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Abstract

The dynamic response of an aerospace layered structure composed of a combination of conical and cylindrical shells

is hereby modelled. In the low and the mid-frequency ranges aWFEM derived ESL approach implemented within

a FEM is used in order to predict the response of the shell. Furthermore, in the high frequency range the CLF of

the connected subsystems are calculated using a WFEM/FEM approach. These CLF are implemented within a SEA

approach in order to predict the structural response. The accuracy and robustness of the developped approaches are

exhibited by comparisons to experimental measurements on alayered conical-shell-conical configuration.
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1. Introduction

Structures made of composite materials and having complex geometric characteristics are extensively used in the

modern aerospace industry. More precisely, composite conical-cylindrical combinations of shells are often used as

protective payload structures (SYLDA structure of Ariane 5), rocket booster parts, and fuselage components. Mod-

elling the vibroacoustic behaviour of cylindrical and conical shell structures as well as of their combinations is thus

essential during the design process of modern aerospace products.

The vibrational modelling of coupled composite conical-cylindrical systems has been an area of sporadic scientific

research. Numerical techniques such as the FEM are still considered as the most pertinent approach for modelling

coupled composite systems of complex geometries. With regard to the rest of the available models, numerous ap-

proaches have been recently published, being roughly divided into modal approaches which aim to predict the free

vibration natural frequencies and mode shapes of the systemand wave approaches whose aim is the prediction of the

wave dispersion and transmission between parts of the system that have homogeneous characteristics. The former

type of models is usually used when an accurate description of the global modes of the system is essential for pre-

dicting its vibrational behaviour; that is mainly for the low frequency range. On the other hand, modelling the system

in a wave context is more suitable for calculating the SEA coupling loss factors between subsystems, which is more

suitable for the high frequency range.
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One of the first investigations on the effect of discontinuities on the vibration of thin connected shells is made in

[1]. Some years later, in [2] experimental and analytical results were given for a truncated cylinder-cone configuration.

In [3] the authors modelled a thin conical-cylindrical shell configuration by implementing the Flügge’s equations of

motion in a transfer matrix approach. More recently in [4] the problem was solved using a shell FE for which the

variational quantities were calculated using the Mindlin theory. In [5] the FE derived results for a thin conical-

cylindrical shell combination were verified through experimental measurements. In [6] a power series solution was

applied for the calculation of the natural frequencies of segmented axisymmetric shells. Moreover, in [7] the authors

analyzed the free vibration of thin coupled shells, also by using a power series method to model the displacement field

within the conical part. Both Donnell-Mushtari and Flüggeequations of motion were considered. More recently in

[8] the free vibration characteristics of a conical-cylindrical section of variable thickness were computed through a

Ritz method. However, the structure was assumed to be homogeneous through its thickness.

With regard to modelling the behaviour of coupled shells in awave-context, the bibliography is not as broad. In

[9], the authors included transverse-shear, radial and rotary inertia effects in a bending theory in order to analyze the

wave propagation in cylindrical-conical-cylindrical shell configuration. Experimental verification of the results was

also provided. In [10] the coupling loss factors of orthotropic curved panels are calculated using a wave dynamic

stiffness matrix approach initially introduced in [11].

The WFEM involves the coupling of Periodic Structure Theory(PST) (see [12]) to the FEM. The wave dispersion

characteristics within the layered media can be accuratelypredicted for a very wide frequency range, by solving a

polynomial eigenvalue problem for the direction dependantpropagation constants. The WFEM for two-dimensional

singly curved panels and cylindrical shells has been formulated in [13] by modelling a trapezoid frustum segment of

the original curved structure. The wavenumbers and the wavetypes propagating in the layered shell for each frequency

range were computed. The ring frequency of the shell is also correctly predicted.

