Predicting the broadband response of a layered cone-eylcuhe shell
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Abstract

The dynamic response of an aerospace layered structureosechpf a combination of conical and cylindrical shells

is hereby modelled. In the low and the mid-frequency rangd&~&M derived ESL approach implemented within

a FEM is used in order to predict the response of the shellthEtmore, in the high frequency range the CLF of
the connected subsystems are calculated using a WIHEM approach. These CLF are implemented within a SEA
approach in order to predict the structural response. Theracy and robustness of the developped approaches are
exhibited by comparisons to experimental measurementdayesed conical-shell-conical configuration.

Keywords: Composite shells, Finite Elements, Statistical Energylysis, Experimental validation

1. Introduction

Structures made of composite materials and having com@gemngtric characteristics are extensively used in the
modern aerospace industry. More precisely, compositecaboylindrical combinations of shells are often used as
protective payload structures (SYLDA structure of Arianerdcket booster parts, and fuselage components. Mod-
elling the vibroacoustic behaviour of cylindrical and amalishell structures as well as of their combinations is thus
essential during the design process of modern aerospadeqiso

The vibrational modelling of coupled composite conicalfayrical systems has been an area of sporadic scientific
research. Numerical techniques such as the FEM are stiflidered as the most pertinent approach for modelling
coupled composite systems of complex geometries. Withrdepathe rest of the available models, numerous ap-
proaches have been recently published, being roughlyetividto modal approaches which aim to predict the free
vibration natural frequencies and mode shapes of the syatelhwave approaches whose aim is the prediction of the
wave dispersion and transmission between parts of thersytbtat have homogeneous characteristics. The former
type of models is usually used when an accurate descripfitireaglobal modes of the system is essential for pre-
dicting its vibrational behaviour; that is mainly for thendrequency range. On the other hand, modelling the system
in a wave context is more suitable for calculating the SEAptiog loss factors between subsystems, which is more

suitable for the high frequency range.
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One of the first investigations on th&ect of discontinuities on the vibration of thin connectedlghis made in
[1]. Some years later, in [2] experimental and analyticalites were given for a truncated cylinder-cone configuratio
In [3] the authors modelled a thin conical-cylindrical dhminfiguration by implementing the Fliigge’s equations of
motion in a transfer matrix approach. More recently in [43 froblem was solved using a shell FE for which the
variational quantities were calculated using the Mindhedry. In [5] the FE derived results for a thin conical-
cylindrical shell combination were verified through expegntal measurements. In [6] a power series solution was
applied for the calculation of the natural frequencies gihsented axisymmetric shells. Moreover, in [7] the authors
analyzed the free vibration of thin coupled shells, also &inpgia power series method to model the displacement field
within the conical part. Both Donnell-Mushtari and Flugeguations of motion were considered. More recently in
[8] the free vibration characteristics of a conical-cyliicdl section of variable thickness were computed through a
Ritz method. However, the structure was assumed to be hamogs through its thickness.

With regard to modelling the behaviour of coupled shells imaae-context, the bibliography is not as broad. In
[9], the authors included transverse-shear, radial aratyatbertia éfects in a bending theory in order to analyze the
wave propagation in cylindrical-conical-cylindrical $heonfiguration. Experimental verification of the resultasv
also provided. In [10] the coupling loss factors of orthgitocurved panels are calculated using a wave dynamic
stiffthess matrix approach initially introduced in [11].

The WFEM involves the coupling of Periodic Structure The@@$T) (see [12]) to the FEM. The wave dispersion
characteristics within the layered media can be accurgteglicted for a very wide frequency range, by solving a
polynomial eigenvalue problem for the direction depengmapagation constants. The WFEM for two-dimensional
singly curved panels and cylindrical shells has been foatedl in [13] by modelling a trapezoid frustum segment of
the original curved structure. The wavenumbers and the tyaess propagating in the layered shell for each frequency
range were computed. The ring frequency of the shell is alseectly predicted.

The main novel points of the work presented in this paper Br&he formulation and application of the WFEM
derived dynamic sfiness approach presented in [14, 15] to a layered coniceaileridal-conical shell structure. 2)
The WFEM derived calculation of theftlised field CLF between coupled two-dimensional layeredIpafibe CLF
are subsequently used within an SEA approach for predittingesponse of the layered shell configuration. 3)
Experimental measurements on an aerospace conical-gghhdonical layered shell are exhibited in order to werif
the accuracy and the robustness of the applied approaches.

