor has 
a regular pitch, consistent with the literature for minimum 
ripple machines [2,4,26]. The rotor pitch in the area where 
this is regular would correspond to 32 equivalent slots, that 
is one of the good combinations suggested in [4] for a 24 
slots stator. Dealing with the 5C rotor, the five layers 
thicknesses are neither progressive [4] or all equal [3]. The 
MODE has designed a machine with three main layers (1, 3, 
5), and two very thin layers in between. This layer 
distribution has not been reported in the literature.  One can 

argue that it seems that the MOOA tried to group the layers 
together to form a three-layer-like distribution. In fact, the 
ends of the three main layers (1, 3, 5) occupy again the 
positions of a 32 regular slots rotor. The thinner layers are 
exactly half way between the main ones. FEA shows that 
the presence of the two extra layers helps mitigating the 
torque ripple, as demonstrated by the fact that all the 
MOOAs converge very easily to low ripple solutions, 
despite of the numerous degrees of freedom. In turn, the 
more complicated problem (5C), defined by 10 geometric 
variables, converges in a time that is very similar to the one 
of the simpler problem (3C, 6 variables). The total 
computation time needed for running the 4GS+LS 
procedure is practically the same for both the 3C and the 5C 
rotors.  

B. Measured versus Simulated Torque 
The torque ripple maps versus the id, iq current 

components were measured using a dedicated test bench, 
depicted in Fig. 9. The rotor speed is controlled at 10 rpm 
by a geared DC motor during the tests. The motor under test 
is current vector-controlled, using a dSPACE 1104 
development board. The dq current set-points and the 
torque-meter logged along one motor revolution are 
managed automatically by means of a Matlab script. The 10 
Nm rating of the torque-meter limits experiments not to 
exceed the id=20 A, iq=30 A current area. 

 
Figure 9.  Test bench used to measure the torque ripple maps. 

The measured torque and torque ripple values are 
reported in Figs. 10 to 14 for comparison with the FEA 
results. 

The average torque from the experiments is slightly 
lower than the simulated one (Figs. 10 and 11). In addition 
the torque ripple is slightly worse than the simulated ones 
(Figs. 12 and 13). However, both FEA and experiments 
present a similar minimum-ripple trajectory in the id, iq 
domain (Fig. 12 for the 3C rotor, Fig. 13 for the 5C rotor). 

Figure 14 shows the measured and FEA torque 
waveforms compared at three current levels. This 
summarizes the conclusions of the former figures, i.e. there 
are some expected discrepancies between FEA and the 
measured results, however, the experiments confirm the 
expected machine performances consistently: 
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• The torque ripple increases with the current loading, 
however, this is well minimized, at least up to 
continuous current (16.8 A). 

• Torque ripple is minimum along the MTPA, due to the 
specific optimization technique. 

• The 3C and 5C rotors have similar performance at all 
loads, both in FEA and in the experiments.  

 
 (a) (b) 

Figure 10.  Torque contours evaluated with FEA (continuous line) and 
experiments (dashed lines). The MTPA line is in evidence. The three 

squares indicate the working points reported in Fig. 14. a) Prototype 3C; 
b) Prototype 5C. 

(a) 

 (b) 

Figure 11.  Torque as a function of the current phase angle, at two 
different values of current amplitude. a) Prototype 3C; b) Prototype 5C. 

In terms of the discrepancy between measured and FEA 
results, these are mainly caused by the non-exact knowledge 
of the magnetization curve of the steel,  by the effects of 
manufacturing tolerances as well as those due assembly 
tolerances. The steel magnetic properties in deep saturation 
are very important here in order to predict accurate 
performance. In addition it is also possible that local 
mechanical and thermal stress close to the bridges during 
manufacturing might alter the magnetic properties locally. 
The laminations were wire-cut using high precision Electric 

Discharge Machining (EDM), nevertheless it is reasonable 
that the increased torque ripple and reduced torque are 
justified by such prototypes’ non-idealities. From the 
tolerances standpoint, the actual thickness of the structural 
bridges, for example, is very critical for the ripple 
waveform. 