The main novel points of the work presented in this paper are:1) The formulation and application of the WFEM

derived dynamic stiffness approach presented in [14, 15] to a layered conical-cylindrical-conical shell structure. 2)

The WFEM derived calculation of the diffused field CLF between coupled two-dimensional layered panels. The CLF

are subsequently used within an SEA approach for predictingthe response of the layered shell configuration. 3)

Experimental measurements on an aerospace conical-cylindrical-conical layered shell are exhibited in order to verify

the accuracy and the robustness of the applied approaches.

The paper is organized as follows: In sec.2 the industrial composite SYLDA structure to be tested and modelled

is presented. In sec.3 a WFEM derived ESL approach is used in order to predict the dynamic response of the SYLDA

structure. The predictions are validated by experimental results. In sec.4 each shell is individually considered as an

SEA subsystem. The WFEM is employed in order to calculate theCLF of the shell combination which are used in

order to form the SEA coefficients matrix. Conclusions on the presented work are exhibited in sec.5.
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Figure 1: An illustration of the Ariane 5 spacecraft

2. Presentation of the SYLDA structure

In this section the industrial composite structure to be experimentally and numerically modelled is exhibited. The

configuration to be vibroacoustically analyzed is the SYLDAstructure, its name standing for the French acronym of

SYstéme de Lancement Double d’Ariane 5. The SYLDA is located inside the launcher fairing (see Fig.1) and allows

for multiple payloads to be simultaneously launched.

The SYLDA structure is an assembly of two cones and a cylindrical central part (see Fig.2). The employed

materials are of sandwich type with a honeycomb aluminium core and carbon/epoxy made facesheets. Those parts

are either bonded together or connected through pyrotechnic cordons which allow the expulsion of the SYLDA parts

before placing the payload in orbit. Other connecting elements include springs and Carbon Fibre Reinforced Polymer

(CFRP) rings. The structure also includes holes throughoutits circumference for giving access to the payload and

allowing the atmospheric air to escape during the flight of the vehicle towards the exosphere. All the details regarding

the SYLDA structure and its subparts are presented in [16].

In order to conduct an experimental validation on the SYLDA and due to the prohibitive cost of testing an identical

to the real SYLDA model, a mock-up of the composite cone-cylinder-cone structure was acquired (see Fig.2). The

mock-up structure is a 1/4 scale reproduction of the real one. The exact dimensions ofthe inner cavity surrounded by

the tested structure are shown in Fig.3. All dimensions are in mm. The materials used are of sandwich type; employing

1mm thick carbon/epoxy made facesheets (material I) and a 12.7mm thick Nomex honeycomb core (material II). The

material characteristics are given in Table 1, with coordinatea coinciding with the axial direction of the shell,c with

the circumferential direction andr with the radial one. No holes nor stiffeners are included in the mock-up structure.
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Figure 2: A caption of the SYLDA mock-up used for experimental manipulation
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Figure 3: Dimensions of the SYLDA mock-up configuration
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Table 1: Mechanical properties of materials

Material I Material II

ρ = 1530 kg/m3 ρ = 63 kg/m3

Ea = 47 GPa Ea = 78 MPa

Ec = 47 GPa Ec = 78 MPa

vac = 0.1 vac = 0.2

Gac = 7.4 GPa −

− Gra = 49 MPa

− Grc = 28 MPa

The system comprises the SYLDA structure coupled with its inner and outer acoustic cavities. The structure is

freely suspended throughout the experimental testing. TheSYLDA is suspended through a metallic cross section

which is mounted on a lifting apparatus. The excitor lays inside the shell’s cavity and is mounted on the same cross

section that supports the shell. In order to avoid a simultaneous rigid motion of the excitor device, a heavy excitor

weighting 19kg was chosen. Furthermore, in order to avoid slight revolutions of the structure during the testing

process, part of the structure’s weight was borne by polyurethane made supports to produce friction with the floor.

The analysis is separated into two main parts: i) A low to mid-frequency deterministic modelling and ii) a high to

mid-frequency SEA modelling approach.

