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Abstract

Bacterial polysaccharides have numerous clinical or industrial uses. Recombinant plants could offer the possibility of
producing bacterial polysaccharides on a large scale and free of contaminating bacterial toxins and antigens. We
investigated the feasibility of this proposal by cloning and expressing the gene for the type 3 synthase (cps3S) of
Streptococcus pneumoniae in Nicotinia tabacum, using the pCambia2301 vector and Agrobacterium tumefaciens-mediated
gene transfer. In planta the recombinant synthase polymerised plant-derived UDP-glucose and UDP-glucuronic acid to form
type 3 polysaccharide. Expression of the cps3S gene was detected by RT-PCR and production of the pneumococcal
polysaccharide was detected in tobacco leaf extracts by double immunodiffusion, Western blotting and high-voltage paper
electrophoresis. Because it is used a component of anti-pneumococcal vaccines, the immunogenicity of the plant-derived
type 3 polysaccharide was tested. Mice immunised with extracts from recombinant plants were protected from challenge
with a lethal dose of pneumococci in a model of pneumonia and the immunised mice had significantly elevated levels of
serum anti-pneumococcal polysaccharide antibodies. This study provides the proof of the principle that bacterial
polysaccharide can be successfully synthesised in plants and that these recombinant polysaccharides could be used as
vaccines to protect against life-threatening infections.
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Introduction

Polysaccharide encapsulated bacteria are major causes of

disease and death in humans and animals. For example, diseases

caused by Streptococcus pneumoniae (the pneumococcus), Neisseria

meningitidis and Haemophilius influenzae are responsible for more than

two million deaths every year, the majority children under the age

of five [1,2][1,2]. Streptococcus pneumoniae alone is responsible for

more than 50 percent of invasive disease worldwide. Despite the

extensive use of pneumococcal vaccines, incidences of disease

caused by S. pneumoniae remain high, mainly due to serotypes not

included in the vaccine [3]. Current anti-pneumococcal vaccines

are composed of capsular polysaccharide alone or conjugated to

protein. Whatever the formulation, pneumococcal vaccine design

has to deal with the facts that there are over 90 different capsular

and the serotype distribution varies with time and geography.

However, for reasons of economics and biology the current

vaccines are limited in coverage (23 in the polysaccharide-only

vaccine and 13 in the new version of the conjugate) to the most

dominant serotypes in Europe and North America. Ideally

multiple versions of these vaccines are required and they would

be regularly reformulated to offer maximum protection. Cost of

polysaccharide production then becomes a concern. One of the

challenges for pneumococcal vaccine production is to manufacture

bacterial polysaccharide on a large-scale, without need for

purification procedures to remove contaminating toxins and

pyrogens. Currently the preparation of polysaccharides requires

expensive fermentation equipment, microbiological containment

and high levels of quality control to prevent contamination. Plants

offer a solution because they synthesise a large number of high

molecular weight polysaccharides, they have many of the sugar

precursors of bacterial capsular polysaccharide readily available

and plants have compartmentalised metabolic pathways and

transport processes that could facilitate polysaccharide extraction

[4]. However, until now heterologous antigen production in plants

has been limited to the production of proteins [5,6,7]. Here we

report that plants can be engineered to synthesise bacterial

polysaccharides and these polysaccharides provide protective

immunity. We demonstrated this principle using the serotype 3

capsular polysaccharide of S. pneumoniae, a serotype that is
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frequently isolated from disease cases. The type 3 polysaccharide is

composed of repeating D-glucose (Glc) and D-glucuronic acid

(GlcA) units, as (1R4)-b-D-Glcp-(1R3)-b-D-GlcpA-(1R4) [8,9]

The precursors, UDP-glucose (UDP-Glc) and UDP-glucuronic

acid (UDP-GlcA), are polymerised by a type 3 synthase (Cps3S)

[8,9].

