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Abstract

Service network design under uncertainty is fundamentally crucial for all freight transportation companies.

The main challenge is to strike a balance between two conflicting objectives: low network setup costs and

low expected operational costs. Together these have a significant impact on the quality of freight services.

Increasing redundancy at crucial network links is a common way to improve network flexibility. However, in

a highly uncertain environment, a single predefined network is unlikely to suit all possible future scenarios,

unless it is prohibitively costly. Hence, rescheduling is often an effective alternative. In this paper, we

proposed a new stochastic freight service network design model with vehicle rerouting options. The pro-

posed model explicitly introduces a set of integer variables for vehicle rerouting in the second stage of the

stochastic program. Although computationally more expensive, the resultant model provides more options

(i.e. rerouting) and flexibility for planners to deal with uncertainties more effectively. The new model was

tested on a set of instances adapted from the literature and its performance and characteristics are studied

through both comparative studies and detailed analyses at the solution structure level. Implications for

practical applications are discussed and further research directions are also provided.

Keywords: Service network design; Stochastic programming; Transportation Logistics; Rerouting;

1. Background and Motivation

Service network design is one of the fundamental problems faced by the freight transportation industry.

It is normally viewed as a tactical planning problem in which the company has to decide which terminals

will have direct transportation services and at what frequency. In some cases, it also determines the best

combination of transportation modes, and periodic vehicular schedules to ensure the continuity of services.

Although closely related to classic network flow problems (Ahuja et al., 1993), which can be solved very
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efficiently, the service network design problem has proven to be one of the most difficult combinatorial

optimisation problems around (Crainic and Kim, 2007). Solving real-life problem instances to optimality is

generally not possible. Opportunities to develop practical decision support systems for this problem have

been strengthened by the latest advances in high performance computing and hybrid optimisation techniques.

This has led to increased research attention in service network design in the past decade. Detailed reviews of

such research efforts can be found in Christiansen et al. (2007) for maritime transportation, Crainic (2003)

for long-haul transportation and Crainic and Kim (2007) for intermodal transportation. Most research cited

in these reviews is concerned with models and solution methods for deterministic cases. However, freight

services are subject to various uncertainties (in terms of demands, travel time, vehicle breakdowns, etc.) and

their estimation by mean values is incapable of capturing the nature of the real-world problems.

Indeed, handling uncertainties in demand for freight transportation has become one of the most chal-

lenging problems for freight forwarding companies. Previously, freight service companies was faced with

challenges of satisfying fluctuating demands with cyclic patterns. According to one of the largest Chinese

parcel express delivery companies, Shentong Express, back in 2009 freight transportation demand often

peaked during the weekdays and fell drastically during the weekends. This was because of the fact that their

major transportation demands were production supply chain related and there are more business engage-

ments during weekdays than weekends. However, in the past 5 years or so, e-commerce, online shopping,

and recent mobile commerce have truly transformed the landscape and expanded the scale of the freight

transportation market. In 2012, Amazon recorded USD 61 billion in sales, a 27.1% increase from 2011.

Fuelled by massive sales, the Chinese online shopping site, Taobao, secured more than USD 3 billion in sales

on a single day on November 11, 2012, generating 80 million delivery requests which were simply too much

for logistic companies to handle. The total online shopping sales in 2012 in China were estimated to be USD

1.3 trillion, up 27.9% from 2011 while the total number of deliveries is estimated to be 6 billion (CECRC,

2013). The diversities and uncertainties of online shoppers (in terms of their physical locations, shopping

time, and types and quantities of items that they buy) have made freight service network design extremely

difficult. Scientific research is badly needed to address the problem more efficiently.

Previous research studies (Garrido and Mahmassani, 2000; Sanchez-Rodrigues et al., 2010) showed that

freight transport demands are indeed highly uncertain over both space and time and estimating their actual

distributions can be very challenging but possible. At the same time, research has shown that ignorance of

these stochastic factors could potentially result in poor quality of service and high set-up and operational costs

(Lium et al., 2009). Lium et al. (2009) and Hoff et al. (2010) represent some of the very limited research on

stochastic service network design. One of Lium et al. (2009)’s main contributions is an extension of the classic

multi-period service network design model by introducing demand stochasticity in the form of a scenario

tree. A mixed integer programming model was developed with the objective of minimising the expected cost
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over all scenarios. The problem was solved by a two-stage stochastic programming approach in which the

master problem (or the first-stage problem) was the determination of a cost-effective service network. The

second-stage problem was to find, for a given demand realisation, a cost-minimal flow based on the network

obtained in the first stage and outsourcing. The second stage problem serves as a feedback mechanism to the

master problem to achieve a balance between the degree of redundancy in network capacity, the network’s

structure, and the amount of outsourcing (which is often very expensive and strategically unpopular for

freight companies). The experiments on a large number of small problem instances showed that stochastic

service network design could potentially reduce the costs substantially compared with the solution obtained

by a deterministic model. Several interesting patterns have been observed from the experiments, which have

profound implications for service network design. A limitation of the model is that the only alternative to

using the service network established in the first stage is outsourcing. In practice, a freighter could also

re-adjust this network based on observed values of the uncertainties. Hoff et al. (2010) is the continuation

of Lium et al. (2009), with the primary aim of developing efficient approaches that can solve large real-sized

instances. A Variable Neighbourhood Search (VNS) based approach was proposed and its performance was

evaluated on a set of instances of large sizes, which, according to Hoff et al. (2010), is promising.

Our research paper extends the work done in Lium et al. (2009) by incorporating rerouting as a second

means of achieving flexibility. This was motivated by the fact that rerouting is a popular means used by

freighters to adapt to unforeseeable changes and uncertainties. Compared with outsourcing, rerouting is

favourable for freighters in terms of service quality control and long term development strategies. It is not

in a freighter’s long-term interest to outsource large amounts of demand to its competitors. Additionally,

we are also interested in investigating: 1) in what way rerouting will lead to a different network compared

with the deterministic network and the network obtained through Lium et al. (2009)’s stochastic model; 2)

how the nature of demand stochasticity will affect the performance of different models.

The main contribution of this paper is two-fold: primarily, we propose a stochastic programming model for

stochastic service network design with options of both vehicle rerouting and service outsourcing to address

demand stochasticity more efficiently. Secondly, some interesting observations and insights drawn from

our experimental studies could have important implications for stochastic service network design practices.

Application of the proposed model could potentially substantially reduce network setup costs and expensive

outsourcing, but maintain a similar level of flexibility to those that can be offered by other related models

in the literature.

We set the model in the framework of stochastic programming. The main result is a model that provides

a design with operational flexibility that can handle varying demand scenarios. This operational flexibility

can be useful also if the stochastics is mis-specified, i.e. is different from what we assume. However, in this

paper the focus is not on ambiguity (interesting as that is), but rather on understanding the role of rerouting
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and its effect on operational flexibility. It is also worth noting that for many applications that fit into this

modelling scheme, particularly trucking, but also air airfreight transportation, data is normally available in

large amounts, and estimating distributions is not unreasonable.

As for earlier papers, we have formulated our model in a two-stage setting. This is not primarily for

simplicity, but because we see this as the most appropriate framework. The problem we are discussing in this

paper is what has been called an “inherently two-stage problem”, see Chapter 1 of King and Wallace (2012).