The paper is organized as follows: In sec.2 the industriaiasite SYLDA structure to be tested and modelled
is presented. In sec.3 a WFEM derived ESL approach is usedér t predict the dynamic response of the SYLDA
structure. The predictions are validated by experimeetllts. In sec.4 each shell is individually considered as an
SEA subsystem. The WFEM is employed in order to calculateCthie of the shell combination which are used in

order to form the SEA cdBcients matrix. Conclusions on the presented work are eteuilim sec.5.
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Figure 1: An illustration of the Ariane 5 spacecraft

2. Presentation of the SYLDA structure

In this section the industrial composite structure to besgixpentally and numerically modelled is exhibited. The
configuration to be vibroacoustically analyzed is the SYL&Aucture, its name standing for the French acronym of
SYstéme de Lancement Double d’Ariane 5. The SYLDA is lodétside the launcher fairing (see Fig.1) and allows
for multiple payloads to be simultaneously launched.

The SYLDA structure is an assembly of two cones and a cyloadcentral part (see Fig.2). The employed
materials are of sandwich type with a honeycomb aluminiunre @md carbofepoxy made facesheets. Those parts
are either bonded together or connected through pyrotecnidons which allow the expulsion of the SYLDA parts
before placing the payload in orbit. Other connecting el@saclude springs and Carbon Fibre Reinforced Polymer
(CFRP) rings. The structure also includes holes throughewircumference for giving access to the payload and
allowing the atmospheric air to escape during the flight efibhicle towards the exosphere. All the details regarding
the SYLDA structure and its subparts are presented in [16].

In order to conduct an experimental validation on the SYLDW due to the prohibitive cost of testing an identical
to the real SYLDA model, a mock-up of the composite conendgr-cone structure was acquired (see Fig.2). The
mock-up structure is a/4 scale reproduction of the real one. The exact dimensiotiedhner cavity surrounded by
the tested structure are shown in Fig.3. All dimensionsranem. The materials used are of sandwich type; employing
1mm thick carbofepoxy made facesheets (material ) and a 12.7mm thick Nomesytomb core (material Il). The
material characteristics are given in Table 1, with cocaitBa coinciding with the axial direction of the shed with
the circumferential direction ardwith the radial one. No holes nor §&ners are included in the mock-up structure.
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Figure 2: A caption of the SYLDA mock-up used for experimémtanipulation
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Figure 3: Dimensions of the SYLDA mock-up configuration



Table 1: Mechanical properties of materials

Material | Material Il

p=1530kgm® p = 63 kgm?
E.=47 GPa E,=78 MPa
Ec=47 GPa E.=78 MPa

Vae = 0.1 Vae = 0.2
Gac = 7.4 GPa -
- Gra = 49 MPa
- Gic = 28 MPa

The system comprises the SYLDA structure coupled with iteeirand outer acoustic cavities. The structure is
freely suspended throughout the experimental testing. SYieDA is suspended through a metallic cross section
which is mounted on a lifting apparatus. The excitor laygd@she shell's cavity and is mounted on the same cross
section that supports the shell. In order to avoid a simabas rigid motion of the excitor device, a heavy excitor
weighting 19kg was chosen. Furthermore, in order to avaghskevolutions of the structure during the testing
process, part of the structure’s weight was borne by potjaree made supports to produce friction with the floor.
The analysis is separated into two main parts: i) A low to fnégfuency deterministic modelling and ii) a high to

mid-frequency SEA modelling approach.

3. Low to mid-frequency range modelling

Initially, a full 3D FE model comprising shell elements ftwetfacesheets coupled to solid elements representing
the core was developed. The predictions of the 3D FE modet@mgared to the experimental measurements in
order to observe the impact of inevitable parametric uagaties of the manufactured sandwich shell configuration
on its dynamic response. However, this part of the conduetatt is not considered as an essential finding, thus
it is included as an Appendix. Subsequently, a deterministimerical modelling of the dynamic response of the
SYLDA structure by an ESL approach is attempted. The dynatiffoess approach presented in [15] is applied to the
conical-cylindrical-conical configuration. The pecuiiis of the conical substructures are discussed and gyadsa
by considering the structure to be locally cylindrical. Tiesults of the dynamic $thess ESL are compared to the

full 3D modelling results and the advantages and disadgastaf the approach are commented.

