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Abstract

There is an inherent tension in Quantitative Systems Pharmacology (QSP) between the
need to incorporate mathematical descriptions of complex physiology and drug targets
with the necessity of developing robust, predictive and well-constrained models. In
addition to this, there is no “gold standard” for model development and assessment in
QSP. Moreover, there can be confusion over terminology such as model and parameter
identifiability; complex and simple models; virtual populations; and other concepts,
which leads to potential miscommunication and misapplication of methodologies
within modeling communities, both the QSP community and related disciplines. This
perspective article highlights the pros and cons of using simple (often identifiable) vs.
complex (more physiologically detailed but often non-identifiable) models, as well
as aspects of parameter identifiability, sensitivity and inference methodologies for
model development and analysis. The paper distills the central themes of the issue of
identifiability and optimal model size and discusses open challenges.
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1 QSP and PK/PD

In the last one hundred years, pharmaceutical drug discovery and development can be
characterized by a trend toward both mechanism-driven discovery and a more quanti-
tative approach to development, efficacy and safety assessment. These trends were a
result of advances in molecular biology, biochemistry and genetics. In particular, the
shift toward quantitative approaches in pharmaceutical R&D was reflected in the reg-
ulatory guidelines introduced in the 1970s that advocated the use of Pharmacokinetics
(PK) modeling in drug and trial design. Subsequently, in recent decades, advances in
mathematical modeling, evolution of computational power and software, and accessi-
bility of large preclinical and clinical data sets have contributed to the emergence and
establishment of the Quantitative Systems Pharmacology (QSP) field. QSP is a rel-
atively new discipline that integrates Pharmacokinetics/Pharmacodynamics (PK/PD)
and Systems modeling approaches. QSP was formalized as a research area around
2011 in a white paper (Sorger et al. 2011) published by the US National Institutes of
Health. It combines biophysically detailed mechanistic models of physiology in health
and disease with PK/PD to predict systemic effects. Applications of QSP range from
generating and exploring new mechanistic hypotheses of an observed effect, identi-
fying optimal or alternative targets, gaining confidence in rationale of existing and/or
emerging targets, designing preclinical and clinical experiments and clinical trials,
providing insight from preclinical to clinical translation or cross-disease translation
(for instance, in the case of drug repurposing).

Originally developed as a research tool, PK/PD was adapted by the pharmaceutical
industry to address a central need in the drug development pipeline by providing a
formal framework for predicting dosing regimens in early stage clinical trials. The
development of best practices and the formalization of PK/PD modeling through reg-
ulatory guidelines cemented the PK/PD approach as a crucial component of any drug
development program. The development of QSP is currently following a similar pat-
tern. As adoption of QSP increases (Musante et al. 2017; Zineh 2019), it is expected
to become an integral part of regulatory requirements in the drug development and
approval process [e.g., the Comprehensive In silico Pro-arrhythmia Assay (CIPA)
Initiative (Li et al. 2018)]. With the rapidly growing use of QSP modeling in basic,
preclinical and clinical research, there is a mounting interest in identifying best prac-
tices, techniques and open challenges in QSP methodology and tools (Ribba et al.
2017). These challenges include selection of appropriate models to work with, effi-
cient parameter estimation, examination of parameter identifiability, incorporation
of virtual population studies, application of sensitivity analysis and model reduction
techniques, as well as validation, verification and uncertainty quantification (VVUQ)
(Pathmanathan and Gray 2013). As QSP transitions from a research area to a drug
development tool, also recognized by regulatory agencies, it is important to develop
and agree upon best practices to ensure successful application of QSP modeling in
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drug discovery, design and development (Bai et al. 2019). At present, regulatory agen-
cies, industrial and academic experts are working together to put forward standards
that could be adopted for regulatory purposes when assessing credibility and validity
of a QSP model.