Results

The Pneumococcal Type 3 Capsule Synthase Gene was
Cloned into Nicotinia tabacum by Agrobacterium-
mediated Gene Transfer

The pneumococcal cps3S gene {Dillard, 1995 #888} was

amplified from genomic DNA of the pneumococcal type 3 strain

WU2 using primers CPSFOR and CPSREV and cloned with

PR1b signal sequence (which was used to direct secretion of the

transgene to the apoplast) into the Agrobacterium binary vector

pCambia 2301, to give pCMS4. This placed cps3S under the

control of duplicated constitutive cauliflower mosaic virus

promoters, CaMV35S and also enabled selection of transformed

plants with kanamycin. Nucleotide sequence analysis of the cloned

cps3S in pCMS4 showed 100 % identity with the published

sequence [8].

Nicotiana tabacum was transformed with pCMS4 by A. tumefaciens-

mediated gene transfer. A T1 generation was grown from the

seeds of six plants and PCR showed that four plants contained the

1.3kb cps3S gene (Figure 1A). PCR also confirmed the absence of

contaminating Agrobacterium DNA (Figure 1B). RT-PCR, with

cps3S-specific primers, showed that the transgene was expressed in

the transgenic plants (Figure 2). No amplicon was generated by

direct PCR amplification of RNA extracts, confirming the absence

of contaminating cps3S DNA (Figure 2A). No amplicon was

generated by RT-PCR of untransformed plants (Figure 2A lane 3).

A second generation of plants were grown from the seeds of these

plants and PCR confirmed stable transgene expression (Figure S1).

All subsequent assays were done with second generation (T2) plant

material.

Pneumococcal Type 3 Polysaccharide was Detected in
the Leaves of Transformed Plants

Double immunodiffusion showed that type 3 antibody-antigen

complexes were seen (Figure 2B) between wells which contain

purified type 3 pneumococcal polysaccharide, sonicated plant cell

extract from transgenic plants (wells 1-4) and type 3 polysaccha-

ride specific antiserum (well A). This was not seen in wells

containing extract from a wildtype tobacco plants (wells 5 and 6).

Western blotting of transgenic and wildtype plant extracts using

type 3 polysaccharide specific antiserum also showed the presence

of type 3 polysaccahride in transgenic plant extracts only (Figure

2C). High-voltage paper electrophoresis of hot-acid hydrolysates of

cold-acid-extractable tobacco leaf polysaccharides confirmed these

findings (Figure 2D). Acid hydrolysis of polysaccharides from

transgenic leaves produced a relatively hot-acid-resistant, singly-

ionised disaccharide with the same mobility as the b-D-GlcpA-

(1R4)-D-Glc seen following acid hydrolysis of pneumococcal type

3 polysaccharide. This disaccharide was barely detectable in wild

type non-transformed plants (Figure 2D).

Immunisation with Transgenic Plant Extracts Protected
Mice from Pneumococcal Disease

To test the immunogenicity of the plant-derived type 3

polysaccharide, mice were immunised with three doses of apoplast

extracts from transgenic or wildtype plants. Sera were collected on

the day before each immunisation and ten days after the final dose,

and anti-type 3 polysaccharide IgG was determined by ELISA.

Significantly more (P,0.05) specific anti-type 3 antibody was

detected after a single dose of the transgenic leaf extract, with a

further increase (P,0.05) after a second dose (Figure 3A), whereas

antibody levels remained unchanged in those given wildtype

extracts (P.0.05).

Mice were challenged intranasally with the serotype 3 S.

pneumoniae strain HB565 230 days after the final immunisation.

Mice immunised with transgenic plant extract survived signifi-

cantly longer (P,0.001) than those given wildtype extracts (mean

survival: 181672h and 90623h for transgenic and wildtype,

respectively). Mice immunised with the wildtype extract did not

survive longer (P.0.05) than sham-immunised mice (91638h).

