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Abstract

In this paper we develop a testing procedure for the presence of a deterministic linear trend

in a univariate time series which is robust to whether the series is I(0) or I(1) and requires no

knowledge of the form of weak dependence present in the data. Our approach is motivated by the

testing procedures of Vogelsang [1998, Econometrica, vol 66, p123-148] and Bunzel and Vogelsang

[2005, Journal of Business and Economic Statistics, vol 23, p381-394], but utilises an auxiliary unit

root test to switch between critical values in the exact I(1) and I(0) environments, rather than

using this unit root test to scale the test statistic as is done in the aforementioned procedures.

We show that our proposed tests have uniformly greater local asymptotic power than the tests of

Vogelsang (1998) and Bunzel and Vogelsang (2005) when the error process is exact I(1), identical

local asymptotic when the error process is I(0), and have better overall local asymptotic power when

the error process is near I(1). Our proposed tests also display superior finite sample power to the

tests of Vogelsang (1998) and Bunzel and Vogelsang (2005) and are competitive in finite samples

with tests designed to be optimal in both the exact I(1) and I(0) environments. We apply our test

procedures to a number of equity indices and find that these series appear to have a significant

upward deterministic trend, yet are also highly persistent about this long run growth path.

Keywords: Linear trend, unit root tests, strong serial correlation.

JEL Classification: C22.

∗We thank the Guest Editors, Richard Baillie and Menelaos Karanasos, and two anonymous referees for helpful
comments on earlier versions of the paper. Address correspondence to: Robert Taylor, Essex Business School, University
of Essex, Colchester, CO4 3SQ, UK. E-mail: rtaylor@essex.ac.uk

1



1 Introduction

The ability to detect the presence and magnitude of a deterministic trend in an economic time series

is of key importance when conducting empirical analysis, the presence of a linear trend being of

particular relevance for the purpose of forecasting or testing for the presence of a unit root. In the

latter case, failure to correctly specify a trend when it is indeed present is known to have an adverse

effect, resulting in non-similar and inconsistent tests, as demonstrated by Perron (1998). Similarly,

the power of unit root tests to reject the null under the I(0) alternative when a trend is unnecessarily

included in a model specification is reduced, see inter alia Marsh (2009) and Ellliot et al. (1996).

The presence of a deterministic trend in an economic or financial time series can also be of interest

in its own right, since a linear trend is compatible with a degree of underlying long run growth in the

series. For example, this is of particular interest when considering the long run behaviour of stock

prices and indices, where an underlying upward trend implies a long run average return. Moreover,

the outcome of statistical tests of the efficient market hypothesis (EMH) are necessarily contingent

on correct specification of the trend component of prices (or, equivalently, the mean component of

returns).

Testing for the presence of a linear trend is complicated by the fact that in practice it is typically

not known whether the underlying process is I(0) or I(1). For example, uncertainty as to the degree to

which financial markets are efficient suggests that one would not want to make an a priori assumption

regarding the presence or absence of a unit root in the series from the outset. We therefore require

tests for a linear trend that are robust to whether a series is I(0) or I(1) when determining whether

a trend is present. There have been a number of papers suggesting testing procedures for detecting

a deterministic trend function which are robust to the order of integration of the data including,

inter alia, Vogelsang (1998), Bunzel and Vogelsang (2005), Harvey et al. (2007) and Perron and Yabu

(2009). Vogelsang (1998) and Bunzel and Vogelsang (2005) employ an auxiliary unit root test statistic

to line up the critical values of a t-statistic based on the levels of the data in the exact I(1) and I(0)

environments. The approach taken in Harvey et al. (2007) utilises an auxiliary unit root or stationary

test statistic to switch between the optimal trend function test in the exact I(1) and I(0) environments,

and, as such, the test achieves the Gaussian asymptotic local power envelope in both cases. Perron

and Yabu (2009) use a “super-efficient” estimate of the autoregressive parameter to construct a GLS

based test statistic that also achieves the Gaussian asymptotic local power envelope in both the exact

I(1) and I(0) cases.

Compared to the tests of Harvey et al. (2007) and Perron and Yabu (2009), the tests of Vogelsang

(1998) and Bunzel and Vogelsang (2005) have the advantage of better size control in finite samples in

the exact I(1) environment when the errors are i.i.d., albeit at the expense of relatively poor power

properties, with the tests of Harvey et al. (2007) and Perron and Yabu (2009) fairly similar in terms

of their overall performance. In the local to I(1) environment the results are less clear, with all tests

displaying significant undersize, and no one test dominating in terms of overall power.

In this paper we propose a modification to the testing procedures of Vogelsang (1998) and Bunzel

2



and Vogelsang (2005) in which an auxiliary unit root test statistic is used to scale the critical value

of the test rather than the test statistic itself. We find the proposed modification yields a test that

has uniformly greater local asymptotic power than the tests of Vogelsang (1998) and Bunzel and

Vogelsang (2005) when the error process is exact I(1), has identical local asymptotic power when the

error process is I(0) and has better overall finite sample properties. We also find that the proposed

tests are competitive in finite samples when compared to the optimal tests of Harvey et al. (2007)

and Perron and Yabu (2009).