3. Low to mid-frequency range modelling

Initially, a full 3D FE model comprising shell elements for the facesheets coupled to solid elements representing

the core was developed. The predictions of the 3D FE model arecompared to the experimental measurements in

order to observe the impact of inevitable parametric uncertainties of the manufactured sandwich shell configuration

on its dynamic response. However, this part of the conductedwork is not considered as an essential finding, thus

it is included as an Appendix. Subsequently, a deterministic numerical modelling of the dynamic response of the

SYLDA structure by an ESL approach is attempted. The dynamicstiffness approach presented in [15] is applied to the

conical-cylindrical-conical configuration. The peculiarities of the conical substructures are discussed and envisaged

by considering the structure to be locally cylindrical. Theresults of the dynamic stiffness ESL are compared to the

full 3D modelling results and the advantages and disadvantages of the approach are commented.

3.1. Numerical modelling using a dynamic stiffness ESL approach

In order to apply the ESL approach to a conical-cylindrical shell combination the structure is divided into lay-

ers each of which was considered cylindrical for the application of the relations presented in [15] for the dynamic

characteristics of the ESL:
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Figure 4: Division of the conical substructures into sections of different material characteristics
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where fr the ring frequency,̂kf ,WFE the WFEM calculated flexural wavenumbers of the flat layered panel,Ea,c the

Young’s modulus in the axial and circumferential directions, v the Poisson’s ratio,h the thickness of the ESL,ρ its

density,R the radius of the shell andˆrepresents the frequency dependence. A mean radius equal toR= (Rmin+Rmax)/2

was used for each layer. The number of layersN was selected so that the difference between the ring frequencies of two

consecutive layers would be approximately equal to 5%. Better accuracy can effectively be achieved by increasing

the number of divisions. The division of the SYLDA structureinto layers of different materials and thicknesses is

illustrated in Fig.4. The ring frequencies for each of the modelled layers of the composite shell withN=18 is shown

in Fig.5.

It is straightforward to write the dynamic stiffness matrix of the ESL model by adding the stiffness matrices of

each layer as:
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with L,Rcorresponding to the DoF of the left and the right part of layer respectively. A similar expression applies
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Figure 5: Relation between the radius and the ring frequencyof the modelled curved segment

for the mass matrix of the shell.

3.2. Validation on the SYLDA structure

The response of the shell is subsequently calculated under an harmonic load. The results are compared to the 3D

FE results at an arbitrary point of the structure in Fig.6.

Very good correlation is observed between the ESL and the 3D FE model in the low frequency range (up to

400Hz), with the resonances and the antiresonances being well predicted both in terms of frequency and displacement

level. The local modes of the cylindrical shell seem to be well predicted. This fact also suggests that the coupling

strength between the subsystems is also well reproduced by the ESL approach. For higher frequencies (above 500Hz)

the prediction of the response becomes more sensitive to parametric uncertainties of the layered structure. With regard

to the average of the response however, it can be observed that the ESL approach is in very good correlation with the

3D FE model.

In order to compare the predictions concerning the couplingstrength between the conical shells and the excited

cylindrical substructure, the total (out of plane) vibrational energy of each subsystem is calculated and the results are

presented in Figs.7, 8 and 9.

It is observed that the prediction of the energies of the cylindrical and the lower conical subsystems is in very good

correlation between the two models. In the low frequency range the peaks and the lows are in excellent correlation

to each other both in terms of frequency and energy level. At higher frequencies discrepancies are observed but the

average predictions are very well correlated. The couplingstrength is therefore very well predicted. With regard to

the upper conical shell, the results are in good correlationin the low frequency range, where the local modes of the
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Figure 6: Displacement FRF level comparison at (180o,508mm) of the cylindrical part: 3D FEM results (–), dynamicstiffness modelling (- -)
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Figure 7: Energy level comparison for the cylindrical part:3D FEM results (–), dynamic stiffness modelling (- -)
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Figure 8: Energy level comparison for the upper conical part: 3D FEM results (–), dynamic stiffness modelling (- -)

conical shell are well predicted. Discrepancies between the two models occur between 350 and 500Hz probably due

to the fact that the coupled shell FE models cannot account for the entirety of the 3D transmission phenomena taking

place at the connecting junctions. At higher frequencies -where the behaviour of the upper conical shell evidently

becomes more ’local’- the average response predictions areagain in good agreement.