These are problems where the first stage is structurally different from all the others. In our case the first

stage is to set up the service network, the rest amount to using/operating the network from Stage 1 in an

uncertain environment. Typically, the first stage decisions are either expensive or irreversible (or both). For

such models, the focus is on Stage 1, all the other stages are there only for creating a correct understanding

of how the network will be operated, so as to get the network set up correctly. The clue of such models

is the flow of information from the operational phase to the design phase. It is important to realise that

the later stages are not interesting in their own rights; It is quite clear that once the service network is

established, a much more detailed model will be developed for operational decisions. So the quality of how

we model the operational phase should be based on its ability to feed back to the Stage 1 decisions, and not

on its ”accuracy”. In this regard we are also following earlier work, such as Lium et al. (2009). So although

the use of the service network in principle is an infinite horizon problem (or maybe just one with a very

large but finite number of stages) representing the life of the design, we represent it with weekly snap-shots

(scenarios) of demand patterns. For each scenario we model the transportation, including rerouting (and

route recovery) of vessels and outsourcing of goods. This is of course an approximation (like all models are),

but describes well the setting in which the service network must operate. So for this kind of models, it is

actually a goal to avoid the multi-stage aspect of the real problem. That contains a lot of details which are

not needed for setting up the network. Only when we reach the operational phase itself do we need to care

about the small details related to the fact that the operations take place in a dynamic environment.

2. Literature Review

The service network design problem (SNDP), which is NP-Hard (Ghamlouche et al., 2003), is an impor-

tant step in freight transportation planning. Its applications are mainly found in the less-than-truckload

(LTL) transportation and express delivery services, where consolidation of deliveries is widely adopted in

order to maximise the utilisation of freight resources (Crainic, 2000). The problem is usually concerned with

finding a cost-minimizing transportation network configuration that satisfies the delivery requirements for

all of the commodities and maintains a balance of vehicles to ensure the continuity of the services. More

specifically, the service network design problem involves searching for optimal decisions in terms of the service

characteristics (for example, the selection of routes to utilise and the vehicle types for each route, the service
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frequency and delivery timetables), the flow distribution paths for each commodity, the consolidation poli-

cies, and the idle vehicle re-positioning, so that legal, social, and technical requirements are met (Wieberneit,

2008). This section aims to provide a brief overview of service network design only. More comprehensive

reviews can be found in Crainic (2000); Crainic and Kim (2007) and Wieberneit (2008).

Early work in service network design includes Crainic and Rousseau (1986); Powell (1986) and Crainic

and Roy (1988). Due to its complexity and the limited computing power available, various metaheuristics

have been developed for this problem, for example, tabu search (Crainic et al., 1993, 2000), cyclic based

neighbourhood search (Ghamlouche et al., 2003), and path relinking (Ghamlouche et al., 2004). Pedersen

et al. (2009) studied more generic service network design models with asset balance constraints. A multi-start

metaheuristic, based on tabu search, was developed and tested on a set of benchmark instances. The tabu

search method outperformed a commercial MIP solver when computational time was limited to one hour

per instance on a PC with a Pentium IV 2.26GHz CPU. Andersen et al. (2009) compared three different

service network design formulations, namely the node-arc based formulation, the path-based formulation

and the cycle-based formulation. Their results on a set of small randomly generated instances indicated

that the cycle-based formulation gave significantly stronger bounds than the other two and hence may

allow for much shorter solution times. In a dynamic environment, where disruptions can happen at any

time, frequent re-scheduling may be required when the initial schedule is not valid or does not perform well

anymore. Therefore, it is important that the solution method does not take too long. Bai et al. (2010, 2012)

investigated various mechanisms within a guided local search (GLS) framework to reduce the computational

time. The experimental study, based on a set of popular benchmark instances, showed that the final algorithm

proposed was able to reduce the computational time by one third without worsening the solution quality

when compared with Pedersen et al. (2009). Andersen et al. (2011) studied a branch and price method for

the service network design problem. Although the proposed algorithm was able to find solutions of higher

quality than the previous methods, the 10-hour computational time required by the algorithm poses a great

challenge for its practical application. Barnhart and her research team (Barnhart et al., 2002; Kim et al.,

1999; Armacost et al., 2002) addressed a real-life air cargo express delivery service network design problem.

That problem is characterised by a hub-and-spoke network structure and additional complex constraints

which do not exist in the general SNDP model. A column generation based method was able to solve the

problem successfully within a reasonable time. However, it may be difficult to generalise the model to other

freight transportation applications, especially to those without hub-and-spoke structures. In addition, their

methods cannot be used for integrated service network design when several classes of services (first class,

second class, deferred class, etc.) are planned simultaneously. Service network design also exists in other

types of transportation systems, for example ferry service network design (Wang and Lo, 2008), railway

network design (Lin et al., 2012) and public transit network optimisation (Nourbakhsh and Ouyang, 2012).
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The research mentioned above has primarily been concentrating on problems of a static, deterministic

nature. However, service network planning involves several uncertain aspects, such as unpredictable demands,

traffic congestion, delays, and vehicle breakdowns. Optimal solutions for a deterministic problem may turn

out to have poor quality or even lose feasibility as a result of uncertain factors (the latter does not happen

in this paper, though). Therefore, uncertainty (particularly uncertain demands) in freight transportation is

one of the most challenging issues that a freight company face every day. On one hand, the freighter wants

to increase the revenue by servicing as much of the demand as possible. On the other hand, the freighter

also wants to make sure that the provision of this service does not lead to a negative impact on profitability.

There are a number of methods that a freighter can use to tackle the uncertain demand, including demand

forecasting, real-time information gathering (demand, traffic, positioning), external vehicle hiring, vehicle

rerouting, outsourcing, etc. Some forecasting methods lead to point forecasts (only), hence easily resulting

in deterministic modelling in the design phase. This paper discusses what might happen in such cases.

Alternatively, forecasting may be done in the form of demand distributions. The challenge is then how to

use this information effectively, also a subject of this paper.

There are a few relevant papers available in the literature. However, most of them have concentrated on

supply chain networks and very few of them have looked at freight service network design. For example, Shu

et al. (2005) studied a stochastic transportation-inventory network design problem involving one supplier

and multiple retailers, each of which faces uncertain demands. The research found that, by exploiting

special structures, they are able to solve problems of much larger sizes using a general pricing method.

Yang and Chen (2009) investigated a two-stage stochastic model for the air freight network design problems

with uncertain demand. The top level decision variables of this problem include the number and location

of air freight hubs, while the second stage consists of decisions of flight routes and flows. The model is

tested for the air passenger data in Taiwan and mainland China. Saboonchi and Zhang (2010) considered a

multi-stage global supply chain optimisation problem with stochastic demand, and proposed a mixed-integer

programming model that minimises the overall costs and maximises the expected average service level. The

decision variables include the selection of the international outsourcing partners, transportation modes, and

capacity of each important facility. A two-stage stochastic programming method is used to handle the

demand stochasticity. The authors demonstrated that the model can be a useful decision making tool for

various supply chain optimisation cases. Szeto et al. (2011) proposed a non-linear model for the risk-aversive

transit assignment problem with stochastic variables (travel time, waiting time, capacity, congestion). The

survey carried out in the research indicates the negative impact of congestion on the transit service and

highlights the importance of including these stochastic variables in the development of transit service network

design models. Nickel et al. (2012) investigated a multi-period supply chain network design problem with

uncertain demand and interests rates. A scenario tree is built for the entire planning horizon to describe
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Table 1: List of notations used in the SNDP model
Notation Meaning

Parameters

N The set of nodes.
A The set of arcs in the network.
G = (N ,A) Directed graph with nodes N and arcs A.
T The total number of periods within a cyclic schedule and period t ∈ {0, 1, ..., T − 1}.
K The set of commodities.
o(k) The origin for commodity k ∈ K.
s(k) The sink (destination) for commodity k.
σ(k) The period that commodity k becomes available.
τ(k) The delivery deadline of commodity k. It is the latest period that commodity k is

required to arrive at its destination.
(i, j) ∈ A The arc from node i to node j.
t− The departing period for a vehicle arriving at period t. Here we set t− = t − 1 if

t ≥ 1, otherwise t− = T − 1.
u Vehicle capacity (Uniform vehicle capacity is assumed).
cij The fixed cost for providing a freight service on arc (i, j).
c The corresponding vector for cij .

dk The nominal demand for commodity k.
ps The probability of scenario s.
ds The demand vector at scenario s, i.e. ds =< dsk|(s, k) >
d The vector of realised commodity demands for all commodities.
λ The unit commodity outsourcing cost.
γ The fixed cost coefficient for adding a new truck during the second stage, and γ ≥ 1.
η The percentage of the fixed costs recovered after cancelling a previously scheduled

truck in the second stage, and 0 ≤ η ≤ 1.