The paper is organised as follows. Section 2 outlines the model. Extant tests for a deterministic

linear trend are outlined in Section 3. In section 4 we outline our proposed tests. In section 5 the

limiting distribution and local asymptotic power of the tests are detailed. Section 6 reports results

of Monte Carlo simulations performed in order to assess the finite sample size and power properties

of the proposed tests relative to existing tests. Section 7 reports results of an empirical exercise in

which we apply the test statistics outlined in this paper to a number of US and UK equity indices.

Concluding remarks are made in section 8.

2 The Linear Trend Model

Consider a sample of T observations generated according to the following data generating process

(DGP)

yt = µ+ βt+ ut, t = 1, ..., T (1)

ut = αTut−1 + εt, t = 2, ..., T. (2)

Following Vogelsang (1998), Bunzel and Vogelsang (2005) and Harvey et al. (2007) we assume that

the process {εt} is such that

εt = C(L)et, C(L) :=

∞
∑

i=0

CiL
i

with C(z) 6= 0 for all |z| ≤ 1 and
∑∞

i=0 i|Ci| <∞, and where {et,Ft} is a martingale difference sequence

with E(e2t |Ft−1) = 1 and suptE(e4t |Ft−1) < ∞. We also define ω2
ε := limT→∞ T−1E(

∑T
t=1 εt)

2 =

C(1)2. The initial condition, u1, is assumed to be Op(1). These assumptions ensure that we can apply

a Functional Central Limit Theorem (FCLT) to the partial sums of {εt}, so that T−1/2
∑⌊rT ⌋

t=1 εt
d→

ωεw(r) where ⌊.⌋ denotes the integer part of its argument,
d→ denotes weak convergence and w(r) is

a standard Wiener process.

The autoregressive parameter in (2) determines the order of integration of the series. When

αT = α, and |α| < 1 the series is I(0), whereas if αT = 1 − ᾱ/T the series is near I(1), with ᾱ = 0

corresponding to an exact I(1) process. Under these assumptions a FCLT applies to the partial sum of

{ut} defined as St :=
∑t

j=1 uj . When {ut} is I(0), T−1/2S⌊rT ⌋
d→ σw(r), where σ2 := C(1)2/(1− α)2.

When {ut} is near I(1), T−1/2u⌊rT ⌋
d→ ωεwᾱ(r), where wᾱ(r) :=

∫ r
0 exp(−ᾱ(r − s))dw(s).

The null hypothesis of interest is H0 : β = β0. This null hypothesis can be tested against either
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the two-sided alternative H1 : β 6= β0, or against either the right-tailed alternative H ′
1 : β > β0 or the

left tailed alternative H ′′
1 : β < β0. The leading case of interest is where β0 = 0, so that the null and

alternative hypotheses signify the absence or presence of a linear trend, respectively. When analysing

the asymptotic performance of the tests outlined in this paper it will prove useful to consider the

local alternative hypotheses of H10 : β = β0 + κT−3/2 and H11 : β = β0 + κT−1/2, where κ is a finite

constant, with the scalings T−3/2 and T−1/2 providing the appropriate Pitman drifts under I(0) and

I(1) errors, respectively.

3 Extant Tests

In this section we outline the trend tests of Vogelsang (1998), Bunzel and Vogelsang (2005), Harvey

et al. (2007) and Perron and Yabu (2009), all of which are designed to be robust to both the order of

integration of the error process and weak dependence in the shocks.

3.1 Scaled Test Statistics

The tPSW 1 statistic of Vogelsang (1998) takes the form

tPSW 1 :=
β̂ − β0

√

T−1100s2z
exp(−cξJ)

where β̂ is the OLS estimator of β from (1) and J denotes the J unit root test statistic of Park (1990)

and Park and Choi (1988) given by the standard OLS Wald statistic normalised by T−1 for testing

the joint hypothesis γ2 = γ3 = ... = γ9 in the following regression

yt = α+ βt+

9
∑

i=2

γit
i + ut.

The variance estimator is calculated as s2z := T−1
∑T

t=1 S̃
2
t where S̃t denotes the residuals from the

following regression

zt = µ̃t+ β̃
t
∑

j=1

j + S̃t, t = 1, ..., T

where zt :=
∑t

s=1 ys.

The tPSW 1 statistic has a non-degenerate limiting distribution under both I(0) and I(1) errors.

The motivation behind this approach is that if the errors are I(0), J
p→ 0, leaving the asymptotic

distribution of the statistic unaffected by the scaling factor exp(−cξJ), whereas if the errors are near

I(1), J converges to a well defined limiting distribution, allowing the practitioner to choose a value of

cξ that lines up the asymptotic critical values of the test in the I(0) and exact I(1) environments for

a given significance level, ξ.

The Dan-J statistic of Bunzel and Vogelsang (2005) is a modified version of the tPSW 1 test statistic

of Vogelsang (1998) that employs a long run variance estimator based on the fixed-b asymptotics of

4



Kiefer and Vogelsang (2005). Specifically, the statistic is given by

Dan-J :=
β̂ − β0

√

ω̂2
u/
∑T

t=1(t− t̄)2
exp(−c′ξJ)

where the long run variance estimator, ω̂2
u, is constructed using the Daniell kernel with a data-

dependent bandwidth. The bandwidth is given by max(bT, 2), where b = bopt( ˆ̄α), in which ˆ̄α :=

T (1 − α̂) with α̂ obtained by OLS estimation of (1) and (2), and bopt(.) is a step function given in

Bunzel and Vogelsang (2005). The test statistic is, again, scaled by a function of the J unit root test

statistic of Park (1990) and Park and Choi (1988). The constant c′ξ is, as in Vogelsang (1998), chosen

such that for a given significance level ξ, Dan-J has the same asymptotic critical value under both I(0)

and exact I(1) errors. The value of c′ξ depends on b; Bunzel and Vogelsang (2005) provide a response

surface for determining c′ξ for a given significance level, and b. The critical values for the test also

depend on b, and again a response surface is provided by the authors for a variety of significance levels.