4. SEA modelling of the composite shell assembly

In the high frequency range where the modal overlap of the structural response of a component is high - mainly

due to the increasing modal density of a sandwich structure and the increase of radiation damping - the response

can effectively be represented by averaged quadratic quantities.The SEA has been traditionally used for the response

prediction in the high frequency domain and is to a large extent based on the accurate calculation of the Coupling Loss

Factors (CLF) between the considered subsystems. Hereby, the WFEM will be used in order to revisit the calculation

of the CLF between structural layered subsystems. The experimental results obtained on the SYLDA structure will

be used to validate the developed models.

4.1. Coupling Loss Factors calculation for a layered beam assembly

The considered system comprises two layered structural 1D waveguides (see Fig.10) connected through a connect-

ing element. The approach hereby adopted is presented to a large extent in [17] in order to calculate the transmission

and diffusion coefficients for connected 1D waveguides. More recently it was also considered in [18] for the calcu-

lation of the transmission efficiency and the response of an ensemble of waveguides. The modelled parts in Fig.10

include the excited waveguide 1 and the receiver waveguide 2as well as the connecting component. A WFEM/FE

analysis is therefore adopted in order to predict the transmission coefficients between the waveguides.
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Figure 9: Energy level comparison for the lower conical part: 3D FEM results (–), dynamic stiffness modelling (- -)

The wave dispersion characteristics within the semi-infinite waveguides are modelled using the WFEM. The re-

sulting 2n eigenvalues can be associated withn incident wavesλinc,1...n andn reflected wavesλre f,n+1...2n with n the

number of DoF on each side of the modelled segment and the eigenvalues of the same wave type being related as:

λre f,i = 1/λinc,i. Along with the eigenvalues, the obtained eigenvectors canbe classified as:

Φ =
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where the subscriptsq, f and 1 :n correspond to the displacement vectors the force vectors and the wave type

respectively. Similar expressions hold forΦre f
q ,Φinc

f andΦre f
f .

The connecting component (surrounded by the dashed line in Fig.10) can be modelled using conventional FE. It is

hereby assumed that the DoF of the joint FE model are compatible with the ones of the WFEM models. The harmonic

response of the joint segment can be described as:
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with the subscripts 1,2 andI corresponding to left-side, right-side and internal nodesrespectively. Using classical

condensation techniques the system of eq.(4) is written as:
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Figure 10: Assembly of two layered 1D waveguides. FE modelled segment surrounded by the dashed line.

11



Concerning the structural response of the waveguides, it isshown in [19] that the state vectorsq1
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The continuity conditions at the interfaces of the joint with the waveguides as well as the equilibrium of the system

impose that:
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with R1,R2 the transformation matrices for the waveguides 1 and 2 respectively. Using the systems in eq.(5),(6),(7)

the matrix containing the transmission and reflection coefficients for each wave type is written as in [17]:
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The CLF between the wave typep in the waveguide 1 and the wave typez propagating within the waveguide 2

can be computed using the classical relation:

ηp1,z2 =
τp1,z2cg,p1

2ωL1
(9)

with L1 the length of waveguide 1,cg,p1 the group velocity of the incident wave andτp1,z2 the transmission effi-

ciency between the two wave types expressed as:

τp1,z2 =
PT,z2
PI ,p1

(10)
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with PT,z2 the transmitted power in waveguide 2 andPI ,p1 the incident power in waveguide 1. Using the expressions

presented in [20] the energy densities for a waveguide within which a wavez is propagating are written as:
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(11)

with EK,z,EP,z,ET,z the kinetic, potential and total energy densities andMs,Ks the mass and stiffness matrices

of the modelled segment of the waveguide. The power due to thepassage of a wave typez propagating within a

waveguide can be written as:

Pinc
I ,z =

1
2Re

(

iω(Qinc
z )H

{

Φ
inc
f ,z

}H
Φ

inc
q,zQinc

z

)

(12)

The transmission efficiency between the two waves can therefore be written as:

τp1,z2 =
Re

(

iω(Qre f
z2

)H
{

Φ
re f
f ,z2

}H
Φ

re f
q,z2

Qre f
z2

)

Re

(

iω(Qinc
p1

)H
{

Φ
inc
f ,p1

}H
Φ

inc
q,p1

Qinc
p1

) (13)

However the ratio of the amplitudes of the two waves can be found in matrixC, therefore eq.(13) becomes similar

to the expression given in [21]:

τp1,z2 =
Re

(

iω
{

Φ
re f
f ,z2

}H
Φ

re f
q,z2

)

|Cp1,z2 |2

Re

(

iω
{

Φ
inc
f ,p1

}H
Φ

inc
q,p1

) (14)

The group velocity of the wavetype is written as in [20]:

cinc
g,z =

Pinc
I ,z

Einc
T,z

(15)

Therefore by introducing eq.(14),(15) into (9) it is straightforward to calculate the CLF between two waves prop-

agating in the layered 1D waveguides.

4.2. Coupling Loss Factors (CLF) calculation for coupled layered 2D panels

Two layered panels are assumed to be connected through a joint (see Fig.11). The diffused field CLF between the

two panels are to be calculated. Compared to the methodologydescribed in sec.4.1 the analysis now differs.
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Figure 11: Assembly of two layered plates in an angle; descritized into the excited panel (subsystem 1), the 2D joint and the inclined panel

(subsystem 2).

A 2D WFE analysis is initially conducted for the two panels. The wavenumbers propagating in parallel to the joint

(saykx) as well as the frequency are fixed for the nonlinear eigenproblem and the corresponding solutions for each set

of kx, f are sought. The wavenumber maps for the two connected panelscan be plotted as a function of frequency and

direction of propagation. By interpolating on these maps the wavenumberk for every angle of incidenceφ is therefore

known.

The diffused field CLF for two anisotropic panels is taken as in [10]:

ηp1,z2 =
L12

2π2np1

φmax
∫

φmin

cgx,p1τp1,z2
cp1cg,p1

dφ (16)

with L12, np1 the connection length of the two panels and the modal densityof p wave type in panel 1,cp1, cg,p1

the phase and group velocities ofp wave type in panel 1 andτp1,z2 the angle dependent transmission efficiency ofp

wave type in panel 1 to thez wave type in panel 2. Once the wavenumberskx,ky for everyφ are known the problem

can be considered as a one dimensional problem described in sec.4.1, with the wave mode shapes in waveguide 1 now

equal to:
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Figure 12: Transmission coefficients for a flexural/flexural coupling of the layered panels withθ=32,9o andφ=0 (–),φ=30 (�), φ=60 (o)

Φ
inc,1
q, f = RφΦ

inc,1,2D
q, f

(17)

With Φinc,1,2D
q, f the wave mode shapes as predicted by the 2D WFEM andRφ a transformation matrix applied to

account for the angle of incidenceφ. The transmission and reflection coefficients can therefore be computed as before:

C(φ) = −[RΦre f
f − D jRΦ

re f
q ]−1[RΦinc

f − D jRΦinc
q ] (18)

this time withR =








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

R1,θR1,φ 0

0 R2,θ
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















.

Theφ dependent transmission efficiency can therefore be calculated and by introducing it into eq.(16) the diffused

field CLF can be predicted. Is is reminded that anisotropic panels may actually carry energy away from the connecting

interface. Therefore the integration in eq.(16) should be conducted only for angles for which the group velocity

perpendicular to the junctioncgx,p1 quantity is positive.