3.1. Numerical modelling using a dynamigftess ESL approach

In order to apply the ESL approach to a conical-cylindri¢edlscombination the structure is divided into lay-
ers each of which was considered cylindrical for the apfiboaof the relations presented in [15] for the dynamic

characteristics of the ESL:



Figure 4: Division of the conical substructures into sewiof diferent material characteristics
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wheref; the ring frequency}f,WFE the WFEM calculated flexural wavenumbers of the flat layetBh E, . the
Young’s modulus in the axial and circumferential direcipnthe Poisson’s ratidh the thickness of the ESlp, its
density,Rthe radius of the shell and“represents the frequency depeedA mean radius equal®= (Rnin+Rmax/2
was used for each layer. The number of layrgas selected so that theffdirence between the ring frequencies of two
consecutive layers would be approximately equal to 5%. eBettcuracy canfiectively be achieved by increasing
the number of divisions. The division of the SYLDA structumnéo layers of dfferent materials and thicknesses is
illustrated in Fig.4. The ring frequencies for each of thedelted layers of the composite shell with=18 is shown
in Fig.5.

It is straightforward to write the dynamic ftiess matrix of the ESL model by adding thdfsiss matrices of

each layer as:

Kyie Kiir
Kire Kirr+ Kzl Kair
KarL Korr+ KaL KaLr

o
Il

R 3.RL R 3RRT R4,|_|_ (2)

Kn-trr+ K Kiner

KnRrL KNRR |

with L,R corresponding to the DoF of the left and the right part of tagspectively. A similar expression applies
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Figure 5: Relation between the radius and the ring frequehtye modelled curved segment

for the mass matrix of the shell.

3.2. Validation on the SYLDA structure

The response of the shell is subsequently calculated umdeairanonic load. The results are compared to the 3D
FE results at an arbitrary point of the structure in Fig.6.

Very good correlation is observed between the ESL and the BDnBdel in the low frequency range (up to
400Hz), with the resonances and the antiresonances belhgregicted both in terms of frequency and displacement
level. The local modes of the cylindrical shell seem to bel weddicted. This fact also suggests that the coupling
strength between the subsystems is also well reproducdwliy3IL approach. For higher frequencies (above 500Hz)
the prediction of the response becomes more sensitive &orneric uncertainties of the layered structure. With régar
to the average of the response however, it can be observetiéhaSL approach is in very good correlation with the
3D FE model.

In order to compare the predictions concerning the couptrength between the conical shells and the excited
cylindrical substructure, the total (out of plane) viboaial energy of each subsystem is calculated and the reselts a
presented in Figs.7, 8 and 9.

Itis observed that the prediction of the energies of thendylcal and the lower conical subsystemsis in very good
correlation between the two models. In the low frequencygeathme peaks and the lows are in excellent correlation
to each other both in terms of frequency and energy level.idttdr frequencies discrepancies are observed but the
average predictions are very well correlated. The coupingngth is therefore very well predicted. With regard to

the upper conical shell, the results are in good correlatidhe low frequency range, where the local modes of the
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Figure 6: Displacement FRF level comparison at £1808mm) of the cylindrical part: 3D FEM results (=), dynarsiiffness modelling (- -)
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Figure 7: Energy level comparison for the cylindrical p&® FEM results (-), dynamic sfness modelling (- -)
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Figure 8: Energy level comparison for the upper conical: @ FEM results (=), dynamic $fhess modelling (- -)

conical shell are well predicted. Discrepancies betweeritlv models occur between 350 and 500Hz probably due
to the fact that the coupled shell FE models cannot accouttihéoentirety of the 3D transmission phenomena taking
place at the connecting junctions. At higher frequencidsens the behaviour of the upper conical shell evidently

becomes more 'local’- the average response predictionagai@ in good agreement.