Because ᾱ is not consistently estimated by ˆ̄α, Bunzel and Vogelsang (2005) only provide a limiting

distribution for Dan-J when it is assumed that ᾱ is known in the calculation of b; that is, when bopt( ˆ̄α)

is replaced by bopt(ᾱ). Although this strictly means that their asymptotic results are based on the

limiting behaviour of an infeasible test, for the purposes of making comparisons tractable, in what

follows the limit distribution for Dan-J is that using bopt(ᾱ).

3.2 Asymptotically Optimal Tests

The zλ statistic of Harvey et al. (2007) employs a switching-based strategy that attains the local

limiting Gaussian power envelope for this testing problem irrespective of whether ut is an exact I(1)

process or is I(0). The test statistic is asymptotically distributed as a standard normal under the null

in both cases. It is calculated as

zλ := (1− λ∗)z0 + λ∗z1 (3)

where

z0 :=
β̂ − β0

√

ω̂2
u/
∑T

t=1(t− t̄)2
and z1 :=

β̌ − β0
√

ω̌2
v/(T − 1)

(4)

and where β̂ denotes the OLS estimator of β from (1) and ω̂2
u is a long run variance estimator formed

from ût := yt − µ̂ − β̂t, while β̌ is the OLS estimator of β from (1) estimated in first differences i.e.

from ∆yt = β + vt, t = 2, ..., T , and ω̌2
v is a long run variance estimator based on v̌t := ∆yt − β̌. The

weight function λ∗ is defined as

λ∗ := exp

(

−0.00025
(

DF-GLSτ

KPSS

)2
)

(5)

where DF-GLSτ is the with-trend local GLS unit root test statistic of Elliott et al. (1996) and KPSS

is the with-trend stationarity test statistic of Kwiatkowski et al. (1992).
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Whilst the test based on zλ attains the local limiting Gaussian power envelope for the case of either

I(0) or exact I(1) errors, Harvey et al. (2007) show that a modified variant of zλ, denoted zm2
λ , can

provide a more powerful test than zλ when ut is near-integrated. This replaces z1 with zm2
1 := δξR2z1

where

R2 :=

(

ω̌2
v

T−1σ̂2
u

)2

and σ̂2
u := (T − 2)−1

∑T
t=1 û

2
t . Here δξ is a constant chosen such that, at a given significance level ξ,

zm2
λ has a standard normal critical value under both I(0) and exact I(1) errors.

The tRQF
β test statistic of Perron and Yabu (2009) takes the form of an autocorrelation-corrected

t-ratio on the OLS estimate of β obtained from the quasi GLS regression

yt − α̃MSyt−1 = (1− α̃MS )µ+ β[t− α̃MS (t− 1)] + (ut − α̃MSut−1), t = 2, ..., T

y1 = β + u1.

Here, α̃MS is defined according to the following truncation rule

α̃MS :=

{

1 if |α̃TWS − 1| < T−1/2

α̃TWS otherwise

where α̃TWS is an autocorrelation-robust weighted symmetric least squares estimate of α (based on

the OLS residuals ût) with one of two truncations applied as described by Roy and Fuller (2001) and

Roy et al. (2004). We will concentrate only on the truncation rule α̃TWS = α̃MU , where α̃MU is as

described in Perron and Yabu (2009), who show this truncation gives the better finite sample power

properties. The tRQF
β statistic is asymptotically standard normal under the null hypothesis when ut

is either I(0) or exact I(1) and, as noted in Remark 2 of Perron and Yabu (2009), has the same local

asymptotic power as the zλ statistic of Harvey et al. (2007) in the local-to-unity autoregressive root

environment that we consider in this paper.

4 Modified Tests

Our proposed testing procedure involves utilising similar t-ratios to Vogelsang (1998) and Bunzel and

Vogelsang (2005), although we propose use of the auxiliary J unit root test to switch between the

exact I(1) and I(0) critical values. Such an approach has the advantage that it leads to a test with

local asymptotic power identical to the tests of Vogelsang (1998) and Bunzel and Vogelsang (2005)

when the errors are I(0), but with greater local asymptotic power when the shocks are I(1) due to

the removal of the influence of the auxiliary unit root test statistic on the asymptotic distribution of

the test in the I(1) case. Specifically, the first test statistic is a modified version of the tPSW 1 test of