Numerical examples of the described approach are then exhibited. The approach is applied to two flat layered

panels coupled with an angleθ=32,9o (corresponding to the connecting angle of the upper conicalshell) and having

the same characteristics as the sandwich material of the SYLDA model, with directionsx and y coinciding with

directionsc and a respectively. The transmission coefficients for a flexural/flexural wave coupling are shown in

Fig.12.

The results are qualitatively in agreement with analyticalsolutions for thin isotropic structures (see [22]) which

suggest that the transmission coefficient decreases when increasing the angle of attackφ. Analytical solutions for cou-

pled layered thick structures are particularly difficult, if not impossible to be encountered. The reflection coefficients

for the same type of coupling are exhibited in Fig.13. The same comments apply to the reflection coefficients for
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Figure 13: Reflection coefficients for a flexural/flexural coupling of the layered panels withθ=32,9o andφ=0 (–),φ=30 (�), φ=60 (o)

being qualitatively in correlation with analytical results.

4.3. SEA analysis of the SYLDA

An SEA analysis of the SYLDA structure is hereby conducted inorder to compute the structural response of each

substructure. The three layered shells are considered as separate subsystems. A qualitative presentation of the power

exchange between the subsystems is given in Fig.14.

The SEA equations can be formulated as:
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(19)

with Ei the spatially averaged total energy of subsystemi, W2,in j the power injected in subsystem 2,ηrad,i the

Radiation Loss Factor (RLF) of subsystemi andηd,i the Dissipation Loss Factor (DLF) of subsystemi. Writing the

solution of the system as:
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with A =


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, it is now straightforward that the

energy ratios will be equal to:
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Figure 14: Power exchange between the subsystems, considered for the SEA analysis of the SYLDA.
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with B = A−1
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. The CLF are calculated as described above, with the assumption that the shells are behaving

as flat panels above their maximum ring frequency value. It isnoted that the analysis is conducted for a flexural/flexural

wave transmission between the structures, as this producesthe vast majority of the out of plane vibration of the shells.

Onceη21 andη23 are known,η12 andη32 can be calculated using the reciprocity relationship:

ηi j

η ji
=

nj

ni
(22)

The modal density of the cylindrical shell is calculated by supposing simply supported boundary conditions a-

long the edges of the shell and by subsequently interpolating on the computed frequency-wavenumber database for

computing the number of resonances per frequency band. It isreminded that the assumption of any type of boundary

conditions has very little influence on the modal density above the low frequency range. The same approach was

adopted for the conical shells by considering their mean radiusR= (Rmax+ Rmin)/2.

The radiation efficiency for the cylindrical shell is calculated by separating the modes into acoustically fast and

acoustically slow as described in [23]. For the conical shells the same approach is used, with the assumption that their
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Figure 15: Energy ratio predictionsE1/E2:experimental measurements (1/6 octave averaged) (–), WFEM/SEA approach (�). Energy ratio predic-

tionsE3/E2: experimental measurements (1/6 octave averaged) (- -), WFEM/SEA approach (o)

radiusR is equal to their mean radius.

4.3.1. Comparison between experimental and numerical results

The experimentally measured energy ratios are post-processed as in sec.3.1. The predictions of the presented

approach are then compared to the experimental values in Fig.15.

As expected, the experimental results present large fluctuations in the low frequency range where the coupling

between the systems varies intensely with the presence of global system modes (modes having comparable modal

displacements throughout more than one subsystems). An SEAapproach may therefore not accurately model the

systems response under these circumstances. For higher frequencies however, regarding the upper cone’s response

the WFEM/SEA approach is in very good correlation with the experimental results with the discrepancies varying

from 0.9 to 1.6 dB above 1500 Hz. The numerical approach seemsto underestimate the energy ratio probably due to

parametric uncertainties that are not taken into account and possibly due to the assumptions adopted in the calculation

of the radiation efficiency and the modal density of the conical shells. With regard to the prediction of the lower cone’s

response, discrepancies between 3 and 5 dB are observed above 1500 Hz. The experimental response of the upper

shell presents intense fluctuations throughout the frequency range of measurements. This fact suggests that the shell

can not be considered as weakly coupled to the cylindrical structure due to the existence of global modes between the

cylindrical and the lower conical shells, throughout the considered frequency range. The ’weak coupling’ assumption

is central to the robustness of the SEA approach. A deterministic approach that takes into account for the individual

modal coupling between the subsystems such as the FEM or an SEA-like method (see [24]) would therefore be more

suitable for modelling the response of the lower conical shell.
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5. Conclusions