4. SEA modelling of the composite shell assembly

In the high frequency range where the modal overlap of thecttral response of a component is high - mainly
due to the increasing modal density of a sandwich structndetle increase of radiation damping - the response
can dfectively be represented by averaged quadratic quanfitkes SEA has been traditionally used for the response
prediction in the high frequency domain and is to a largeretiased on the accurate calculation of the Coupling Loss
Factors (CLF) between the considered subsystems. HehebWEFEM will be used in order to revisit the calculation
of the CLF between structural layered subsystems. The empetal results obtained on the SYLDA structure will

be used to validate the developed models.

4.1. Coupling Loss Factors calculation for a layered bearseaisbly

The considered system comprises two layered structuraléu@guides (see Fig.10) connected through a connect-
ing element. The approach hereby adopted is presented itpeadatent in [17] in order to calculate the transmission
and difusion codficients for connected 1D waveguides. More recently it was edsisidered in [18] for the calcu-
lation of the transmissionfigciency and the response of an ensemble of waveguides. Thelleshgarts in Fig.10
include the excited waveguide 1 and the receiver waveguiae \Rell as the connecting component. A WHER
analysis is therefore adopted in order to predict the trésson codficients between the waveguides.
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Figure 9: Energy level comparison for the lower conical paf FEM results (), dynamic $thess modelling (--)

The wave dispersion characteristics within the semi-itdimiaveguides are modelled using the WFEM. The re-
sulting 2h eigenvalues can be associated witmcident wavesSlinc 1. n andn reflected waved et 1. 2n With n the
number of DoF on each side of the modelled segment and thewailges of the same wave type being related as:
Areti = 1/Ainci. Along with the eigenvalues, the obtained eigenvectordeatiassified as:

inc ref
o° @y

@ = with @[ = g1 ¢S ... pinc| (3)

inc ref ql g2
(Df (I)f

where the subscriptg, f and 1 :n correspond to the displacement vectors the force vectarstenwave type
respectively. Similar expressions hold ", " and®'®".

The connecting component (surrounded by the dashed linigih®j can be modelled using conventional FE. Itis
hereby assumed that the DoF of the joint FE model are contpatith the ones of the WFEM models. The harmonic

response of the joint segment can be described as:

Din Dilz Dj1| q:JL f:]L
Diz1 Dizz Dj2| Cﬁ = sz (4)
Dj. Dj, Dj || 4 ft

with the subscripts 1,2 aridcorresponding to left-side, right-side and internal nagspectively. Using classical

condensation techniques the system of eq.(4) is written as:

Dju - Diu Di%Djll th - Dju DE?—Dilz q:]L _ f:]L (5)
Dj21 - Diz| DL}DM Djzz - Dj2| DE}D]-IZ q]2 f]2
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Figure 10: Assembly of two layered 1D waveguides. FE modedegment surrounded by the dashed line.
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Concerning the structural response of the waveguidessfitasn in [19] that the state vectay§, fL, az. ff can be

written as a superposition function of the wave eigenveaod the corresponding wave amplitu@¥%' Q™" as:
[ incl £1 ] inc,
q%{ ~ (I)I(?C (Dae ch 1
fﬁlIi - 7 (I)ifnc,l (DI;(Ef,l | Qref,l

[ xinc.2 2 ] inc,
CIE ~ q)l(?c (Dae chz
ff - (I)ifnc,z (Drfef,Z Qref,z

The continuity conditions at the interfaces of the jointtwithhie waveguides as well as the equilibrium of the system

(6)

impose that:
MR
q? | o R q¢
(7
il [ R 0 |] f&
()5 =]

with R1,R; the transformation matrices for the waveguides 1 and 2 otispdy. Using the systems in eq.(5),(6),(7)

the matrix containing the transmission and reflectiorflocients for each wave type is written as in [17]:

C = -[R®OY" - D;R®Y ][RI - D;R®!™] (8)
ref,1 ref,1 inc,1
with R = Ri 0 o = @ 0 ref _ | Pa 0 e _ | P 0 inc _
0 Ry | | VI S R S 0 oz |
(Dinc,l 0
) inc,2 and
0o @™

Dj,, - Dy DB}D]-II Dj,, - Dy, Di,lDilz
Dj,, — Dy DE}DM Dj,, - Dj, Di%th
The CLF between the wave tygein the waveguide 1 and the wave typgropagating within the waveguide 2