Vogelsang (1998) calculated as

tPSW 1
s :=

β̂ − β0
√

T−1100s2z
.
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Notice that this is identical to the original tPSW 1 statistic of Vogelsang (1998) but excluding the

scaling factor exp(−cξJ). We then calculate the weight function

λ′ := exp(−τT 1/2Jυ) (6)

with constants υ > 0.5 and τ > 0, and compare the tPSW 1
s test statistic to a critical value, cv, given

by

cv := (1− λ′)cvI(1) + λ′cvI(0)

where cvI(1) and cvI(0) are the asymptotic critical values of the tPSW 1
s statistic at the desired sig-

nificance level in the exact I(1) and I(0) environments, respectively. The rationale behind such an

approach is that when the error process, ut, is I(1), J
υ is Op(1), so that T 1/2Jυ is Op(T

1/2) and hence

λ′
p→ 0 and so the exact I(1) critical value is used. Conversely, when ut is I(0), J

υ is Op(T
−υ), so that

T 1/2Jυ is op(1) given υ > 0.5, and now λ′
p→ 1 so that the I(0) critical value is used. Consequently,

at least asymptotically, the test will have correct size regardless of whether the error process is I(0)

or exact I(1). This holds irrespective of the values of τ > 0 and υ > 0.5, which are calibrated later in

the paper to best control the size of the test in finite samples.1

We also apply the same principle to the test statistic of Bunzel and Vogelsang (2005), with our

proposed test statistic given by

Dan-J s :=
β̂ − β0

√

ω̂2
u/
∑T

t=1(t− t̄)2
.

We then calculate the scaling factor λ′ in the same way as previously described and use this to switch

between the relevant critical values in the exact I(1) and I(0) environments. With this procedure

the critical values will, as with the test of Bunzel and Vogelsang (2005), depend on the choice of

bandwidth, b, used to estimate the long run variance.

5 Asymptotic Results

We now examine the asymptotic behaviour of the test statistics outlined in this paper. We consider

the size and power properties of the test under both the null hypothesis H0 : β = β0 and the local

alternative hypotheses H10 : β = β0+κT−3/2 and H11 : β = β0+κT−1/2, where κ is a finite constant,

with the T -scalings providing the appropriate Pitman drift under I(0) and I(1) errors, respectively.

The limiting distributions are expressed in terms of the following functions defined below.

1Notice that the required properties for the large sample behaviour of λ′ under I(0) and I(1) errors are also satisfied
by 1 − λ

∗, where λ
∗ is the weight function (5) used by Harvey et al. (2007). Other specifications for λ

′ could also be

used, provided that λ
′

p

→ 0 under I(1) and λ
′

p

→ 1 under I(0). The weight function adopted in (6) has the advantage
of requiring the computation of only one auxiliary statistic. Moreover, while less parameterized specifications could be
adopted, we found that the greater flexibility permitted by the inclusion of υ and τ delivered improved overall finite
sample performance.
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Definition 1

F (r) := [1, r]′, G(r) := [r, (1/2)r2]′, Q(r) := [1, r, r2, ..., r9]′, R∗ := [0, 1]

NF :=

{

∫ 1
0 F (s)dw(s) if |α| < 1
∫ 1
0 F (s)wᾱ(s)ds if α = 1− ᾱ/T

H(r) :=

{

w(r) if |α| < 1
∫ r
0 wᾱ(s)ds if α = 1− ᾱ/T

QF (r) := H(r)−
∫ r

0
F (s)′ds

(
∫ 1

0
F (s)F (s)′ds

)−1

NF

ΦF (b, k) :=

∫ 1

0

∫ 1

0
−k′′((r − s)/b)QF (r)QF (s)drds

Ac :=

∫ 1
0 Lc(wᾱ(r), F (r))2dr
∫ 1
0 Lc(wᾱ(r), Q(r))2dr

− 1,

where k′′(x) is the second derivative of the Bartlett kernel and Lc(p, q) generically denotes the contin-

uous time residuals from the projection of p onto the space spanned by q. �

Consider first the I(0) case. To that end if yt is generated according to (1) and (2) with |α| < 1

and β = β0 + κT−3/2, then,

tPSW 1, tPSW 1
s

d→
κ/σ +R∗

′

(

∫ 1
0 F (s)F (s)′ds

)−1
NF

√

100
∫ 1
0 Lc(w(r), G(r))2drR∗

(

∫ 1
0 F (s)F (s)′ds

)−1
R∗′

zλ, z
m2
λ , tRQF

β
d→ w(1) + κ/(

√
12σ)

Dan-J , Dan-J s
d→

κ/σ +R∗
′

(

∫ 1
0 F (s)F (s)′ds

)−1
NF

√

ΦF (b, k)R∗
(

∫ 1
0 F (s)F (s)′ds

)−1
R∗′

The proofs for the tPSW 1
s and Dan-J s statistics follow trivially from those of the tPSW 1 and

Dan-J statistics given in Vogelsang (1998) and Bunzel and Vogelsang (2005). The proofs for the zλ,

zm2
λ and tRQF

β tests are taken from Harvey et al. (2007) and Perron and Yabu (2009). The modified

and unmodified versions of the statistics of Vogelsang (1998) and Bunzel and Vogelsang (2005) share

the same asymptotic distribution in the I(0) case and, as such, will have the same asymptotic local

power for any given κ when ut is I(0). This is due to the fact that the scaled unit root statistic in the

original test statistics converges to 1, and the critical value utilised for the modified statistic converges

to the I(0) critical value, yielding identical tests in the limit.
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Next consider the I(1) case. If yt is generated according to (1) and (2) with α = 1 − ᾱ/T and