None of the fifteen animals given wildtype extract were alive ten

Figure 1. Detection of the cps3S gene in transformed tobacco plants. A. DNA was used as a template for PCR (Lanes 2, 3: wild type plants;
Lanes 4 – 7: transformed plants.) using cps3S-specific primers. PCR products were analysed by agarose gel electrophoresis. The results show the
presence of the cps3S gene in the transformed plants (Lanes 4 - 7) but not the wild type plants. The PCR reaction in Lane 9 contained purified plasmid
DNA containing cps3S (pCMS4) as a positive control and Lane 8 contained no template DNA. Molecular sizes are indicated. B. PCR showing the
absence of Agrobacterium DNA contaminating DNA preparations from wild type (Lanes 2, 3) and transformed (Lanes 4 - 7) tobacco plants. PCR was
done with Agrobacterium-specific primers. The results show that there was no Agrobacterium DNA present in the transgenic plant samples. The PCR
reaction in Lane 9 contained Agrobacterium DNA as a positive control and shows the expected 730bp band and Lane 8 contained no template.
Molecular sizes are indicated. DNA was extracted from the same six N. tabacum plants for the PCRs shown in A and B.
doi:10.1371/journal.pone.0088144.g001
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days after the challenge, whereas eight of the fourteen immunised

with transgenic extract survived (Figure 3B).
Discussion

This study has shown that bacterial polysaccharide vaccine

antigens can be synthesised in plants and that simple extracts of

these plants are immunogenic and protect against an otherwise

Figure 2. In planta expression of the cps3S gene and formation of serotype 3 polysaccharide. A. Reverse transcriptase PCR to detect cps3S
mRNA in transgenic tobacco plants. RNA was extracted from a wildtype (Lanes 1 and 3) and a transgenic N. tabacum containing cps3S (Lanes 2 and 4).
PCR products, using cps3S specific primers were analysed by agarose gel electrophoresis. Lanes 1 and 2 showed the absence of cps3S DNA in the
RNA. RT-PCR on the same samples showed the presence of cps3S mRNA in the transgenic plant (Lane 4) but not in the wildtype (Lane 3). Lane 5 PCR
of pCMS4 containing cps3S, done as before. The 1.3 kb amplicon in Lanes 4 and 5 shows a full-length transcript of cps3S is expressed in the transgenic
plant. B. Double immunodouble diffusion. Well 1:10 mg purified serotype 3 polysaccharide; Wells 2-4: extract from tobacco plants shown to express
cps3S: Wells 5 and 6: extract from a wildtype tobacco plant. Well A: type 3 polysaccharide specific antiserum. The preciptin lines identify the presence
of type 3 polysaccharide. C. Western blotting using type 3 polysaccharide specific antiserum. Lane 1: purified type 3 polysaccharide; Lane 2: wildtype
plant extract; Lane 3: transgenic plant extract. D. High-voltage paper electrophoresis of tobacco leaf acid hydrolysates. Lanes 1-3: 25 mg of each
marker, (Lane 1) galacturonic acid (GalA) and glucose, (Lane 2) glucose and b-D-glucuronosyl-(1R4)-D-glucose (GlcA–Glc) (partial hydrolysate of 10 mg
type 3 pneumococcal polysaccharide) and (Lane 3) 10 mg of a mixture of mannose, a-D-glucuronosyl-(1R2)-myo-inositol (GlcA–Ins) and a trace of a-D-
mannosyl-(1R4)-a-D-glucuronosyl-(1R2)-myo-inositol (Man–GlcA–Ins). Lanes 4–10: hydrolysate of polysaccharides cold-acid-extracted from 32 mg
fresh weight of wildtype (Lanes 4 and 5) or transgenic (Lanes 6–10) tobacco leaves. Each lane also contains a trace of Orange G (coloured internal
marker). All lanes show similar levels of staining for neutral sugars (co-migrating with glucose, near the origin). The samples were electrophoresed at
pH 6.5, at 3.0 kV for 60 min (anode at top) and stained with AgNO3. Spots of the disaccharide, GlcA–Glc, diagnostic of type 3 pneumococcal
polysaccharide, are highlighted by the dashed box; these spots were quantified for grey density in PhotoShop (see histogram).
doi:10.1371/journal.pone.0088144.g002
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lethal infection. Transgenic plants are recognised as good

expression systems for proteins but the synthesis of bacterial

polysaccharide in plants has not been demonstrated before.