Decision variables

xt
ij The service frequency on arc (i, j) in period t in a solution of the first stage, and

xt
ij ∈ {0, 1, 2, 3, . . . , }.

yst
ijk The flow of commodity k on arc (i, j) in period t, scenario s, and yst

ijk ≥ 0.
vstij The number of vehicles increased on arc (i, j) in period t, scenario s during the second

stage, and vstij ∈ {0, 1, 2, 3, . . . , }.
wst

ij The number of vehicles reduced on arc (i, j) in period t, scenario s during the second
stage, and wst

ij ∈ {0, 1, 2, 3, . . . , }.
Zs(k) The amount of outsourcing required for commodity k in the optimal commodity flow

for scenario s, and Zs(k) ≥ 0.
ys The vector of yst

ijk on all arcs during all periods for scenario s.
x,vs,ws The vectors of design variables before rerouting and their changes (increment, decre-

ment) for scenario s during rerouting.

the uncertainties. Experiments and simulation data showed that the stochastic approach is more favourable

than solutions produced by deterministic methods.

3. Problem Description and Formulation

In this research, we focus on a service network design problem that was considered in Lium et al. (2009),

but with the difference that vehicle rerouting is explicitly modelled in our formulation. The network does

not have predefined freight hubs and consolidation centres and is modelled based on a time-space network,

where time is discretized into periods of identical length and each physical node has a copy in each period.
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The advantage of this time-space network model is its ability to integrate multi-class services (i.e. first-class,

second class and deferred deliveries, etc.) into one model. Of course this comes at the cost of solving a

large-scale network design model. It should be noted that the SNDP problem is different from the classical

vehicle routing problem (VRP), in which nodes often represent end-customers. Rather, nodes in the SNDP

correspond to freight centres (e.g. cities or regions), with each of them covering all nearby customers.

The notations used in this paper is given in Table 1. To develop our new stochastic model, we also

present its deterministic counterpart and the stochastic model in Lium et al. (2009) for comparison.

3.1. The deterministic model (M-Determ)

We now present the basic deterministic service network design model used in Lium et al. (2009) with a

few minor differences in notation and presentation.

M-Determ

min
∑
i∈N

∑
j∈N

T−1∑
t=0

cijx
t
ij (1)

subject to

∑
j∈N

xt−

ji =
∑
j∈N

xt
ij ∀i,∀t (2)

∑
k∈K

ytijk ≤ uxt
ij ∀i,∀j, ∀t, ∀i ̸= j (3)

−
∑
j∈N

yt
−

jik +
∑
j∈N

ytijk =


dk if (i, t) is supply node for k

−dk if (i, t) is demand node for k

0 otherwise

∀i,∀t,∀k (4)

y
τ(k)
ijk = 0 ∀i,∀j, ∀k (5)

xt
ij ∈ Z+ ∀i,∀j,∀t (6)

ytijk ≥ 0 ∀i,∀j, ∀t, ∀k (7)

For brevity, we denote this model as M-Determ. The objective is to minimise the total fixed costs of the

network (freight movement costs are considered marginal compared to the network fixed costs and hence

are ignored). Constraints (2) ensure the inbound and outbound vehicles at each node in each period are

balanced. Constraints (3) are the network capacity constraints. Constraints (4) ensure that commodity flows

are conserved. Constraint set (5) is equivalent to constraints (4)-(6) in the deterministic model in (Lium

et al., 2009). It ensures that no commodity flow takes place beyond its delivery deadline (i.e. the latest time

that a commodity can arrive at its destination). Without this constraint, it is possible that a commodity
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may take more than the planning horizon to reach its destination in order to take advantage of some cheap

and unused truck capacities. This is due to the cyclic periods used in the model (i.e. the period after T − 1

is 0). Constraints (6) and (7) define feasible domains for the decision variables.

3.2. The Stochastic SNDP Model with Outsourcing

In this section we present Lium et al. (2009)’s two-stage stochastic model for service network design with

uncertain demands, on which our proposed model is based. We use vector ds to denote all the demand

values of scenario s and ps to stand for the probability of scenario s. In the first stage, a network is deter-

mined with the objective of minimising both the network setup cost and the expected additional costs to

service demands across all scenarios. In the second stage, the model tries to find an optimal flow distribution

between the predefined network from the first stage and the external network (via outsourcing). Decision

variables, Zs(k), denote the amount of outsourcing required for commodity k in scenario s in the optimal

commodity flow. Note again that the presentation of the model is modified to keep it compact and in line

with our own notation. Similar to constraints (5), constraints (14) are equivalents of constraints (19-21) and

(23) in (Lium et al., 2009) to ensure that no commodity flow exists beyond its deadline. We denote this

model as M-Stoch1 for reference purposes in later sections.

M-Stoch1.

Stage 1:

min{cx+ λ
∑
s

psQ1(x,d
s)} (8)

subject to

∑
j∈N

xt−

ji =
∑
j∈N

xt
ij ∀i,∀t (9)

xt
ij ∈ Z+ ∀i,∀j,∀t (10)

where
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Stage 2:

Q1(x,d
s) = min

∑
k∈K

Zs(k) (11)∑
k∈K

ystijk ≤ uxt
ij ∀i,∀j, ∀t, ∀i ̸= j (12)

−
∑
j∈N

yst
−

jik +
∑
j∈N

ystijk =


dks − Zs(k) if (i, t) is supply node for k

−dks + Zs(k) if (i, t) is demand node for k

0 otherwise

∀i,∀t,∀k (13)

y
sτ(k)
ijk = 0 ∀i,∀j, ∀k (14)

ystijk ≥ 0 ∀i,∀j, ∀k, ∀t (15)

Zs(k) ≥ 0 ∀k (16)

In reality, this is of course not a two-stage problem. It has a large number of stages (possibly infinitely

many), one for each period the design is being used. (Lium et al., 2009) chose a two-stage formulation, and

we follow them. There are two reasons for this. Firstly, of course, it is for computational convenience; the

model is certainly difficult enough with just two stages. But there is another important reason, namely that

the focus of the model is the design, not the commodity flows themselves. The latter are needed in the

model, as otherwise there would be no description of the purpose of the design. But the model is not meant

to actually suggest flow patterns. The purpose of the second-stage is to feed back to the master problem the

effects of different designs; it represents demand patterns that the network design must be able to handle. It

is important that this feed-back is good, but it is not important that the second stage model itself produces

possible ways of actually running the operations. As in (Lium et al., 2009) we believe that a two-stage model

is sufficient to describe the use of the design in a good way.