β = β0 + κT−1/2, then

tPSW 1 d→
κ/ωε +R∗

′

(

∫ 1
0 F (s)F (s)′ds

)−1
NF

√

100
∫ 1
0 Lc

(

∫ 1
0 wᾱ(s)ds,G(r)

)2
drR∗

(

∫ 1
0 F (s)F (s)′ds

)−1
R∗′

exp(−cξAc)

Dan-J
d→

κ/σ +R∗
′

(

∫ 1
0 F (s)F (s)′ds

)−1
NF

√

ΦF (b, k)R∗
(

∫ 1
0 F (s)F (s)′ds

)−1
R∗′

exp(−cξAc)

zλ, t
RQF
β

d→ wᾱ(1) + κ/ωε

zm2
λ

d→ δγ

(
∫ 1

0
Lc(wᾱ(r), F (r))dr

)−2

(wᾱ(1) + κ/ωε)

tPSW 1
s

d→
κ/ωε +R∗

′

(

∫ 1
0 F (s)F (s)′ds

)−1
NF

√

100
∫ 1
0 Lc

(

∫ 1
0 wᾱ(s)ds,G(r)

)2
drR∗

(

∫ 1
0 F (s)F (s)′ds

)−1
R∗′

Dan-J s
d→

κ/σ +R∗
′

(

∫ 1
0 F (s)F (s)′ds

)−1
NF

√

ΦF (b, k)R∗
(

∫ 1
0 F (s)F (s)′ds

)−1
R∗′

The proofs for the tPSW 1
s and Dan-J s statistics, again, follow trivially from those of the tPSW 1

and Dan-J statistics given in Vogelsang (1998) and Bunzel and Vogelsang (2005). The proofs for the

zλ, z
m2
λ and tRQF

β tests are, once again, taken from Harvey et al. (2007) and Perron and Yabu (2009).

As can be seen, the limiting distributions of the modified versions of the tPSW 1
s and Dan-J s statistics

now differ from those of the original versions of these statistics. This is due to the fact that the J

unit root test impacts the asymptotic distribution of the original statistics, which will in turn affect

their local asymptotic power, whereas for the modified tests this same test statistic is simply used

to select the critical value, which will have no effect on local asymptotic power. The main difference

between the modified and unmodified statistics is that the additional variation from the J unit root

test statistic impacts the asymptotic distribution of the tPSW 1 and Dan-J statistics, whereas for the

tPSW 1
s and Dan-J s statistics this variation impacts the critical value selected asymptotically. In the

exact I(1) case we will show that this leads to large power gains for the modified tests relative to their

unmodified counterparts.

We now examine the asymptotic power functions of all of the above tests by directly simulating

the limiting representations given above. The Weiner processes were approximated using NIID(0, 1)

random variates and approximating integrals by normalised sums of 1000 steps. All Monte Carlo

simulations that follow were performed in Gauss 9.0 using 10,000 replications. The results we report

are for one-sided tests of H0 : β = β0 against H
′

1 : β > β0. Consequently, results are reported for

positive values of κ only. Notice, however, that these power functions are identical to those of the

corresponding one-sided tests of H0 : β = β0 against H
′âeTM
1 : β < β0 which obtain for negative values
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of κ. All results are presented at an asymptotic level of 5%. For the Dan-J s test a bandwidth of

b = 0.02 was utilised in all scenarios as this choice of bandwidth led to a test with the greatest local

asymptotic power for both I(1) and I(0) errors, as such, we recommend the use of this bandwidth

when performing the Dan-J s test in practice and perform the test utilising this bandwidth for the

remainder of the paper. For the Dan-J test results are reported for b = bopt(ᾱ). Note that all tests

are constructed to give an asymptotic size of 5% in the I(0) and exact I(1) environment, thus for the

case of errors that are near I(1) with ᾱ > 0 the tests will be conservative.

For the case of I(0) errors results are reported for the null hypothesis H0 : β = β0 and the local

alternative H10 : β = β0 + κT−3/2. We consider a range of κ ∈ [0, 20] using a grid with 100 steps,

with results reported in Figure 1. As can be seen, the greatest power is achieved by the zλ, z
m2
λ and

tRQF
β tests, with all of these tests attaining the Gaussian asymptotic local power envelope. The Dan-J

and Dan-J s tests have identical asymptotic local power functions, as do the tPSW 1 and tPSW 1
s tests.

Although the tests based on Dan-J have uniformly better power than the tests based on tPSW 1, they

are slightly less powerful than the zλ, z
m2
λ and tRQF

β tests which are asymptotically optimal in the I(0)

environment.

For the case of near I(1) errors results are reported for the null hypothesis H0 : β = β0 and the

local alternative H11 : β = β0 + κT−1/2 for a range of ᾱ ∈ [0, 5, 10, 15], with ᾱ = 0 corresponding to

an exact I(1) process. We consider a range of κ ∈ [0, 8] using a grid with 100 steps. Figure 2(a) shows

a clear ordering in the asymptotic local power of the test statistics in the exact I(1) case, with the zλ

and tRQF
β tests achieving the Gaussian asymptotic local power envelope and displaying the greatest

overall power. The Dan-J s and tPSW 1
s tests display power significantly in excess of their unmodified

counterparts, with the zm2
λ test attaining power somewhere between the modified and unmodified

tests. The superiority of the new modified tests, compared with their unmodified counterparts, is

unsurprising as the choice to utilise the auxiliary unit root test statistic to select the critical value

rather than scale the test statistic itself removes the influence of the auxiliary unit root test statistic

on the asymptotic distribution of the test in the I(1) case, leading to greater local asymptotic power.