We chose the production of the type 3 polysaccharide of S.

pneumoniae for the reason that it is a relatively simple carbohydrate,

being composed of repeating D-glucose (Glc) and D-glucuronic

acid (GlcA) organised as (1R4)-b-D-Glcp-(1R3)-b-D-GlcpA-(1R4)

units [8,9]. The precursors, UDP-glucose (UDP-Glc) and UDP-

glucuronic acid (UDP-GlcA) are naturally synthesised by plants,

which transport them into the endomembrane system as substrates

for cell wall polysaccharide synthesis [4,10]. Polymerisation of

these substrates into type 3 polysaccharide requires the enzyme,

type 3 synthase (Cps3S). Therefore, we cloned the pneumococcal

cps3S gene into N. tabacum using pCambia 2301. This strategy not

only placed cps3S under the control of duplicated constitutive

cauliflower mosaic virus promoters, CaMV35S, but it also enabled

selection of transformed plants with kanamycin. Growth of a

second generation of kanamycin-resistant plants confirmed stable

transgene expression. Although not the primary purpose of the

study, we did a limited investigation of how to extract the

pneumococcal polysaccharide from plant tissue. The method that

yielded the highest concentration of pneumococcal polysaccharide

was to grind the plant tissue under liquid nitrogen, suspend the

tissue in water and lyse the cells by sonication. Despite cloning the

signal sequence PR1b we detected no type 3 polysaccharide in its

destination, the apoplastic fluid. This implied that PR1b was not

functioning correctly. Previous studies replaced the start codon of

the transgene with PR1b [3], however, we maintained the start

codon and cloned an in-frame sequence of cps3S. This may have

led to a reduction in PR1b activity and improving this may

increase the yield of type 3 polysaccharide. Another method to

increase yield is to use root tissues, since the continuously growing

primary cell wall may contain higher concentrations of the UDP-

precursors. In this study we focussed on leaf tissue as we were

working with parent and F1 generations and removal of the roots

may have restricted growth of the plant and seed development.

Leaf tissue was also much easier to obtain. For these reasons, the

levels of polysaccharide extracted from plant tissue may not have

been optimal.

Having shown the principle of in planta synthesis using the linear

type 3 polysaccharide, the next challenge is the production of more

complex, branched, bacterial polysaccharides. All the genes

involved in pneumococcal capsular polysaccharide synthesis are

closely linked on the bacterial chromosome, arranged within a

single locus (a ‘‘type specific’’ cassette). Therefore, it is possible that

the introduction of whole cassettes could lead to the synthesis of

sugar precursors not naturally occurring in the plant and their

assembly into more complex polysaccharides. Furthermore,

effective signal or transport peptides should allow easier extraction

by compartmentalising different polysaccharides.

Because anti-polysaccharide antibodies are protective against

several bacterial pathogens of humans and animals there is great

interest in polysaccharides as vaccines. However, some of the

problems with these vaccines are illustrated by vaccines against S.

pneumoniae. The current pneumococcal vaccine contains twenty-

three polysaccharide serotypes but protection is serotype-specific

and some are not immunogenic in children. The vaccine was

formulated on the prevalence of serotypes in North America and

Europe, but elsewhere the coverage can be considerably less [11].

In addition to protection being serotype-specific, polysaccharide

immunogenicity also varies with serotype and age [12]. Further-

more, temporal variation occurs in the serotypes isolated from

adults and children [13]. Thus it has been suggested that different

vaccine formulations should be manufactured for differing

situations [14], but unless low-cost solutions are found it will not

become a reality. Polysaccharide vaccines can be expensive, which

restrains their use in developing countries. Production of

polysaccharide vaccines in plants can introduce economies of

scale that can drive down the production costs. The alternative, of

using microorganisms as the vaccine production system, requires

expensive fermentation equipment and high levels of quality

control to prevent contamination. In contrast, the use of plants for

vaccine production offers an achievable solution, opening the

possibility of local production, which increases the likelihood of

adoption of the vaccine [15].