D; =

can be computed using the classical relation:

T > B
NMprz, = 91223 - (9)

with L the length of waveguide Ly, the group velocity of the incident wave amgl ,, the transmissionfi-

ciency between the two wave types expressed as:

_ Pz (10)

T = ==
p1.22 Pip
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with Pt ,, the transmitted power in waveguide 2 &g, the incident power in waveguide 1. Using the expressions
presented in [20] the energy densities for a waveguide withiich a wavez is propagating are written as:

H

inc inc

Einc — w_zRe (Dq,z M (Dq,z
K.z s /linc(Dinc
v4 9,z

4L L
UL
H
inc inc 11
Ei:r:c = -1 Re q)qz K q)q,z (11)
z ~ 4L : ' . :
Apeaps peaps

ES = ERS + ERS
with Ex z, Epz Et; the kinetic, potential and total energy densities dgd K s the mass and $thess matrices

of the modelled segment of the waveguide. The power due tpalsage of a wave typepropagating within a
waveguide can be written as:
. i . _ VH . .
P = %Re(l(u(Q'Z”C)H {@inc}” @ine ';C) (12)
The transmissionf@ciency between the two waves can therefore be written as:

. re f ref H ref ~ref
R{IM(QZZ )H {(Dflz} (l)q,zzQZZ ) (13)

Tpze = Rdi incyH | ginc
iw(Qp)™ @, | Palpy Qpy

H
(I)lnc Inc
However the ratio of the amplitudes of the two waves can baddn matrixC, therefore eq.(13) becomes similar

to the expression given in [21]:

H
Reio{ef, | @02, |ICpyf
Tpz = SPTSEUI (14)
RE{Iw{d)f’;l} mq’gl)
The group velocity of the wavetype is written as in [20]:
(15)

inc
1.z

che — _
9z ET;

Therefore by introducing eq.(14),(15) into (9) it is stitatiprward to calculate the CLF between two waves prop-

agating in the layered 1D waveguides.

4.2. Coupling Loss Factors (CLF) calculation for couplegiéaed 2D panels
Two layered panels are assumed to be connected through ése@Fig.11). The diused field CLF between the

two panels are to be calculated. Compared to the methoddieggribed in sec.4.1 the analysis nofetis.
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Figure 11: Assembly of two layered plates in an angle; dézed into the excited panel (subsystem 1), the 2D joint dinclined panel
(subsystem 2).

A 2D WFE analysis is initially conducted for the two paneltielwavenumbers propagating in parallel to the joint
(sayky) as well as the frequency are fixed for the nonlinear eigdripm and the corresponding solutions for each set
of ky, f are sought. The wavenumber maps for the two connected pzarelse plotted as a function of frequency and
direction of propagation. By interpolating on these magsthvenumbek for every angle of incidencgis therefore
known.

The difused field CLF for two anisotropic panels is taken as in [10]:

¢max
Noyzs = Lio Coxpy Tpy.2p d¢ (16)

3
2mNp, Cpy Cg,py
min

with Ly, np, the connection length of the two panels and the modal deasipywave type in panel 1g,,, Cgp,

the phase and group velocities pivave type in panel 1 and,, ,, the angle dependent transmissidficdency of p
wave type in panel 1 to thewave type in panel 2. Once the wavenumbesk, for every¢ are known the problem
can be considered as a one dimensional problem described.th 5, with the wave mode shapes in waveguide 1 now

equal to:
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Figure 12: Transmission cfiiients for a flexuraflexural coupling of the layered panels with32,% and¢=0 (-), =30 (J), $=60 (0)

(I)iC:cf:,l — R¢q)iC:cf:,l,2D (17)
With (I)i(:?l’m the wave mode shapes as predicted by the 2D WFEMRyna transformation matrix applied to

account for the angle of incidenge The transmission and reflection ¢beients can therefore be computed as before:

C(¢#) = ~[R®'' - D;R®Z'[R®}° - D;R®}"] (18)
R14R 0
this ime withR = | =7 ¢ _
0 Rag

The¢ dependent transmissioffieiency can therefore be calculated and by introducingdt &tf.(16) the dfused
field CLF can be predicted. Is is reminded that anisotropiefsamay actually carry energy away from the connecting
interface. Therefore the integration in eq.(16) should bedeicted only for angles for which the group velocity
perpendicular to the junctiogyy p, quantity is positive.