The results are more mixed when ᾱ > 0, with no single test having uniformly greater power for all

values of κ. Results for ᾱ = 5, reported in Figure 2(b), show that all of the procedures are under-sized,

particularly so in the case of the zλ and tRQF
β tests. In this scenario it is, in fact, the original tPSW 1

and Dan-J tests that have the best power properties for values of κ less than around 1.6, followed by

the zm2
λ , tPSW 1

s and Dan-J s tests, with the zλ and tRQF
β tests having the lowest overall power. For

values of κ greater than around 1.6, however, the power ordering is reversed, with the tests reverting

to the power ordering observed for the exact I(1) case. In particular the zλ, t
RQF
β , Dan-J s and tPSW 1

s

tests display power significantly in excess of the zm2
λ , tPSW 1 and Dan-J tests for moderate values of

κ.

The pattern of results for ᾱ = 10 and ᾱ = 15, presented in Figures 2(c) and 2(d), respectively,

are broadly similar to the case of ᾱ = 5, although as ᾱ increases the zm2
λ test begins to dominate

other tests for values of κ less than around 1.6. Whilst the power ordering is otherwise identical,

the difference in power between the zm2
λ , tPSW 1 and Dan-J tests and all other tests for κ less than
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around 1.6 is increasing in ᾱ, with the power functions of the zλ and tRQF
β tests converging towards

a step function at κ = 1.645 as ᾱ is increased.

In summary, if we are interested in only I(0) or exact I(1) processes then the zλ and tRQF
β tests have

uniformly greater local asymptotic power. The results are, however, mixed if we allow for the case of

near I(1) processes. The most important point to note, however, is that in the exact I(1) scenario using

the J unit root test statistic to select a critical value in the testing procedure of Vogelsang (1998) and

Bunzel and Vogelsang (2005) rather than scaling the test statistic itself yields substantial power gains,

with the tPSW 1
s and Dan-J s tests displaying power far in excess of the original tPSW 1 and Dan-J

tests. For near I(1) processes results are less clear, with the modified versions of the test of Vogelsang

(1998) and Bunzel and Vogelsang (2005) displaying power below their unmodified counterparts for

small values of κ, but displaying greater power for larger values of κ. It will, therefore, be important

to examine how this pattern of local asymptotic power translates into the finite sample performance

of the proposed tests.

6 Finite Sample Simulations

In this section we present the results from a Monte Carlo simulation exercise performed to assess

the finite sample size and power properties of the tests discussed in this paper. Data were generated

according to

yt = µ+ βt+ ut, t = 1, ..., T,

ut = αTut−1 + et + θet−1,

with et ∼ NIID(0, 1), αT = 1− ᾱ/T and u1 = e1 = e0 = 0. We test the null hypothesis H0 : β = β0

against the one-sided alternative H ′
1 : β > β0, using one-sided tests, and where without loss of

generality we set β0 = µ = 0. All tests were performed at the nominal 5% level. When performing

the tPSW 1
s and Dan-J s tests values of τ and υ used when calculating the relevant critical value were

calibrated to give the best overall small sample performance. We considered values of υ = 1 and

υ = 2 and for each test and value of υ a value of τ was chosen such that size was controlled across

all scenarios considered. For a given υ smaller values of τ lead to a test with higher finite sample size

due to more weight being placed on the I(0) critical value, whereas larger values of τ lead to lower

finite sample size as more weight is placed on the I(1) critical value. We found that υ = 2 for both

tests and values of τ = 0.03 and τ = 0.074 for the tPSW 1
s and Dan-J s tests, respectively, led to tests

with well controlled size for i.i.d errors in all scenarios and decent finite sample power properties.

Table 1 reports the size of the testing procedures for a range of ᾱ ∈ [0, 5, 10, 15] and θ ∈
[−0.8,−0.4, 0.0, 0.4, 0.8]. We see that all the tests except the tPSW 1 and Dan-J tests have poor

size control when ᾱ = 0, T = 100 and the errors are i.i.d., with the zλ test displaying the worst overall

size distortions with an empirical size of 11.9%. The tPSW 1
s and Dan-J s tests are also oversized,

but not to such an extent. These size distortions are reduced when the sample size is increased to

11



T = 250 but are still noticeable for all but the tPSW 1 and Dan-J tests. For the near integrated

scenarios considered, all of the tests are conservative when the errors are i.i.d., with actual size below

the 5% nominal level for all values of ᾱ > 0. Moving away from the i.i.d. case, we see that introducing

negative MA behaviour into the noise function leads to an increase in the size of all tests for all values

of ᾱ, with the exception of the zλ and zm2
λ tests. For these two tests size is relatively unaffected by the

value of θ, with only the case θ < 0 and ᾱ = 0 leading to a reduction in size. For the remaining tests,

size distortions are most noticeable for the tests based on Dan-J, although the tests based on tPSW 1

do suffer quite severe size distortions when ᾱ = 0 and θ < 0. The size of all tests are less sensitive to

positive MA behaviour, with the size of the tests in this scenario almost identical to the i.i.d. case.