Efforts to improve the poor immunogenicity of polysaccharide

vaccines in the young are focused on the development of

polysaccharides covalently linked to protein, but these make

difficulties with serotype coverage worse. When the US FDA

licensed a 7-valent anti-pneumococcal conjugate vaccine (Prevnar)

the serotypes covered by the vaccine caused 90% of disease in

North America and Europe, but less than 70% in Asia [15]. This

emphasises the desirability of a ‘tailor-made’ vaccine. However,

formulations of conjugates for a particular country or for

Figure 3. Immunogenicity and protective efficacy of serotype 3 pneumococcal polysaccharide produced in planta. A. Concentration of
serotype 3 polysaccharide-specific IgG in serum of mice immunised with extracts from tobacco plants expressing cps3S (black bars) or wildtype plant
(white bars); n = 5. B. Survival of mice challenged with virulent type 3 pneumococci 230 days after the final immunisation with transgenic plant
extract (closed triangles), wildtype extracts (open triangles) or sham-immunised mice (closed circles). Mice alive at 240h post-infection were
considered to have survived the infection.
doi:10.1371/journal.pone.0088144.g003
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childhood and for adult vaccination programmes are even less

likely than pure polysaccharide formulations, unless cheaper

production methods can be found. Conjugate vaccines are very

expensive and the pneumococcal conjugates will be more

expensive than any other current vaccine. Even with tiered

pricing the price of these vaccines is a real concern for their uptake

[16]. The ability to produce polysaccharide vaccines in plants, on

a large scale, could lead to a ready availability of polysaccharides

for protein conjugate vaccine production. There is, however, a

more exciting possibility, namely to exploit the plant’s glycosyl-

ation machinery to glycosylate heterologous proteins with heter-

ologous polysaccharide to make conjugate vaccines in planta. Plants

making heterologous immunogen represent an innovative tech-

nology for the development of childhood vaccines. The longer-

term objective of this research is to synthesise polysaccharide-

protein conjugates in plants.

In planta synthesis of bacterial polysaccharide and conjugates

offers an innovative contribution to vaccinology. Synthesising

heterologous polysaccharides in plants represents the first proof of

concept step in this process. These experiments have yielded

exciting data even though no attempt was made to optimise gene

expression, polysaccharide purification or immunising protocol.

These are developmental issues for the future now that the concept

that bacterial polysaccharide can be synthesised in plants has been

proven.

Materials and Methods

Construction of the Plant Expression Vector
The sequence of the type 3 pneumococcal capsular polysac-

charide biosynthesis cassette was obtained from GenBank (www.