3.3. The Proposed Stochastic Model

In this section, we present our new model (denoted as M-Stoch2) which extends M-Stoch1 by explicitly

modelling vehicle rerouting as another uncertainty-handling mechanism. In order to do this, we introduce

two new set of variables (vstij , w
st
ij ) to record the number of vehicles increased (and decreased respectively)

on the arc (i, j) during rerouting in scenario s. Note that these two sets of variables can be combined as

one if a user is looking for heuristic approaches for this model. For the commercial MIP solver that we use,

non-negativity of decision variables is required. We assume that, during each period, the total number of ve-

hicles before and after rerouting stays the same and the outsourcing option used in M-Stoch1 is also available.
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M-Stoch2

min cx+Q(x) (17)

subject to

∑
j∈N

xt−

ji =
∑
j∈N

xt
ij ∀i,∀t (18)

xt
ij ∈ Z+ ∀i,∀j,∀t (19)

where

Q(x) =
∑
s

psQ(x,ds) (20)

Q(x,ds) = min {γcvs − ηcws + λ
∑
k∈K

Zs(k)} (21)

subject to

∑
j∈N

(vst
−

ji − wst−

ji + xt−

ji ) =
∑
j∈N

(vstij − wst
ij + xt

ij) ∀i,∀t (22)

∑
i∈N

∑
j∈N

(vstij − wst
ij ) = 0 ∀t (23)

wst
ij ≤ xt

ij ∀i,∀j,∀t (24)∑
k∈K

ystijk ≤ u(vstij − wst
ij + xt

ij) ∀i,∀j, ∀t, ∀i ̸= j (25)

−
∑
j∈N

yst
−

jik +
∑
j∈N

ystijk =


dks − Zs(k) if (i, t) is supply node for k

−dks + Zs(k) if (i, t) is demand node for k

0 otherwise

∀i,∀t, ∀k (26)

y
sτ(k)
ijk = 0 ∀i,∀j, ∀k (27)

vstij , w
st
ij ∈ Z+ ∀i,∀j, ∀t (28)

ystijk ≥ 0 ∀i,∀j, ∀k, ∀t (29)

Zs(k) ≥ 0 ∀k. (30)

The objective is to minimise the sum of the fixed network costs and the average costs (across all the

scenarios) incurred during the second stage, Q(x), which includes both the rerouting and outsourcing costs.

The term γcvs is the modified fixed cost for increasing vs vehicles, and ηcws is the cost recovered after

cancelling ws previously scheduled vehicles, where γ ≥ 1, 0 ≤ η ≤ 1. Therefore, adding a vehicle during
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the rerouting stage is more expensive than including it in the first stage (network design stage). Similarly,

when a vehicle is cancelled in the rerouting stage, only a proportion of the cost (defined by η) is recovered.

λ
∑

k∈K Zs(k) is the total cost to outsource Zs(k) demand where λ is unit commodity outsourcing cost.

Constraints (18) and (22) are the asset balancing constraints of the service network before and

after rerouting. Constraints (23) make sure that for each period the total number of trucks remains the

same before and after rerouting. Constraints (24) guarantee that we do not cancel more vehicles than we

originally scheduled at any time. Constraints (25) make sure the vehicle capacity is respected. Constraints

(26) are the commodity flow conservation constraints. Constraints (27) make sure that no flow exists after

a commodity’s delivery deadline. Constraints (19) and (28) make sure design variables and rerouting offset

variables are nonnegative integers, and constraints (29) and (30) ensure nonnegativity of commodity flow

variables on both the internal service network and the external network.

In this model values of parameters γ and η can be set independently. It should be noted that, because

of constraints (23), closing an arc at a given period will require to open another arc in the same period.

Therefore, the actual rerouting cost (i.e. extra costs due to rerouting) consists of 100*(γ − 1) percent of the

setup cost of the new arc plus 100*(1− η) percent of the fixed cost of the cancelled arc. Here it is assumed

that a vehicle, within the planning horizon, has a fixed standard route. Whenever a rerouting decision is

made, a cost is incurred which is independent of rerouting frequency. The assumption is that for a company

that has rerouting as a possible policy, rerouting is prepared for in such a way that rerouting costs do not

change with frequency.

In order to have a better comparison with the stochastic model in Lium et al. (2009)’s research, we used

the same uniform outsourcing cost coefficient λ. However, for practical applications, one possible extension

of the model is to make this coefficient commodity dependent. For example, it could be more expensive to

outsource hazardous goods or goods that have longer shipment distances. To do this, we could introduce

λk as the cost of outsourcing one unit of commodity k. Without changing anything else or increasing the

computational complexity, we only need to change eq. (21) to the following:

Qs(x,ds) = min {γcvs − ηcws +
∑
k∈K

λkZs(k)} (31)

Similarly, both γ and η can be allowed to have an arc index if data is available. This does not change the

computational burden of the models. But for a principal analysis like here, we believe that allowing these

parameters to vary among routes will only confuse the numerical comparisons.

4. Solution Methodology

This paper is mainly about the relationship between stochastics and rerouting. We formulate a model,

and try to understand the role of rerouting relative to outsourcing of different types to handle uncertain
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demand. Mostly we solve models using standard software (Cplex 12.4 MIP solver was used in this study).

The main algorithmic contribution, which is more of an algorithmic setting than an actual implementation, is

the analysis of Determ-Stoch2 and Stoch1-Stoch2 (see sections 5 and 6). It turns out that these two heuristic

settings have very interesting relationships to the true problem, M-Stoch2, and seem very efficient. This is

something we shall follow up in later work.

Since the majority of previous research efforts for M-Determ and M-Stoch1 have been focusing on meta-

heuristic approaches, for example tabu search (Pedersen et al., 2009) and guided local search (Bai et al.,

2012) for M-Determ and variable neighbourhood search with fast approximations (Hoff et al., 2010) for M-

Stoch1, we expect that similar approaches would also be suitable for M-Stoch2 although M-Stoch2 is much

harder due to the additional rerouting variables.

There is also a collection of exact methods for stochastic integer programs where integrality appears in

the second stage, see for example (Watson and Woodruff , 2011), (Watson et al. , 2012) and (Sen and Sherali,

2006). These can be bases for heuristics, the same way Crainic et al. (2011) used progressive hedging as a

basis for a heuristic approach.

5. Experimental Setup

A number of experiments are set up to study the performance and solution characteristics of the three

models (M-Determ, M-Stoch1 and M-Stoch2) that we presented in the previous section, and more impor-

tantly, to find what this means for freight service planners. All three models could be solved directly for

small instances. The results of the deterministic model (M-Determ) were obtained by solving it initially

based on the nominal demands and then re-evaluating it in one of the stochastic models. More specifically,

for each stochastic problem instance, M-Determ was firstly solved based on the average demand value (i.e.

dk = 8), denoting the resulting solution by x. Then for each scenario s of the problem instance, we fix the

network x and then solve the flow distribution problem given by (11) of M-Stoch1. The objective value of

M-Determ for this stochastic instance is the sum of the fixed cost of x and the weighted average outsourcing

costs among all scenarios (this could be computed according to Function (8)). The basic idea for this is to

construct a service network based on the nominal demand data, and whenever a demand cannot be serviced

in a particular scenario realisation (due to capacity constraints) it is outsourced according to M-Stoch1.

For brevity, we denote this combination as Determ-Stoch1. Similarly, in the second stage the determin-

istic solution could be re-evaluated in our proposed model M-Stoch2, and we denote this combination as

Determ-Stoch2. Finally, since M-Stoch2 is computationally more expensive than M-Stoch1 and is difficult

to solve directly, we also experimented with a third combination, denoted as Stoch1-Stoch2, where the

initial network design is obtained via M-Stoch1 and the second stage problem is solved using M-Stoch2.

All the models and their combinations were implemented and solved in Microsoft Visual C++ in con-
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junction with IBM ILOG Cplex 12.4 MIP solver. All the experiments were run on a PC with 2.8GHz Intel i7

CPU, 4.0GB RAM, running Windows 7. The Cplex MIP procedure stops either when a maximum of 4-hour

computational time is exhausted or the working memory exceeds 50GB.

Similarly to what was done in Lium et al. (2009), demand stochasticity was described by a combination of

different levels of uncertainty and correlation types. Three correlation types were used to represent stochastic

demands. Those are (a) all the demands positively correlated, (b) all uncorrelated, and (c) a mixture of

positively and negatively correlated demand. Two triangular distributions (Tri(2,14,8) and Tri(5,11,8)) were

used to simulate high and low uncertainties but with the same mean value (i.e. 8). We use the scenario

generator by Høyland et al. (2003) and the methodology in Kaut and Wallace (2007) to ensure in-sample

stability at a 5% level by determining the necessary number of scenarios.