Numerical examples of the described approach are thenieedhibThe approach is applied to two flat layered
panels coupled with an anghe-32,9 (corresponding to the connecting angle of the upper costuall) and having
the same characteristics as the sandwich material of theD&Yihodel, with directionsx andy coinciding with
directionsc and a respectively. The transmission d¢heients for a flexurdflexural wave coupling are shown in
Fig.12.

The results are qualitatively in agreement with analytsmdutions for thin isotropic structures (see [22]) which
suggest that the transmission @io@ent decreases when increasing the angle of attagkalytical solutions for cou-
pled layered thick structures are particularlfidult, if not impossible to be encountered. The reflectiorfitcients

for the same type of coupling are exhibited in Fig.13. Theesawmmments apply to the reflection ¢beents for
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Figure 13: Reflection cdicients for a flexuraflexural coupling of the layered panels with32,% and¢=0 (-), =30 (), $=60 (0)

being qualitatively in correlation with analytical result

4.3. SEA analysis of the SYLDA

An SEA analysis of the SYLDA structure is hereby conductegriter to compute the structural response of each
substructure. The three layered shells are consideregasate subsystems. A qualitative presentation of the power
exchange between the subsystems is given in Fig.14.

The SEA equations can be formulated as:

Md,1 + 1712 + Nrad,1 =121 0 E: 0
Wajinj
—112 1Md,2 + 121 + 1123 + Trad,2 —N32 Ex p=9 =2 (19)
0 —123 1Nd.3 + 1132 + Mrad,3 Es 0

with E; the spatially averaged total energy of subsystei,,; the power injected in subsystem igaq; the
Radiation Loss Factor (RLF) of subsystémndnq; the Dissipation Loss Factor (DLF) of subsystenWriting the

solution of the system as:

wE;
Wajnj 0

wE; _aA-1
W (A1 (20)

wE3
Wajnj 0

nd,1 + M12 + Mrad 1 —721 0
with A = 112 Nd.2 + 21 + 123 + Nrad.2 132 , it is now straightforward that the

0 —123 7d.3 + 1732 + Trad,3
energy ratios will be equal to:

16



W1 rad

@ Wi1q4

W21
Wi ’ W
in @ L _} 24
W;ad_ B W23
W34
W3Ez 3 Y

rad

Figure 14: Power exchange between the subsystems, catsiderthe SEA analysis of the SYLDA.

B _ By
B BZ,l
(21)
E _ Bs,l
E Bz,l
0
with B = A™1{ 1 }. The CLF are calculated as described above, with the as@mipét the shells are behaving
0

as flat panels above their maximum ring frequency value nibied that the analysis is conducted for a flexffiedural
wave transmission between the structures, as this prothre®ast majority of the out of plane vibration of the shells.

Onceny1 andnyz are knownypi, andns, can be calculated using the reciprocity relationship:

Ny (22)

nji N
The modal density of the cylindrical shell is calculated lpgosing simply supported boundary conditions a-
long the edges of the shell and by subsequently interpglatinthe computed frequency-wavenumber database for
computing the number of resonances per frequency bandretiided that the assumption of any type of boundary
conditions has very little influence on the modal densityvabthe low frequency range. The same approach was
adopted for the conical shells by considering their meaius®= (Rnax+ Rmin)/2.
The radiation #iciency for the cylindrical shell is calculated by separgtihe modes into acoustically fast and

acoustically slow as described in [23]. For the conicallstteke same approach is used, with the assumption that their
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radiusR is equal to their mean radius.