ncbi.nlm.nih.gov), accession number U15171. A 1.3 kb DNA

fragment containing the cps3S gene was obtained by PCR from the

genomic DNA of S. pneumoniae serotype 3 (WU2) using the

oligonucleotide primers sense (CPSFOR) 59-CTG GTAQCCC

ATG TAT ACA TTT ATT TTA ATG TTG TTG G-39

corresponding to 2227bp - 2254bp with a KpnI restriction site

inserted at the 59 end; anti-sense (CPSREV) 59- TCA TCA CTC

TGT TAA ATT CCT AGT TCC -39, corresponding to 3454bp -

3479bp of the cassette. The PCR amplification was performed in a

total volume of 50 ml. using 2 mg genomic template under the

following conditions: 94uC for 4 minutes and then a cycling

procedure comprising denaturation at 94uC for 45 seconds,

annealing at 58uC for 1 minute, and extension at 72uC for 1

minute 30 seconds, which was repeated either 10 or 30 times, and

a final extension at 72uC for 10 minutes. Amplified DNA resulting

from PCR were purified from the PCR reagents using the

QIAquick PCR purification kit (Qiagen). The amplified fragment

was inserted into the multiple cloning site of pCR4-TOPO

(Invitrogen, Carlsbad, CA, USA). The Agrobacterium binary vector

pPZP221 (GenBank U10463) [17] has been previously engineered

to produce vector pCHF2 (Figure 4) containing the constitutively

expressed cauliflower mosaic virus (CaMV) 35S promoter and a

Figure 4. Construction of the pCMS4 vector. A. The digested products of three separate restriction digests of pCMS3 and pCambia 2301. Lane 1
shows the expected 3 fragments of pCMS3 when digested with EcoR I and Kpn I. Lane 2 shows the expected 2 fragments produced from the
digestion of pCMS3 with Kpn I and HinD III. Lane 3 shows the expected band of 11.5 Kbp when pCambia 2301 was digested with EcoR I and HinD III.
The DNA fragments of 864bp (Lane 1) and 1978bp (Lane 2), indicated by the arrows, were used to reconstruct the pCMS3 T-DNA fragment containing
cps3S and these were ligated to the 11.5 Kb pCambia fragment (Lane 3). This plasmid was termed pCMS4. Undigested DNA is not shown. A 1 Kb
ladder (New England Biolabs) was used as a molecular size marker. B. The expression vector pCHF2. A CaMV35S promoter, rbcS terminator region,
and a PR1B signal sequence were cloned into the T-DNA region of the pPZP222 vector [17]. The unique restriction endonuclease sites are also shown.
doi:10.1371/journal.pone.0088144.g004
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rbcS terminator (C. Fankhauser, personal communication). Here,

synthetic primers homologous to the PR1b signal peptide sequence

[18] were annealed, phosphorylated and inserted into pCHF2

using SacI and KpnI cutting sites situated between the CaMV 35S

promoter and the rbcS terminator. The cps3S gene was removed

from the pCR4-TOPO vector using KpnI and PstI and inserted

between the PR1b signal sequence and the rbcS terminator

sequence, to form the clone pCMS3. The entire expression

cassette was then excised from pCMS3 with EcoRI and HinDIII

and ligated into the binary plant vector pCAMBIA2301 (GenBank

accession number AF234316) (containing a kanamycin-resistance

gene and gus) to give the resulting plasmid, pCMS4.

Transformation of Plants
pCMS4 was introduced into Agrobacterium tumefaciens strain

GV3101 directly by the heat shock method, using 0.5 ml (1 mg)

pCMS4 and 0.1 ml of frozen CaCl2-competent A. tumefaciens cells.

Cells were thawed at 37uC for 5 minutes, re-suspended in 1 ml of

YEP broth (10 g/L Yeast Extract, 10 g/L Peptone, 5 g/L NaCl,

pH 7.0) and incubated at 28uC for 2 hours with gentle shaking.

Cells were harvested by centrifugation at 600 g for 10 minutes, the

pellet re-suspended in 0.1 ml YEP and spread onto YEP agar

containing 100 mg/ml kanamycin and 100 mg/ml rifampicin and

incubated overnight at 28uC. Subsequently, A. tumefaciens carrying

pCMS4 was used to transform tobacco (Nicotiana tabacum cv SR1)

leaf discs, as described previously [19]. Leaf discs were then

transferred to Murashige-Skoog (MS) agar containing 3% (w/v)

sucrose, the plate was sealed with parafilm and incubated in the

dark at room temperature for 2 days. Discs were then transferred

to selective medium (MS agar containing 3% (w/v) sucrose,

250 mg/ml cefotaxime (to kill the A. tumefaciens on the surface of

explants), 100 mg/ml kanamycin, 100 mg/ml ampicillin, 100 mg/

ml naphthalene acetic acid (NAA) and 1 mg/ml 6-benzylamino-

purine) to select transgenic progeny. Ten days post-infection, those

discs showing shoot formation were transferred to fresh selective

medium and re-incubated for approximately 1-2 weeks. Larger

shoots were transferred to powder rounds containing the same

medium and incubated for a further 3 weeks, or until roots started

to form. After eight weeks, kanamycin-resistant shoot regenerants

were removed to a rooting medium containing 100 mg/ml NAA

and 25 mg/ml kanamycin. Rooted plantlets were transferred to

soil, self-pollinated and the seeds stored desiccated at 4uC.