It is important to see what we are doing here. All comparisons between models will be based on given

scenario trees. Therefore, the optimal objective function value in M-Stoch2 is always (by construction)

better than those of Determ-Stoch2 and Stoch1-Stoch2. No in-sample stability is needed for this to be the

case. However, we have ensured in-sample stability (within 5%) in order to be sure that the problems we

solve all represent reasonably well what we set out to solve (with given triangular marginal distributions and

correlation matrices). Otherwise, the results are not easy to understand and interpret. With “wild” scenario

trees, possibly representing very strange demand structures, the relationships among the alternative models

may be very different from what would be the case with reasonable demand distributions (though M-Stoch2

would always be best).

Experiments were based on two sets of instances of different sizes, Set-LTL8 and Set-LTL20. Most

instances in Set-LTL8 could be solved to optimality with regard to the different models discussed in Section 3.

In this way, the optimal solutions obtained from these models could be analysed in a detailed manner and

hopefully more insights could be gained during the process. For instances in Set-LTL20, M-Stoch2 generally

cannot be solved optimally within our time limit. However, our main focus here is to understand uncertainty

and rerouting, not to develop efficient heuristics.

Both sets contain instances with multiple sources and destinations. Set-LTL8 has 9 commodity sets

adapted from Lium et al. (2009) 1 with slightly smaller sizes (we set the number of nodes |N | = 6, the

number of periods T = 5, and the number of commodities in each set |K| = 8. Other parameters can be

found from Table 2). Unless specified otherwise, these parameters will be used throughout the experiments

in this paper. Combining different uncertainty levels and the types of correlations, this will result in 54

(= 9 ∗ 3 ∗ 2) instances in total, each of which has 20 demand scenarios. The second instance set, Set-LTL20,

contains 8 randomly created commodity sets, each of which has 20 commodities (ie. |K| = 20). The scenario

1Note that rather than generating evenly distributed demands, commodities source/destination pairs in Lium et. al’s instances
are clustered in either space dimension or time dimension of the network.
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Table 2: The parameters for the test problem instances in Set-LTL8.

parameters values fixed costs matrix (cij)
|N | 6 100 150 150 250 250 250
|K| 8 150 100 150 250 250 250
T 5 150 150 100 250 250 250
u 20 250 250 250 100 150 150
λ 150 250 250 250 150 100 150
γ 1.05 250 250 250 150 150 100
η 0.95

no. of scenarios 20
ps 1/20

profile was generated by using the high-level uncertainty distribution Tri(2,14,8) and a correlation matrix

mixing both positives and negatives. All the other settings were the same as before. More details regarding

this instance set will be described later in Section 6.1.

6. Computational Results Analysis

In this section we report the results and main findings from the experiments, with particular emphasis on

how the new model performs in comparison with the other models. We are also interested in learning how

rerouting and outsourcing will change the network design patterns obtained from the deterministic model as

well as how they differ from each other. It is hoped that these analyses will provide insights for constructing

heuristics for large instances where optimal solutions may not be available. For the sake of presentation, we

use ni to denote the ith node in the physical network and nit to denote the ith node at period t in the

time-space network. For example, n34 stands for the node 3 at period 4.

Table 3: A comparison of results between M-Determ, M-Stoch1 and our proposed model, M-Stoch2 over the small instance set
Set-LTL8. For three commodity sets, Cplex failed to solve M-Stoch2 to optimality. The results for these three commodity sets
are omitted from the statistics. obj (respectively

∑
Z) is the average objective (respectively total outsourcing averaged over all

instances in each category) of the optimal solution from a given model for each particular problem category and loss% is the
average relative losses by each method in comparison to M-Stoch2. Results for low-uncertainty scenarios are excluded due to
very small differences between these models.

Uncert- Correlation M-Stoch2 Determ-Stoch1 M-Stoch1

ainty Type obj
∑

Z obj loss%
∑

Z obj loss%
∑

Z
high uncorrelated 2514.2 4.0 2549.1 1.4% 10.3 2547.1 1.3% 9.1
high positive 2580.6 10.5 2664.3 3.2% 24.3 2647.6 2.6% 21.6
high mix 2560.6 8.7 2620.8 2.4% 17.8 2612.4 2.0% 16.9

Uncert- Correlation Determ-Stoch2 Stoch1-Stoch2

ainty Type obj loss%
∑

Z obj loss%
∑

Z
high uncorrelated 2514.9 0.02% 4.1 2522.7 0.3% 1.8
high positive 2581.5 0.03% 10.8 2594.0 0.5% 3.9
high mix 2562.9 0.09% 8.7 2571.0 0.4% 10.5
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6.1. A general comparison of different models

To evaluate the performance of the three different models, Determ-Stoch1, M-Stoch1 and M-Stoch2, we

implemented and tested them initially on the data set Set-LTL8, which contains problem instances that are

sufficiently small so that all three models can be solved to optimality within the limits of the computing

resources in terms of both time and working memory space. The results are benchmarked against the optima

from M-Stoch2 and measured in terms of losses (see Table 3). The values we are presenting here are direct

extension of the Value of the Stochastic Solution (VSS) as defined in Birge (1982). It measures the expected

gain from using a stochastic rather than deterministic model.

Low-level uncertainty cases are not included in this table because the instances are very small and results

from all three models are very similar. It can be seen that for each of the correlation types, the potential

relative losses (measured against M-Stoch2) by Determ-Stoch1 and M-Stoch1 range from 1.3% to 3.2% even

for these small-sized instances. The potential benefit for adopting M-Stoch2 is greater for instances with

correlated demands (both positive or mixed) than for those with uncorrelated demands, as indicated by their

relatively better objective values. Finally, results also show that M-Stoch2 outsources less demand than both

Determ-Stoch1 and M-Stoch1. This could be one of the most important advantages for the proposed model

since freight companies always strive to increase their market share and it is not in their long-term interest

to outsource a large amount of demand to their competitors.

One of the challenges for the adoption of M-Stoch2 in practice is its high computational cost even for

small cases. For larger instances, we normally cannot reach optimality even when we increase the computing

resources significantly. Therefore, development of efficient heuristic approaches becomes necessary. In this

research, we investigated two approaches that are similar to widely used decomposition methods. The

main idea is to heuristically decompose the original problem (M-Stoch2) into two sub-problems or stages,

namely network design and rerouting. The network design can be approximated by either M-Determ or

M-Stoch1 without taking into account rerouting. Both models are easier to solve than M-Stoch2. Once a

network is determined, it can then be passed to M-Stoch2 for obtaining optimal rerouting schedules and

flow distributions for different scenarios. We denote these two approaches Determ-Stoch2 and Stoch1-

Stoch2 respectively. The results by both Determ-Stoch2 and Stoch1-Stoch2 are also given in Table 3. The

computational time by different models are given in Table 4. It can be seen that for these small instances, the

performances by Determ-Stoch2 and Stoch1-Stoch2 are very close to M-Stoch2. The losses for Stoch1-Stoch2

is between 0.3% and 0.5% while the losses for Determ-Stoch2 are less than 0.1%. In terms of computational

costs, however, both Determ-Stoch2 and Stoch1-Stoch2 are much easier to solve. For Set-LTL8 instances,

both Determ-Stoch2 and Stoch1-Stoch2 could reach optimality within an hour. However, M-Stoch2 failed

to find optimality for some of these instances even after 4 hours computational effort. These observations

prompted us to test these decomposition heuristics for larger problem instances.
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Table 4: The Cplex solution time of different approaches for Set-LTL8 (in seconds).