We now turn our attention to the power of the tests under the alternative. Figure 3 reports results

for ᾱ = 0 for sample sizes of T = 100 and T = 250 and values of θ ∈ [−0.4, 0.0, 0.4]. In this scenario

there is a clear ordering in the power of the tests, with zλ having uniformly greater power than all

tests, closely followed by tRQF
β . The tPSW 1

s and Dan-J s tests have power significantly in excess of

their unmodified counterparts, with power of the zm2
λ test somewhere between that of the tPSW 1

s and

the Dan-J test. These results are unsurprising given that the most powerful tests in this scenario

are also those that are most oversized. As such, Figure 4 reports size adjusted power for the same

scenarios. For a sample size of T = 100 with i.i.d. errors the best size adjusted power is given by the

tRQF
β , zλ and Dan-J s tests, with the tPSW 1

s test the most powerful of the remaining tests. When the

sample size is increased to T = 250 the results are fairly similar, although the tRQF
β test now shows

the best power overall, followed by zλ, then Dan-J s. We see a similar pattern of results when we allow

for positive MA behaviour in the error process, although when we allow for negative behaviour when

θ = −0.4 the results are slightly different. In this scenario the best overall power is now achieved by

the zλ and Dan-J s tests, followed by the tPSW 1
s and tRQF

β tests.

Figure 5 reports the power of the tests for ᾱ = 5. In this scenario results are mixed, with the

zλ test displaying arguably the best overall power, although it is somewhat less powerful than the

other tests for smaller values of β, reflecting the local asymptotic power results in Figure 2(b). The

most important results to note in this scenario are that, much like in the case of exact I(1) errors, the

tPSW 1
s and Dan-J s tests have better overall power than their unmodified counterparts. The power

of the tPSW 1
s test is uniformly higher than that of the tPSW 1 test, and the Dan-J s test is more

powerful than the Dan-J test for all but very small values of β. The tPSW 1
s test also shows higher

power than both the zλ and tRQF
β tests for lower values of β.

Figures 6 and 7 report the power of the tests for ᾱ = 10 and ᾱ = 15, respectively. Results here

are, once again, rather mixed. The power functions of the tests are much closer together, particularly

for ᾱ = 15, with no one test dominating the others. What is important to note, however, is that the

tPSW 1
s test, once again, shows uniformly greater power than its unmodified counterpart. The Dan-J s

test, however, does not perform so well with the power of this test falling below that of the original

Dan-J test for all but large values of β. The tPSW 1
s test is again competitive with the zλ and tRQF

β

tests.

The results reported in this section suggest that no one test is best suited to the testing problem
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at hand. The important result is that the tPSW 1
s test shows uniformly greater finite sample power

than the original tPSW 1 test, and often has the best power properties of all tests for smaller values

of β and when ᾱ > 0. Results for the Dan-J s test are less clear cut. While the power of this test

is greater than both the tPSW 1
s and Dan-J tests in the exact I(1) environment, it appears to show

inferior power properties to these two tests in the near integrated environment.

7 Application to Equity Indices

We now apply the test statistics outlined in this paper to a number of stock market indices. We

consider the natural logarithm of the monthly closing price of six equity indices using all available

data sourced from Yahoo! finance. The six indices utilised are the NASDAQ (02/1971-10/2013),

S&P100 (08/1982-10/2013), S&P500 (01/1950-10/2013), FTSE 100 (04/1984-10/2013), FTSE 250

(12/1985-10/2013) and the FTSE All Share (12/1972-10/2013). For each index, Table 2 reports

whether one-sided implementations of the tests outlined in this paper reject in favour of a positive

trend at the 10%, 5% or 1% significance levels. We also report the associated estimate of αT obtained

from OLS estimation of (1)-(2), denoted α̂. Figure 8 plots the series and the fitted deterministic

components, whilst Figure 9 plots the detrended series.

The rejection patterns associated with the different tests appear to mirror the asymptotic and

finite sample power results reported in Sections 5 and 6. The zλ and tRQF
β tests detect a linear trend

for each of the six equity indices, with the tPSW 1
s and Dan-J s tests indicating trends in four and five,

respectively, of the six series. We note that while the tPSW 1
s and Dan-J s tests fail to detect a trend

in some cases they do, however, provide more evidence for the presence of a deterministic trend than

their unmodified counterparts tPSW 1 and Dan-J ; moreover, they never fail to detect a trend where

it is detected by the unmodified tests.

For each series, at least one of the tests indicates the presence of a deterministic linear trend, lending

strong support to the notion that equity price indices are subject to (positive) long run growth. This

implies non-zero long run average returns, and therefore an investment strategy of buy and hold for

an index would be expected to deliver positive returns equal to the long run growth rate. An obvious

implication of these findings is that any subsequent tests of the EMH should take account of a long

run trend component in prices (or a non-zero mean component in returns).