Detection of cps3S Gene Expression in Transgenic Plants
Total RNA was isolated from 100 mg of leaf tissue using a RNA

isolation kit (RNeasy Plant Mini Kit; Qiagen, Surrey, UK) and

used in the production of first strand cDNA using a cDNA

synthesis kit (RNase H2 reverse transcriptase kit; Invitrogen) and a

random hexa-nucleotide primer. PCR was then performed using

the CPSFOR and CPSREV primers as described above, RNA

extracts without prior reverse transcriptase treatment were used as

a control to indicate the presence of cps3S specific DNA. RNA

extracted from wild-type tobacco leaves also was used as negative

control. To confirm the absence of contaminating Agrobacterium

DNA PCR was done with the primers VCF (59-ATC ATT TGT

AGC GAC T-39) and VCR (59-AGC TCA AAC CTG CTT C-

39), designed to amplify a 730bp region of the virC gene of

Agrobacterial Ti and Ri plasmids [20].

Preparation of Leaf Extracts
Leaves were collected from tobacco plants, tissue ground under

liquid nitrogen and nanopure water added to give 0.5 g/ml plant

tissue. The cells were lysed by sonication: 6630 second sonications

at an amplitude of 50 microns with 30 second rests in between

sonications. The cell lysate then was centrifuged for 5 minutes at

10,000 g and the supernatant divided into 1 ml volumes,

lyophilised and stored at 4uC.

Extraction of type 3 Polysaccharide from Apoplastic Fluid
A modification of the method described by Fry and co-workers

was used [21]. Leaf material (1 g) was added to 50 ml of 50 mM

CaCl2 and vacuum-infiltrated for a period of 30 minutes. The

leaves were removed and dried gently on a paper towel before

being transferred to the barrel of a 25 ml syringe with the plunger

removed. This was placed in a 50 ml Falcon tube and the

assembly centrifuged at 800 g at 10uC for 10 minutes. The

aqueous extract was stored at 4uC until required.

Double Immunodiffusion
A modification Ouchterlony’s method was used [22]. 0.2% (w/

v) Ouchterlony agarose in barbitone buffer (1.84 g/l diethylbarbi-

turic acid, 10.3 g/l sodium diethylbarbiturate, pH 8.6) was used to

coat microscope slides. These were left to dry for 1 hour, and then

overlaid with 4.5 ml 1% (w/v) agarose in barbitone buffer. Once

set, 4 mm holes were cut and 20 ml of sample was placed in the

outer holes. Type 3 polysaccharide from S. pneumoniae (ATCC),

diluted in 20 ml of untransformed plant extract, was used as a

positive control. The central hole contained 20 ml neat rabbit anti-

type 3 polysaccharide antiserum (Statens Serum Institute,

Copenhagen, Denmark). The slides were incubated at 4uC in a

humidity box for 1-2 weeks. Precipitin lines were observed and

photographed in indirect light. Recombinant pneumococcal

polysaccharides were estimated by comparison with the intensity

of the precipitin lines of the positive controls.

High-Voltage Paper Electrophoresis (HVPE)
Leaf material was harvested, washed, cut into pieces and ground

into a fine powder under liquid nitrogen. Samples were stored at –

20uC until required. To 10 g fresh weight was added 50 ml 5%

(v/v) formic acid and the suspension was incubated with gentle

shaking for 2 days at room temperature. This procedure is

expected to extract the capsular polysaccharide, but only a small

proportion of the leaf cell-wall polysaccharides and starch. The

homogenate was filtered through Miracloth and rinsed with 25 ml

water and then the combined filtrate was adjusted to pH 4.0 with

pyridine. Co-extracted proteins were denatured at 100uC for 60

min, then cooled and pelleted by centrifugation at 17006g for 15

min; the supernatant was freeze-dried. The dried material was

washed exhaustively at room temperature in several changes of

82.6% (v/v) ethanol, which dissolves low-MW sugars. The

remaining insoluble, polysaccharide-rich material was then air-

dried, incubated at 90uC for 30 min in 22.6 ml water and cooled;

trifluoroacetic acid (TFA) was then added to a final concentration

of 0.36 M, which solubilised the polysaccharide.