The response of an aerospace shell configuration comprisingconical and cylindrical layered divisions was hereby

numerically calculated. For this reason the WFEM results were implemented within a FE approach in order to mod-

el the shell’s response in the low and medium frequency range, while for higher frequencies an SEA approach was

adopted with the CLF between the substructures being derived by the WFEM results. To summarize the most impor-

tant points of the presented work: 1) A dynamic stiffness ESL approach coupled to an FE modelling was successfully

used in order to predict the dynamic response of the structure. The conical shells were considered to be divided into

locally cylindrical parts in order for the technique to be applied. 2) The approach can be described as satisfactorily

accurate while being computationally efficient compared to 3D FE modelling and simple implement. 3) Inthe high

frequency range the WFEM was used in order to revisit the calculation of structural CLF between the shells and the

system was modelled within an SEA approach. 4) The predictions for the upper conical shell seem to be in very good

agreement with the experimental results in the high frequency range due to the fact that the shell exhibits a local modal

behaviour and can properly be modelled within an SEA approach. 5) However the coupling between the cylindrical

and the lower conical subsystems seems to remain strong throughout the considered frequency range. The robustness

of an SEA analysis in this range is therefore questioned as the weak coupling assumption is not satisfied.
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Appendix A. Comparison of the 3D FEM predictions to experimental measurements

The SYLDA structure is hereby numerically modelled by a full3D FE mesh. The mesh comprises 6048 shell

elements for the facesheets, coupled to 3024 solid elementswhich are used to model the core of the sandwich material.

Perfect continuous connections are assumed at the interfaces of the conical and the cylindrical substructures. A modal

numerical analysis of the composite shell structure is firstly conducted.

Using the experimentally obtained complex FRF of 792 measured points on the SYLDA, the vibrational motion of

the structure was illustrated for each frequency and phase using polar coordinates in MATLAB. By investigating the

obtained FRF, the experimentally measured natural frequencies in the low and mid-frequency ranges were detected

and compared to the numerically predicted ones. Some representative natural frequencies along with their mode

shapes are compared in Figs.A.16-A.18.
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Figure A.16: The global circumferential mode of order 6: Measured (left) at 387.5 Hz, FE prediction (right) at 386.7 Hz

Figure A.17: The global circumferential mode of order 10: Measured (left) at 741.5 Hz, FE prediction (right) at 732.2 Hz
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Figure A.18: The numerically non predicted fundamental mode of order 1: Measured at 8.8 Hz

In Figs.A.16-A.17 the circumferential global modes of order 6 and 10 are exhibited as an example. It can be

seen that an excellent agreement exists between the predicted and the measured natural frequencies, with the relative

difference being less than 1.5%. Regarding the mode shapes of thenatural frequencies, an excellent correlation is also

observed between the predicted and the measured deformations. It can also be observed that while the cylindrical part

of the structure along with the lower conical part seem to have a common global motion for all modal displacements,

the upper conical part does not participate in this global structural motion. Thus the upper part presents a local

subsystem behaviour already in the low frequency range.

In Fig.(A.18) the circumferential mode resulted by the passage of a single circumferential flexural wave (therefore

of order 1) is presented. The particularly responsive fundamental mode is experimentally observed however it is not

numerically predicted by the FE model. This difference in the fundamental frequency prediction can be crucial for low

frequency excitations. The fundamental frequency prediction by analytical models usually raises with the thickness

ratio of the shells and is discussed in [25].