Examining the values of α̂ in Table 2 it is seen that the residuals from the detrended series are,

in all instances, compatible with processes which are either I(1) or I(0) but highly persistent. As a

further indication as to the integration properties of the data, the with-trend local GLS unit root test

statistic of Elliott et al. (1996), DF-GLSτ , is also reported for each series in Table 2. We see from

these results that the unit root null is not rejected at conventional significance levels for five of the six

series; for the FTSE 250 index, a rejection is found at the 10% significance level. That there is some

modest evidence of stationary, as well as unit root, behaviour across the different series reinforces

the importance of using procedures for trend detection that are robust to the order of integration of

the data being analysed. Given that the procedures considered in this paper achieve such robustness
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asymptotically, we may conclude that deterministic trends are present in these stock indices with a

reasonable degree of confidence, without needing to explicitly model the stochastic component of the

series.

8 Conclusions

In this paper we have proposed a modification to the trend tests of Vogelsang (1998) and Bunzel

and Vogelsang (2005) in which a unit root test statistic is used to select the critical value utilised in

the trend test procedure rather than being used to scale the test statistic itself, the latter being the

approach in Vogelsang (1998) and Bunzel and Vogelsang (2005). We have shown that these modified

tests have uniformly greater local asymptotic power than their unmodified counterparts in the exact

I(1) environment and identical local asymptotic power in the I(0) environment, and that the modified

version of the test of Vogelsang (1998) not only has uniformly greater finite sample power than its

unmodified counterpart, but also has power in the near I(1) environment that is competitive with

the asymptotically optimal tests of Harvey et al. (2007) and Perron and Yabu (2009). That this

modified test is able to dominate the test of Vogelsang (1998) across most scenarios whilst attaining

power which is competitive with tests designed to be optimal in the exact I(1) and I(0) environment

is encouraging, and motivates the use of this modification in other testing problems where the test

statistic has a different limiting distribution in the I(1) and I(0) environments. In the current context

of testing for a linear trend, applying the tests examined in this paper to a number of equity indices

uncovers strong support for the presence of deterministic trends in the series, implying that long run

growth represents an important characteristic of such stock price indices.
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Table 2. Results of Tests Applied to Equity Indices

NASDAQ SP100 SP500 FTSE 100 FTSE 250 FTSE AS

tPSW 1 ** - - - *** -
tPSW 1

s ** - ** - *** *
Dan-J * - * - *** -
Dan-J s *** - *** * *** **

zλ *** ** *** ** *** **
zm2
λ ** - * - *** -

tRQF
β ** ** *** ** *** **

α̂ 0.98 0.97 0.99 0.98 0.94 0.99
DF-GLSτ -2.28 -1.30 -2.03 -1.29 -2.65* -1.62

Test Rejected at *10% level, **5% level, ***1% level
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Figure 1. Local Asymptotic Power: I(0) innovations

(a) ᾱ = 0 (b) ᾱ = 5

(a) ᾱ = 10 (b) ᾱ = 15
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Figure 2. Local Asymptotic Power: I(1) innovations
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(a) T = 100, θ = −0.4 (b) T = 250, θ = −0.4

(c) T = 100, θ = 0.0 (d) T = 250, θ = 0.0

(e) T = 100, θ = 0.4 (f) T = 250, θ = 0.4

zλ:——, tRQF
β :——, zm2

λ :——, Dan-J s:——, Dan-J :——, tPSW 1

s :——, tPSW 1:——

Figure 3. Finite Sample Empirical Power: ᾱ = 0
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(a) T = 100, θ = −0.4 (b) T = 250, θ = −0.4

(c) T = 100, θ = 0.0 (d) T = 250, θ = 0.0

(e) T = 100, θ = 0.4 (f) T = 250, θ = 0.4

zλ:——, tRQF
β :——, zm2

λ :——, Dan-J s:——, Dan-J :——, tPSW 1

s :——, tPSW 1:——

Figure 4. Finite Sample Size Adjusted Power: ᾱ = 0
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(a) T = 100, θ = −0.4 (b) T = 250, θ = −0.4

(c) T = 100, θ = 0.0 (d) T = 250, θ = 0.0

(e) T = 100, θ = 0.4 (f) T = 250, θ = 0.4

zλ:——, tRQF
β :——, zm2

λ :——, Dan-J s:——, Dan-J :——, tPSW 1

s :——, tPSW 1:——

Figure 5. Finite Sample Empirical Power: ᾱ = 5
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(a) T = 100, θ = −0.4 (b) T = 250, θ = −0.4

(c) T = 100, θ = 0.0 (d) T = 250, θ = 0.0

(e) T = 100, θ = 0.4 (f) T = 250, θ = 0.4

zλ:——, tRQF
β :——, zm2

λ :——, Dan-J s:——, Dan-J :——, tPSW 1

s :——, tPSW 1:——

Figure 6. Finite Sample Empirical Power: ᾱ = 10
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(a) T = 100, θ = −0.4 (b) T = 250, θ = −0.4

(c) T = 100, θ = 0.0 (d) T = 250, θ = 0.0

(e) T = 100, θ = 0.4 (f) T = 250, θ = 0.4

zλ:——, tRQF
β :——, zm2

λ :——, Dan-J s:——, Dan-J :——, tPSW 1

s :——, tPSW 1:——

Figure 7. Finite Sample Empirical Power: ᾱ = 15
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NASDAQ S&P100

S&P500 FTSE 100

FTSE 250 FTSE AS
Index: —– , Fitted Series: - - -

Figure 8. Trends Fitted to Equity Indices
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NASDAQ S&P100

S&P500 FTSE 100

FTSE 250 FTSE AS
Figure 9. Detrended Equity Indices
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