4.3.1. Comparison between experimental and numericalteesu

The experimentally measured energy ratios are post-pgedess in sec.3.1. The predictions of the presented
approach are then compared to the experimental values ib3-ig

As expected, the experimental results present large fltichsain the low frequency range where the coupling
between the systems varies intensely with the presenceobalgtystem modes (modes having comparable modal
displacements throughout more than one subsystems). Anapproach may therefore not accurately model the
systems response under these circumstances. For higheefreies however, regarding the upper cone’s response
the WFEMSEA approach is in very good correlation with the experirakrgsults with the discrepancies varying
from 0.9 to 1.6 dB above 1500 Hz. The numerical approach s¢emnsderestimate the energy ratio probably due to
parametric uncertainties that are not taken into accouhpassibly due to the assumptions adopted in the calculation
of the radiation &iciency and the modal density of the conical shells. With regathe prediction of the lower cone’s
response, discrepancies between 3 and 5 dB are observesl Hi@¥ Hz. The experimental response of the upper
shell presents intense fluctuations throughout the freqgueange of measurements. This fact suggests that the shell
can not be considered as weakly coupled to the cylindricatsire due to the existence of global modes between the
cylindrical and the lower conical shells, throughout thasidered frequency range. The 'weak coupling’ assumption
is central to the robustness of the SEA approach. A detestigrdapproach that takes into account for the individual
modal coupling between the subsystems such as the FEM or&lilgEmethod (see [24]) would therefore be more

suitable for modelling the response of the lower conicallshe
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5. Conclusions

The response of an aerospace shell configuration compudeimgal and cylindrical layered divisions was hereby
numerically calculated. For this reason the WFEM resulteevimplemented within a FE approach in order to mod-
el the shell’s response in the low and medium frequency rangae for higher frequencies an SEA approach was
adopted with the CLF between the substructures being aebyehe WFEM results. To summarize the most impor-
tant points of the presented work: 1) A dynamidfstess ESL approach coupled to an FE modelling was succegssfull
used in order to predict the dynamic response of the streicitiie conical shells were considered to be divided into
locally cylindrical parts in order for the technique to bephgd. 2) The approach can be described as satisfactorily
accurate while being computationallfieient compared to 3D FE modelling and simple implement. 3htnhigh
frequency range the WFEM was used in order to revisit theutation of structural CLF between the shells and the
system was modelled within an SEA approach. 4) The predisfior the upper conical shell seem to be in very good
agreement with the experimental results in the high frequesinge due to the fact that the shell exhibits a local modal
behaviour and can properly be modelled within an SEA apgro&gHowever the coupling between the cylindrical
and the lower conical subsystems seems to remain stronggthooit the considered frequency range. The robustness

of an SEA analysis in this range is therefore questionedeawéak coupling assumption is not satisfied.
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Appendix A. Comparison of the 3D FEM predictionsto experimental measurements

The SYLDA structure is hereby numerically modelled by a ) FE mesh. The mesh comprises 6048 shell

elements for the facesheets, coupled to 3024 solid eleménnth are used to model the core of the sandwich material.

Perfect continuous connections are assumed at the interédi¢che conical and the cylindrical substructures. A modal

numerical analysis of the composite shell structure id¥iginducted.

Using the experimentally obtained complex FRF of 792 meabpoints on the SYLDA, the vibrational motion of

the structure was illustrated for each frequency and phsisg yolar coordinates in MATLAB. By investigating the

obtained FRF, the experimentally measured natural fregjgern the low and mid-frequency ranges were detected

and compared to the numerically predicted ones. Some mpei/e natural frequencies along with their mode

shapes are compared in Figs.A.16-A.18.
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Figure A.16: The global circumferential mode of order 6: Ba®d (left) at 387.5 Hz, FE prediction (right) at 386.7 Hz

Figure A.17: The global circumferential mode of order 10:adared (left) at 741.5 Hz, FE prediction (right) at 732.2 Hz



Figure A.18: The numerically non predicted fundamental enofiorder 1: Measured at 8.8 Hz

In Figs.A.16-A.17 the circumferential global modes of ar@eand 10 are exhibited as an example. It can be
seen that an excellent agreement exists between the medict the measured natural frequencies, with the relative
difference being less than 1.5%. Regarding the mode shapesmaittival frequencies, an excellent correlation is also
observed between the predicted and the measured defonmadtican also be observed that while the cylindrical part
of the structure along with the lower conical part seem teeteommon global motion for all modal displacements,
the upper conical part does not participate in this globaicstiral motion. Thus the upper part presents a local
subsystem behaviour already in the low frequency range.