Following the modal analysis, a harmonic analysis was numerically conducted. In cylindrical coordinates, the

excitation force is fixed at (θ, z)=(0o,494mm) position of the cylindrical part. The resulting velocity FRF at arbitrary

points of the three substructures are presented in Figs.A.19-A.21.

The measured and the FE predicted velocity FRF at an arbitrary point of the cylindrical section is presented in

Fig.A.19. An excellent agreement between the experimentalresults and the numerical predictions is observed within

the low frequency range. With the exception of the fundamental frequency (as discussed above), the entirety of the

global modal behaviour of the structure is very well predicted throughout the presented frequency range. Experimental

values were used for the structural damping loss factor. Themodal peaks corresponding to peripheral modes of the

cylinder tend to be the most responsive ones.

The measured and the FE predicted velocity FRF at arbitrary points of the lower conical section are presented in

Fig.A.20 and for the upper conical part in Fig.A.21. For the lower conical part a fairly good agreement of the response

is observed up until 500 Hz with the predicted resonances andanti-resonances being well correlated with the measured
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Figure A.19: Velocity FRF level comparison at (250o,263mm) of the cylindrical part: Experimental results (–),FEM results (- -)
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Figure A.20: Velocity FRF level comparison at (180o,50mm) of the lower conical part: Experimental results (–),FEM results (- -)
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Figure A.21: Velocity FRF level comparison at (250o,219mm) of the upper conical part: Experimental results (–), FEM results (- -)

ones. For higher frequencies however the velocities of boththe presented points seem to be underestimated by the

FEM, implying a coupling greater than the one predicted. Observing the high number of peaks of the experimental

curve in this frequency range, this can be attributed to the effect of local modes of other substructures on the response

of the lower cone, including indirect coupling with the upper cone modes. With regard to the upper conical structure,

the response also seems to be generally well predicted by theFE model with the exception of a frequency range around

600 Hz where the response seems to have been underestimated.Comparing the FRF of the cylindrical part to the ones

obtained on the conical parts, it is seen that the later contain many more peaks, despite the fact that conical parts are

substantially smaller than the cylindrical one. This stresses the impact that the modes of the cylindrical part have on

the response of the conical shells and indicates the complicated nature of waves travelling in a conical structure.

In order to get a more global idea of how the predicted response compares to measurements, the total energy

of each subsystem was calculated using the predicted and measured force normalized velocities. The results are

presented in Figs.A.22,A.23,A.24.

Regarding the cylindrical part is it observed that the FE predicted subsystem energy is very much in accordance

with the measured one throughout the considered frequency band. As aforementioned, the FEM seems to be underes-

timating the effect of local modes of the conical parts on the energy of the cylindrical part, especially for frequencies

between the resonances where this effect becomes evident. The energy of the upper conical part (along with the

impact of the upper cone local modes) seems to be overestimated up to 150Hz and afterwards underestimated until

400Hz. It is noted as an example that despite the fact that theupper cone local mode of order 3 is well predicted by

the FE modal analysis at 217 Hz, in Fig.A.23 this mode is not observable. Better correlation is observed for higher

frequencies. With regard to the upper conical part, it can beseen that it follows a global modal behaviour, influenced

by the modes of the cylindrical part up until 300 Hz. While beyond this frequency the cylindrical modes are apparent,

a number of local modes can also be observed resulting in a local-global behaviour. At higher frequencies the cou-
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Figure A.22: Total energy level of the cylindrical subsystem: Experimental results (–), FEM results (- -)
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Figure A.23: Total energy level of the upper conical subsystem: Experimental results (–), FEM results (- -)
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Figure A.24: Total energy level of the lower conical subsystem: Experimental results (–), FEM results (- -)

pling of the lower cone to the rest of the structure is underestimated by the FE predictions, probably due to geometric

uncertainties at the cylindrical conical interfaces as aforementioned.

26