Correlation Determ- Stoch1-
Uncertainty Type M-Determ M-Stoch1 M-Stoch2 Stoch2 Stoch2
high uncorrelated 0.2 0.9 358.9 2.8 3.5
high positive 0.2 0.8 1006.8 3.0 3.0
high mix 0.2 1.2 1288.2 4.2 3.7
Average time 0.2 1.0 884.6 3.3 3.4

In order to further evaluate the performance of Determ-Stoch2 and Stoch1-Stoch2, we generated 8 larger

instances (R1,...R8), each of which has 20 randomly generated commodities. The scenarios for these com-

modities were generated by a mixture of uncorrelated random variables, perfectly correlated variables, linear

combinations of random variables as well as deterministic ones (see Table 5 for details). Since there are

only 8 independent random variables (d1, ..., d8), we are able to reduce the number of scenarios to 13 while

ensuring a low in-sample error (< 5%).

Table 5: Parameters for the generation of a 20-commodity demand scenario file.

Demand Variables dk Correlation Type Distribution
d1, ..., d8 uncorrelated Tri(2,14,8)
d9 perfectly positively correlated to d1 Tri(2,14,8)
d10 perfectly negatively correlated to d2 Tri(2,14,8)
d11, ..., d15 (d3 + dk)/2, k = 4, ..., 8 n.a
d16 (d1 + d2 + d3)/3 n.a
d17 (d4 + d5 + d6)/3 n.a
d18, ..., d20 8 Deterministic

Table 6 presents the optimal solutions produced from the two decomposition approaches in comparison

to the best results from M-Stoch2 which was not solved to optimality, and Table 7 gives the computational

time spent by different approaches. In order to get an indication of the solution quality by the different

approaches, the relative gaps (gap% ) to a lower bound are also included in the table. Note that these lower

bounds were obtained when attempting to solve M-Stoch2, and their quality may be poor when the solutions

to M-Stoch2 are far from optimality. Therefore, a large relative gap to the lower bound does not necessarily

imply a poor solution. However, a small relative gap indicates a good quality solution. From the table, it

can be seen that with limited computing resources, M-Stoch2 returns some very poor solutions (e.g. R4, R5,

R7 and R8) with gaps to the lower bound around 10% or even higher. In contrast, the two decomposition

based heuristics performed much better, producing results better than M-Stoch2 for every instance while

with less computational efforts.

Concerning the performance differences between Determ-Stoch2 and Stoch1-Stoch2, it seems to be

instance-dependent. Among the 8 instances, Stoch1-Stoch2 outperformed Determ-Stoch2 for instances R1

and R3 while Determ-Stoch2 was better for the other 6 instances. On average, Determ-Stoch2 outperformed

Stoch1-Stoch2 slightly. In fact, the performance differences between these two heuristics are very much
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Table 6: A comparison of the two decomposition heuristics and M-Stoch2 for dataset Set-LTL20 with maximum of 4 hours
computing time and 50GB working memory. Both Determ-Stoch2 and Stoch1-Stoch2 were solved to optimality but M-Stoch2
failed to do so. Lower bounds were obtained while solving M-Stoch2. The best results are highlighted in bold. obj is the
objective value of the solution returned by a given approach and

∑
Z is the total amount of outsourcing. gap% is the relative

gap to the lower bound, i.e. gap%=[(obj-lower bound)/lower bound]×100%.

Inst- Lower Determ-Stoch2 Stoch1-Stoch2 M-Stoch2
ance bound obj

∑
Z gap% obj

∑
Z gap% obj

∑
Z gap%

R1 3846.8 4033.0 17.6 4.8% 4021.1 16.4 4.5% 4051.1 24.5 5.3%
R2 3442.3 3559.1 0.4 3.4% 3643.8 0.1 5.9% 3572.9 2.5 3.8%
R3 3408.2 3529.6 0.8 3.6% 3512.7 0.4 3.1% 3538.1 0.0 3.8%
R4 3536.3 3732.7 0.2 5.6% 3757.2 0.2 6.2% 3887.6 10.9 9.9%
R5 3285.3 3525.0 0.9 7.3% 3538.6 2.1 7.7% 3625.6 2.3 10.4%
R6 3133.5 3343.8 0.1 6.7% 3354.7 1.4 7.1% 3350.1 1.1 6.9%
R7 3309.1 3590.1 4.7 8.5% 3615.2 5.0 9.6% 3825.8 16.4 15.6%
R8 3916.3 4234.5 1.1 8.1% 4238.7 0.7 8.2% 4349.6 1.4 11.1%
Average 3484.7 3693.5 3.2 6.0% 3710.2 3.3 6.5% 3775.1 7.4 8.3%

Inst- Lower Determ-Stoch1 M-Stoch1
ance bound obj

∑
Z gap% obj

∑
Z gap%

R1 3846.8 4369.3 53.7 13.6% 4058.9 26.8 5.5%
R2 3442.3 4029.1 50.2 17.0% 3833.6 7.2 11.4%
R3 3408.2 3788.5 33.7 11.2% 3657.9 18.0 7.3%
R4 3536.3 4227.6 50.1 19.5% 3816.9 5.8 7.9%
R5 3285.3 3829.4 37.2 16.6% 3703.8 22.0 12.7%
R6 3133.5 3701.9 39.2 18.1% 3450.6 13.0 10.1%
R7 3309.1 4045.4 55.9 22.3% 3755.5 26.5 13.5%
R8 3916.3 5114.1 83.6 30.6% 4359.32 9.5 11.3%
Average 3484.7 4138.2 50.4 18.6% 3829.5 16.1 10.0%

influenced by the cost ratio between outsourcing (λ) and rerouting (γ, η). More discussions will be made

later in Section 6.3.

It is interesting to observe that when the rerouting cost is moderate (10%), although the deterministic

solution evaluated in M-Stoch1 is very poor (on average 18.6% off the lower bound, see Table 6), its per-

formance evaluated in M-Stoch2 is significantly better, only 6.0% off the lower bound. Similar observation

can also be made from Table 3. This may suggest that when rerouting is available at a relatively low cost

during the second stage of the stochastic program, the deterministic solution is not as bad as one might

think. Using average estimations of demands is still a good strategy to configure the freight service network

so long as the truck rerouting is efficient and flexible enough to keep the cost low. On the other hand, M-

Stoch1 achieved low expected costs through extra investment in the service network to generate flexibility in

commodity routing. With the presence of rerouting in the second stage of the stochastic program, solutions

from M-Stoch1 may be too “conservative” in the sense that some of the extra network investments may not

be necessary. This is confirmed by the relatively inferior results by Stoch1-Stoch2 for R2,R4,R5,R6,R7,R8

in comparison to Determ-Stoch2. These trends can be observed from both Table 3 and Table 6.

It is also interesting to observe that for many instances, Stoch1-Stoch2 outsourced less commodities than
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Table 7: The Cplex solution time of different approaches for Set-LTL20 (in seconds).

Instance M-Determ M-Stoch1 M-Stoch2 Determ-Stoch2 Stoch1-Stoch2
R1 0.5 3.5 >4hrs 276.7 93.4
R2 0.6 7.2 >4hrs 160.8 87.4
R3 1.0 4.5 >4hrs 73.6 103.0
R4 1.8 21.3 >4hrs 1156.9 96.5
R5 1.4 14.4 >4hrs 3606.5 591.1
R6 1.0 5.3 >4hrs 81.0 95.8
R7 1.5 14.9 >4hrs 5698.8 177.5
R8 0.8 19.8 >4hrs 3261.7 2425.5
Avg time 1.1 11.4 >4hrs 1789.5 458.8

Determ-Stoch2 did which is not surprising since the network from M-Stoch1 has more capacity. However,

this is not always the case. For example, for instances R5, R6 and R7 in Table 6, and high uncertainty,

mixed correlation instances in Table 3, Stoch1-Stoch2 actually outsourced more than Determ-Stoch2. The

most likely reason for this is that though M-Stoch1 has higher installed capacity, the network structure is not

very good. As can be seen from the example given in the next section, as well as the findings by Lium et al.