For partial hydrolysis of the polysaccharide to yield the

relatively acid-resistant, diagnostic dimer (aldobiouronic acid;

GlcA–Glc) a portion of the solution was hydrolysed in 2 M TFA at

120uC for 30 min [conditions optimised in preliminary runs with

authentic type 3 polysaccharide; data not shown], then dried in

vacuo. The hydrolysis products were redissolved in water contain-

ing a trace of Orange G (internal anionic marker), and a volume

(equivalent to 32 mg fresh weight of leaf) was spotted on to

Whatman 3 MM paper. The samples were subjected to HVPE at

pH 6.5, at 3.0 kV for 60 min [23] and then stained with silver

nitrate [21] to reveal sugars. External markers, run on the same

sheet, included hydrolysates of (i) purified Type 3 polysaccharide

(yielding glucose plus GlcA–Glc), and (ii) the trimer a-D-mannosyl-

(1R4)-a-D-glucuronosyl-(1R2)-myo-inositol [24] (which yields a
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comparable dimer, a-D-glucuronosyl-(1R2)-myo-inositol, plus

mannose). Other markers were commercial glucose and galac-

turonic acid. After staining with silver nitrate [21], electropho-

retograms were scanned and relevant spots were quantified for

grey density in PhotoShop, as described in Supplementary Figure

1 of Parsons et al [25].

Immunisation and Challenge
Nine-week-old MF1 female mice (HarlanOlac, Bicester, UK)

were given three doses of control plant extract or plant extract

containing 2 mg plant-derived pneumococcal polysaccharide per

mouse (as estimated by the Ouchterlony method) in 67 ml PBS and

33 ml Imject alum adjuvant (Pierce, Rockford, IL, USA). Mice

were immunised intraperitoneally on days 0, 10, 20 and 30. Sham-

immunised mice received alum adjuvant containing an irrelevant

immunogen (KLH) using the same schedule. Serum samples were

obtained by tail bleeding the day before each immunisation. Mice

were challenged intraperitoneally with 2.86106 cfu serotype 3

pneumococci on Day 260. The health status of animals was

monitored, according to the scheme of Morton et al [26].These

experiments were done under a project licence from the UK

Home Office.

ELISA
Maxisorb ELISA wells (Gibco BRL, Nunc products) were

coated with 2 mg/ml purified type 3 pneumococcal polysaccharide

(ATCC) in coating buffer (50 nM NaHCO3 pH 9.6, 0.02% (w/v)

NaN3) for 16 h at 22uC. After rinsing with PBS, the wells were

blocked with PBS + 5% (w/v) dried milk at 37uC for 1 h and

washed three times with washing buffer (50 mM TrisHCl pH 7.5,

150 mM NaCl, 0.05% (v/v) Tween20). Mouse sera were diluted

1:100 in blocking buffer and 100 ml added to the wells and

incubated, shaking, for 2 hours at 37uC. The plates were washed

three times as before and bound antibodies were detected using

alkaline phosphatase-conjugated goat anti-mouse IgG secondary

antibody (Fc specific, Sigma; diluted 1:5000), and 1 mg/ml p-

nitrophenyl phosphate (Sigma) dissolved in 1 M diethanolamine

pH 9.8, 0.5 M MgCl2. Absorbance was read at 405 nm after 1

hour at 37uC and IgG concentration determined by reference to a

standard curve prepared with murine IgG (Statens Serum

Institute).

Western blot analysis
Western blotting was performed on leaf extracts as described

previously [27].

Statistical analysis
Statistical analysis was performed using GraphPad Prism 5

(GraphPad, San Diego, CA, USA). The differences in antibody

titres from mice immunised with transgenic or wildtype plant

extracts were analysed using a student’s T-test. Survival data were

analysed by the Kaplan-Meier survival curve analysis.

Supporting Information

Figure S1 Confirmation of the stable transformation of
tobacco plants with the cps3S gene. Plant RNA was used as

a template for reverse transcriptase PCR (RT-PCR) (Lane 1: wild

type plants; Lane 2: transformed plants.) using cps3S-specific

primers. RT-PCR products were analysed by agarose gel

electrophoresis. The results show the presence of the cps3S gene

in the transformed plants (Lane 2) but not the wild type plants.
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