 

 (a) (b) 

Figure 12.  Prototype 3C: torque ripple surface over the id, iq plane, 
according to FEA (a) and measurements (b). 

 

 (a) (b) 

Figure 13.  Prototype 5C: torque ripple surface over the id, iq plane, 
according to FEA (a) and measurements (b). 

(a) 

(b) 

Figure 14.  Torque waveforms for the id, iq combinations indicated with 
black squares in Fig. 10. a) Prototype 3C; b) prototype 5C. 
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C. Core Loss and Efficiency 
The efficiency maps of the two prototypes are reported 

in Fig. 15, in the torque versus speed plane. The MTPA 
control law is assumed for each torque level, and the stator 
Joule losses are evaluated accordingly. The 5C machine has 
a little advantage respect to the 3C competitor. 

The core losses were FEA mapped over the whole (id, iq) 
plane using Magnet, by Infolytica [27]. Magnet adopts a 
two-term modified Steinmetz model that fits the loss data 
published by the steel manufacturers, and the core loss are 
calculated on the stator and the rotor taking into account the 
actual field waveforms in each single finite element, all 
harmonics included. The core loss map over (id, iq) was run 
at rated speed, and then generalized to any speed level 
according to the two-term loss model of Magnet, where the 
classical loss term is scaled according to the square of the 
frequency and then of the speed, and the modified hysteresis 
term is scaled according to the frequency raised to the 
α power   (the exponent α is equal to 0.996 for the stator 
grade M470-50 and to 1.207 for the rotor grade M270-35, 
according to the library of materials of Magnet).  

 
Figure 15.  Efficiency map in the torque-speed plane for the prototyped 

(dotted lines) 3C and (solid lines) 5C machines. 

The segregation of stator and rotor core loss and copper 
loss is reported in Fig. 16 at the rated speed of 5000 rpm, 
for continuous and partial load. The total core loss is under 
control, being lower than the Joule loss, for both machines. 
Core losses are mostly on the stator, and they are lower in 
the 5C machine, overall. This stands for lower harmonic 
losses. The rotor loss is quite negligible, but it is lower in 
the 3C machine. This is consistent with the literature: a 
rotor with a higher number of “rotor slots” has higher rotor 
harmonic losses [16]. 

  
 (a) (b) 

Figure 16.  Losses distribution at 5000 rpm: a) 1 Nm; b) 4.5 Nm 

All considered, the two prototypes have very similar 
performances, in terms of torque, torque ripple and 
efficiency. The better efficiency of the 5C machine in Fig. 
15 could justify the adoption of this solution, while the 
simpler geometry of the 3C could encourage the opposite 
choice from a manufacturing perspective. 

The 3-layer-like nonconventional distribution of the 5 
layers in the 5C rotor confirms that this stator configuration 
(2 slots per pole per phase) is best matched with a 3-layer 
rotor with equally distributed barrier-ends, as also 
confirmed in the literature [4]. 

 CONCLUSION VI.
The paper presented a procedure for the automatic 

design of multi-layer Synchronous Reluctance motors based 
on FEA and MOOAs of different nature. Three popular 
MOOAs selected from the literature have been compared, 
and Differential Evolution gives the best results in terms of 
convergence time and repeatability of the results. A 
comprehensive rotor design procedure has been formulated 
giving a robust optimization of the performance within short 
time. The proposed 4GS + LS procedure has been validated 
on two example rotors. Both machines had comparable 
performance within similar computation times. The 
experimental results show that the optimized machines have 
a minimum ripple region along the MTPA control trajectory 
and this is a consequence of the proposed MOOA + FEA 
approach. The MOOA and FEA approach produced a 
competitive five layer machine, using a non-standard 
distribution of the five layers widths and end-positions. 
However the three layer rotor is the best match for the 
specific number of stator slots considered in the paper.  
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