(2009), that the network from M-Stoch1 is by no means a simple extension of the network from M-Determ.

It involves fundamental network structural changes.

6.2. Structural differences between solutions from the three formulations

In this section we analyse differences in solution structures from the three models. To allow us to carry

out a detailed study of the differences at solution level, we take a closer look at the solutions from the

different models for an instance with highly uncertain demand. Instances with low demand uncertainties are

not considered since the three formulations performed similarly for many of the small instances.

In this study, we experimented on a carefully generated new instance, denoted as LTL6-SW. It contains

12 nodes and 6 commodities shown in Figure 1.(a). The six grey-shaded nodes (numbered from 0 to 5) are

source nodes of 6 commodities and node 11 is their common sink node. The rest of the nodes are purely

consolidation/transhipment nodes. The values across the arcs represent the fixed costs of the corresponding

arcs. Only arcs that are shown in the figure are considered in the network. The number of periods is set to

5. Therefore the network in Figure 1.(a) has a copy in each of the 5 periods. All 6 commodities, available at

period 0, have to be delivered by period 4. The demands of the 6 commodities are drawn from a triangular

distribution Tri(0,1,0.5) and the capacity of the truck is set to 1. Hence, on average, 1 truck can service

two commodities. The correlation matrix used for scenario generation is given in Table 8. The costs for

rerouting and outsourcing are set to γ = 1.125, η = 0.875, λ = 150.

Figures 1.(b) (c) and (d) show the networks obtained through M-Determ, M-Stoch1 and M-Stoch2.

Table 9 summaries the truck cyclic routes used in these networks. It can be observed that although the

structural differences do not appear significant, the underlining philosophy is quite different. In terms of the
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Table 8: Correlation matrix for the instance LTL6-SW.
n0 n1 n2 n3 n4 n5

n0 1 0.7 0.4 0.4 -0.7 -0.7
n1 0.7 1 0.4 0.4 -0.7 -0.7
n2 0.4 0.4 1 0.8 -0.5 -0.5
n3 0.4 0.4 0.8 1 -0.5 -0.5
n4 -0.7 -0.7 -0.5 -0.5 1 0.7
n5 -0.7 -0.7 -0.5 -0.5 0.7 1

Table 9: Optimal truck routes according to different models for LTL6-SW.

M-Determ M-Stoch1 M-Stoch2
R1: 0→7→10→11→0 R1: 0→4→9→11→0 R1: 0→4→9→11→0
R2: 1→7→1 R2: 1→7→10→11→1 R2: 1→7→10→11→1
R3: 2→3→8→11→2 R3: 2→3→8→11→2 R3: 2→3→8→11→2
R4: 5→4→9→11→5 R4: 2→5→4→9→11→2 R4: 5→4→9→11→5

fixed cost of the network, M-Stoch1 is the most expensive one, due to an additional arc n2→n5 being used in

route R4 in order to increase flexibility. The network from M-Determ lacks such flexibility in certain areas.

An example is that the commodity from node 1 is consolidated at node 7, but only 1 truck departs from

node 7 to node 11. On the other hand, in the networks from both M-Stoch1 and M-Stoch2, node 4 was used

as a consolidation point for goods from node 0 and node 5. Since node 4 has two trucks going to node 11 and

node 0 and node 4 have negatively correlated demand, this route provides flexibility. Regarding route R3 for

commodities from nodes 2 and 3, which are positively correlated, there is also a lack of flexibility for three

scenarios for all three networks. The solution from M-Stoch1 is to distribute some of the shipments of node

2 from route R3 to R4. In M-Stoch2, this was solved through rerouting at Stage 2, thereby transforming the

network towards a network similar to that of M-Stoch1. That is, change R4 in M-Stoch2 to R4 in M-Stoch1

for these 3 scenarios. This observation is similar to the observation made in the previous example.

In general, we see that the deterministic solution pairs up commodities that turn out to be positively

correlated. Hence, rerouting (or serious outsourcing) becomes necessary. The M-Stoch1 solution, though not

knowing about rerouting, knows about the correlations and pairs things up differently. However, it may lead

to a network that is over-conservative. The network created by M-Stoch2 lies between the networks from

M-Determ and M-Stoch1 in such a way that its fixed costs are comparable to those of M-Determ, while the

network is flexible and can easily and cheaply be transformed to the structure of the network from M-Stoch1

when handling some “extreme” scenarios.

6.3. Outsourcing versus rerouting

In the previous experiments, we have shown that with 10% rerouting cost (λ = 150, γ = 1.05, η = 0.95),

the decomposition method Determ-Stoch2 produces better results than the stochastic approach M-Stoch1 on

average. However, at instance level, there are several cases where M-Stoch1 outperformed Determ-Stoch2,
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(d) Network by M-Stoch2

Figure 1: Service networks by different models for a 12-node-6-commodity instance. Thick arcs mean more than 1 truck
movement along the arc.

particularly when the rerouting cost is high. In fact, the relative ratio between the outsourcing cost and

rerouting cost will have a major influence on the solutions produced by the different stochastic approaches.

When the rerouting cost becomes much higher than outsourcing and fixed costs of the network, M-Stoch2

degenerates into Stoch1-Stoch2. On the other hand, when the rerouting cost is very low, it tends to lead

to a same network as the one M-Determ obtains. Table 10 presents a comparison of different approaches

with different rerouting costs for a 12-commodity-13-scenario instance that we adapted from one of instances

in Set-LTL20 2. Five rerouting cost settings were used, ranging from 10% up to 50%. The results by

2The number of commodities is reduced to 12 in order to obtain the optimal solutions for M-Stoch2 within a realistic CPU
time.
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Table 10: Performance of approaches at different rerouting costs for a 12-commodity-13-scenario instance.

Determ-Stoch2 Stoch1-Stoch2 M-Stoch2
(γ, η) obj

∑
Z obj

∑
Z obj

∑
Z

(1.05,0.95) 3432.9 8.5 3448.6 8.0 3432.9 8.5
(1.0,0.9) 3493.9 16.2 3507.3 8.0 3485.5 8.0
(1.125,0.875) 3514.7 17.4 3516.4 8.0 3507.7 16.2
(1.175,0.825) 3551.0 17.4 3531.3 8.0 3531.3 8.0
(1.25,0.75) 3598.4 23.4 3539.7 12.1 3539.7 12.1
Determ-Stoch1 (obj/

∑
Z): 3667.8/44.9

M-Stoch1 (obj/
∑

Z): 3539.7/12.1

Determ-Stoch1 and M-Stoch1 are always the same since they do not operate with rerouting. It can be seen

that for this instance when the rerouting cost is at 10%, M-Stoch2 has the same performance as Determ-

Stoch2, suggesting that M-Stoch2 gives the same master network as the deterministic model. However, due

to rerouting at the second stage of the stochastic program, it outsourced much less than Determ-Stoch1,

and hence produced a better solution as far as the objective is concerned. M-Stoch2 performed best when

the rerouting cost is at 20% or 25% but degenerated to Stoch1-Stoch2 when the rerouting cost reaches 35%

or higher. At this rerouting cost level, M-Stoch1 outperformed Determ-Stoch2 but was inferior to Stoch1-

Stoch2, suggesting its effectiveness even when the rerouting cost is very high. When the rerouting cost

reaches 50%, M-Stoch2 converges to M-Stoch1, suggesting that rerouting did not come into play due to high

costs and flexibility should be achieved through additional investments in the network.