In Fig.(A.18) the circumferential mode resulted by the pggsof a single circumferential flexural wave (therefore
of order 1) is presented. The particularly responsive fumelstal mode is experimentally observed however it is not
numerically predicted by the FE model. Thisfdrence in the fundamental frequency prediction can bealfarilow
frequency excitations. The fundamental frequency predidiy analytical models usually raises with the thickness
ratio of the shells and is discussed in [25].

Following the modal analysis, a harmonic analysis was nigaky conducted. In cylindrical coordinates, the
excitation force is fixed at( z)=(0°,494mm) position of the cylindrical part. The resultingagty FRF at arbitrary
points of the three substructures are presented in Fig3:-A.21.

The measured and the FE predicted velocity FRF at an anpip@int of the cylindrical section is presented in
Fig.A.19. An excellent agreement between the experimeesailts and the numerical predictions is observed within
the low frequency range. With the exception of the fundamlentquency (as discussed above), the entirety of the
global modal behaviour of the structure is very well preglidhroughout the presented frequency range. Experimental
values were used for the structural damping loss factor. mibdal peaks corresponding to peripheral modes of the
cylinder tend to be the most responsive ones.

The measured and the FE predicted velocity FRF at arbitraintpof the lower conical section are presented in
Fig.A.20 and for the upper conical partin Fig.A.21. For thér conical part a fairly good agreement of the response

is observed up until 500 Hz with the predicted resonancesatidesonances being well correlated with the measured
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Figure A.19: Velocity FRF level comparison at (25263mm) of the cylindrical part: Experimental results EM results (- -)
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Figure A.20: Velocity FRF level comparison at (P880mm) of the lower conical part: Experimental results FEM results (- -)
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Figure A.21: Velocity FRF level comparison at (25819mm) of the upper conical part: Experimental resultsREM results (- -)

ones. For higher frequencies however the velocities of Hwhpresented points seem to be underestimated by the
FEM, implying a coupling greater than the one predicted. édiag the high number of peaks of the experimental
curve in this frequency range, this can be attributed to ffeceof local modes of other substructures on the response
of the lower cone, including indirect coupling with the uppene modes. With regard to the upper conical structure,
the response also seems to be generally well predicted lEheodel with the exception of a frequency range around
600 Hz where the response seems to have been underesti@atedaring the FRF of the cylindrical part to the ones
obtained on the conical parts, it is seen that the later @tomiany more peaks, despite the fact that conical parts are
substantially smaller than the cylindrical one. This stessthe impact that the modes of the cylindrical part have on
the response of the conical shells and indicates the coatptimature of waves travelling in a conical structure.

In order to get a more global idea of how the predicted respaosnpares to measurements, the total energy
of each subsystem was calculated using the predicted anduneekforce normalized velocities. The results are
presented in Figs.A.22,A.23,A.24.

Regarding the cylindrical part is it observed that the FElfmted subsystem energy is very much in accordance
with the measured one throughout the considered frequearay. lAs aforementioned, the FEM seems to be underes-
timating the &ect of local modes of the conical parts on the energy of thiedsital part, especially for frequencies
between the resonances where thte@ becomes evident. The energy of the upper conical pamdalith the
impact of the upper cone local modes) seems to be overestin@tto 150Hz and afterwards underestimated until
400Hz. Itis noted as an example that despite the fact thaifgher cone local mode of order 3 is well predicted by
the FE modal analysis at 217 Hz, in Fig.A.23 this mode is naeolable. Better correlation is observed for higher

frequencies. With regard to the upper conical part, it casd®n that it follows a global modal behaviour, influenced
by the modes of the cylindrical part up until 300 Hz. While beg this frequency the cylindrical modes are apparent,
a number of local modes can also be observed resulting inadd¢pobal behaviour. At higher frequencies the cou-
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Figure A.22: Total energy level of the cylindrical subsysteExperimental results (=), FEM results (- -)
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Figure A.23: Total energy level of the upper conical suteystExperimental results (-), FEM results (- -)
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Figure A.24: Total energy level of the lower conical subegst Experimental results (), FEM results (--)

pling of the lower cone to the rest of the structure is undereged by the FE predictions, probably due to geometric

uncertainties at the cylindrical conical interfaces aseftentioned.
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