6.4. Impact of commodity’s spatio-temporal distribution

It is not difficult to observe, from our previous experiments that highly uncertain demands are more

difficult to handle, particularly for M-Determ and M-Stoch1. Better demand predictions are crucial for

service network designs with good expected performance. Meanwhile, we have also observed that even with

given demand scenario trees, a given model obtains solutions of considerably different objective values when

the commodity sets are different. In other words, some commodity sets are far more expensive to service

than others despite having the same commodity number and demand stochacity. From a freighter point of

view, it is important to understand the characteristics (of a commodity set) that have led to this difference.

With guidance of this knowledge, a freight company could then strategically develop/extend its current

commodity set to maximise profitability. This prompted us to investigate the impact of different spatio-

temporal distribution on the performance of the three models we discuss in this paper. It is hoped that,

thorough a simple example, we could shed some light on this important issue. A thorough study regarding

this topic is out of the main scope of this paper but will be our main research in future.

In our experiments, we artificially created two very similar commodity sets, each of which contains 8

commodities; the first commodity set (see Figure 2.(a)) is made “balanced” both in terms of time and

space, meaning that shipment service demands are distributed among the time-space network as evenly as
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possibly. While the second commodity set (Figure 2.(b)) is made “clustered” in time dimension but with

same physical departure and arrival nodes as those in the first commodity set. We did not change the physical

departure/arrival nodes because the fixed costs of arcs are spatially dependent but they do not change over

time. We used the same scenario matrices generated previously with a same nominal demand 8. The vehicle

capacity is set to 10 for this particular experiment such that the network has innate (but limited) capacity

redundancy to absorb uncertain demands. To maintain a similar ratio of fixed cost per unit vehicle capacity,

arcs fixed costs are also halved here. All the other parameters remain the same as those in Table 2.

n00 n01 n02 n03 n04

n10 n11 n12 n13 n14

n20 n21 n22 n23 n24

n30 n31 n32 n33 n34

n40 n41 n42 n43 n44

n50 n51 n52 n53 n54

(a) A “balanced” commodity set

n00 n01 n02 n03 n04

n10 n11 n12 n13 n14

n20 n21 n22 n23 n24

n30 n31 n32 n33 n34

n40 n41 n42 n43 n44

n50 n51 n52 n53 n54

(b) A commodity set that is “clustered” in time

Figure 2: Two commodity sets with same origin/destination pairs but different departure and arrival times.

Table 11: The impact of demand spatio-temporal distribution on the service network.

Uncert- Correlation M-Determ M-Stoch1 M-Stoch2

ainty Type obj obj saving% obj saving%

high uncorrelated 1654.1 1654.1 0.0% 1579.1 4.5%
high positive 1697.6 1697.6 0.0% 1624.2 4.3%

balanced high mix 1646.6 1646.6 0.0% 1611.4 2.1%
low uncorrelated 1331.5 1331.5 0.0% 1331.5 0.0%
low positive 1317.6 1317.6 0.0% 1317.6 0.0%
low mix 1346.3 1346.3 0.0% 1345.7 0.0%

average 1498.9 1498.9 0.0% 1468.3 1.8%
high uncorrelated 1504.1 1486.8 1.2% 1317.1 12.4%
high positive 1547.6 1540.0 0.5% 1389.8 10.2%
high mix 1496.6 1496.6 0.0% 1375.9 8.1%

clustered low uncorrelated 1181.5 1181.5 0.0% 1171.7 0.8%
low positive 1167.6 1167.6 0.0% 1164.8 0.2%
low mix 1196.3 1196.3 0.0% 1193.4 0.2%

average 1348.9 1344.8 0.3% 1268.8 5.3%
Cost differences (%) between
balanced and clustered instances 10.0% 10.3% 13.6%

Table 11 provides details of the performance by different approaches for both “balanced” and “clustered”
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commodity sets. From the table it can be observed that high uncertainty (although with the same nominal

values) will lead to higher network costs. When uncertainty is relatively low, the deterministic model is

actually able to cope with most scenarios, mainly due to the difference between the capacity of the vehicles

(10 in this experiment) and the nominal demands 8 in this experiment. It is particularly interesting to

observe that when the commodities are clustered over time, the cost of the service network obtained by all

three methods are much lower than the balanced solution. For these two particular instances, the difference

in costs between a balanced commodity set and a clustered commodity set is at least 10% for all three models.

This may be explained by the fact that when the commodities cluster well, there are more opportunities for

consolidation and flow path sharing, both of which are beneficial for achieving flexibility, as found in Lium

et al. (2009).

7. Conclusions and Future Research

Rescheduling is a widely adopted practice to deal with uncertainties. However, research on service

network design with rerouting has not been looked at in the literature. In this work, we proposed a new

stochastic freight service network design model with vehicle rerouting options. The model is an extension of a

recent stochastic programming model (M-Stoch1) by Lium et al. (2009). In our model rerouting is explicitly

modelled by a set of integer variables in the second stage of the stochastic programming model. Although

computationally more expensive, the resultant model provides freight service planners with more flexibility

to balance the conflict between the setup cost of the network and expected operational costs. In addition, it

will allow freight companies to maximise their own transport capabilities optimally through rerouting and

reduces outsourcing whenever possible. The model was tested on two sets of instances mainly drawn from

the literature. Through both comparative studies and detailed analyses at the solution structure level, we

made the following main observations and conclusions:

• Across all the test instances used in this paper with moderate rerouting costs, the proposed model

M-Stoch2, when solved to optimality, is able to produce solutions with better objective values than

M-Stoch1. More importantly, these solutions tend to use considerably less outsourcing than M-Stoch1,

which is strategically important for the freight companies’ long-term ambitions.

• When the rerouting cost is moderate, the master network obtained via M-Stoch2 contains structures

present in its deterministic counterpart but also structures from the stochastic network via M-Stoch1.

Depending on problem instances, it may also contain some distinctive features that make flexible and

cheap rerouting of trucks possible. The relatively good performance by Determ-Stoch2 suggests that

the deterministic solution may not be as “brittle” as was previous thought if rerouting is permitted

and its cost is moderate.
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• For large instances, M-Stoch2 is generally unsolvable. Decomposition-like heuristics in the forms of

Determ-Stoch2 and Stoch1-Stoch2, however, produce better solutions than M-Stoch1 and M-Stoch2

do when the computational time is limited to 5 hours. These two heuristics could be used to develop

efficient heuristic methods for M-Stoch2. The performance difference between Determ-Stoch2 and

Stoch1-Stoch2 is very much dependent on the ratio between the outsourcing costs and rerouting costs.

• When demand is highly uncertain and correlated (both positive and mixed), the savings made using

stochastic network design (M-Stoch1 and M-Stoch2) are among the highest. This does not come as a

surprise since high-level, uncorrelated uncertainty is more expensive to handle. In a volatile market,

freight companies should consider both the rerouting and outsourcing methods to leverage the risk and

potential high costs resulting from demand uncertainty.

• It was found, through a numerical study, that the spatio-temporal distribution of demands could have

a big impact on profitability. When demand (in terms of the size of the commodity set) is not high

and is scattered evenly in the time-space network, both the deterministic model (M-Determ) and

the stochastic models (M-Stoch1, M-Stoch2) generate solutions that are significantly more expensive

(≥10% in our experiments) than the instances with “time-clustered” commodities. The implication for

freight companies is to develop a market with certain beneficial spatio-temporal characteristics, which

are not entirely explored yet but will be one of our future research directions.

Our future work will focus on the following two aspects. Firstly, we plan to make the model adoptable

in practice by developing more efficient algorithms that are capable of solving large instances. Secondly,

the model can be further extended by introducing other uncertainties in edge lengths and/or availabilities.

Finally, it will be very interesting to understand better what constitute beneficial features in a commodity

mix, in the sense that they lead to a good trade-off between initial design costs and expected operational

costs (by using our model). Outcomes of this research would be extremely useful for freight companies to

guide their market development/expansion. As far as we know, this research question has received very little

attention so far in freight service network design literature.
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