2 QSP and Identifiable and Non-identifiable Models

The major motivation for QSP models is that our knowledge of biology and pharmacol-
ogy is increasingly too complex for intuition-based analyses. Mathematical biologists
and computational modelers strive to build mathematical models in order to under-
stand the biological and physiological mechanisms underlying the system’s behavior.
Only by encoding our knowledge in mathematical models to quantitatively represent
the system under study can we hope to understand emergent biological behavior, its
regulation by underlying mechanisms, how these mechanisms are compromised by
pathologies and whether they can be manipulated pharmaceutically. Emergent behav-
ior can arise from small or large models, however representing complex physiology
often requires developing mathematical models of large biological systems with a
correspondingly large set of unknown model structures and parameters, which may
result in non-identifiable models (due to overparameterization and limited data).
What do we mean by ‘identifiability’? First of all, the terms model identifiability,
parameter identifiability, and model parameter identifiability are considered to be inter-
changeable for the purpose of this paper, as well as, to the best of our knowledge, by
the QSP modeling and related disciplines. Similarly, the term ‘non-identifiable’ is used
interchangeably with ‘unidentifiable’ by the research community subject to personal
preference of the author. Identifiability analysis approaches, overviewed recently in a
number of works (including in Raue et al. 2009, Saccomani et al. 2013), can be cat-
egorized into structural and practical non-identifiability. Structural non-identifiability
(Cobelli and DiStefano1980) is related to the model structure and whether each model
parameter can have an independent effect on the observed model output. A trivial
example of structurally non-identifiable model is the model y = abx where it is not
possible to uniquely identify parameters a and b given measurements of (x,y). For
more complex models (e.g., systems of ODEs), structural identifiability can be more
difficult to determine, but a variety of analytical and numerical methods are available
to assess structural identifiability (Chis et al. 2011; Miao et al. 2011; Kreutz 2018;
Karlsson et al. 2012). Practical non-identifiability considers whether the amount and
quality of a particular experimental dataset used for parameter calibration constrains
parameter estimates (Raue et al. 2009; Shotwell and Gray 2016). Practical identifia-
bility implies structural identifiability; however, the reverse is not true. The difference
between structural and practical identifiability analysis can be summarized as follow-
ing: structural identifiability analysis is a mathematical exercise that asks if parameters
are unique given hypothetical perfect noise-free data, whereas practical identifiability
involves analyzing the data available. In general, a QSP model can be classified into
three major categories: (i) models that are provably structurally identifiable and are also
practically identifiable given the data (these are typically simpler QSP models, though
we emphasize that simple models need not be structurally identifiable); (ii) models
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that are probably or provably structurally identifiable but not practically identifiable
given the data available; and (iii) models that are provably or probably structurally
non-identifiable, and therefore not/not expected to be practically identifiable, regard-
less of data quality. Many complex QSP models will fall in the last category. The below
discussion is relevant for QSP models in groups (ii) and (iii). Below we focus primarily
on practical identifiability, and from here onward ‘identifiable’ refers to structurally
and practically identifiable, and ‘non-identifiable’ refers to practically non-identifiable
(may or may not be structurally identifiable). However, some of the below discussion,
e.g., Sect. 5, will also be relevant to structurally non-identifiable QSP models.

What do we mean by ‘identifiable’ model parameters? Ideally, we might mean a
point estimate can be given for each parameter after fitting to some data. But practically,
given noise and other sources of variability, we mean a ‘constrained’ (a subjective
term) probability distribution for the set of parameter values around a point (ideally
including covariance by fitting a single probability distribution across all parameters
at once). A model is non-identifiable if calibrating using available noisy data does
not permit a constrained probability distribution or bound for the parameter value.
Non-identifiable parameters will not be constrained and could take a wide range of
values, often covarying with other parameters such that groupings (sums or products
of parameters, or more complex model outputs) are constrained but the individual
parameters are not.

It is important to keep in mind in the discussion below that there is no such thing
as a practically ‘identifiable model’ or ‘identifiable parameter’—this is just shorthand
for a ‘parameter of a given model is identifiable given the data this model structure
was fitted to’. A hypothetical perfect experiment could measure any parameter (rate
constant, concentration, etc.), and efforts should be made to optimize experiments
to attempt to do this. Identifiability is not relevant to parameters that can be directly
measured or inferred by other means, rather than estimated through model calibration.
It was suggested that it may, therefore, be better to talk about ‘unidentified’ parameters,
reserving the term ‘unidentifiable’ for structural or a priori unidentifiability (Fink and
Noble 2009). However, this terminology has not been widely adopted by the research
community.

When designing a model, we are often faced with a tradeoff: build a simpler model
with more identifiable parameters, but which may not be able to capture multiple
mechanisms (which could be crucial for identifying novel drug targets) and might
sacrifice accuracy compared to the data for its simplicity, or build a more complex
model, for which we will have difficulty choosing the right parameters. There are
methods to mitigate the disadvantages of each option, such as model discrepancy
methods for simple models and virtual populations and uncertainty propagation for
non-identifiable models. The research field is rife with arguments about when each kind
of model is appropriate. In particular, the proliferation of non-identifiable models has
recently led to discussions on the appropriateness of their use. Indeed, the suitability of
non-identifiable models for prediction has been an ongoing debate in the mathematical
modeling and more recently in the QSP community, with many emphasizing the bene-
fits of identifiable models (Munoz-Tamayo et al. 2018). The proponents of identifiable
models argue that with complex models, overfitting is unavoidable, calling into ques-
tion the utility of complex models overall. One of the practical questions for the QSP
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community is whether we as a community are better off dismissing non-identifiable
models altogether.

We suggest that an important component to this discussion is the proposed utility
of the model. Broadly, model uses can be classified as interpolative (for example,
predicting response for intermediate doses or time-points) or extrapolative (longer
time-points, higher doses, different dose regimens, predicting novel drug combina-
tions). For many extrapolative use cases, such as predicting the effects of novel drug
combinations, a more complex model (likely non-identifiable) could be necessary.
Therefore, if one wants to argue to dismiss non-identifiable models altogether, a corol-
lary is a large reduction in the number of applications QSP models can support. While
this may or may not be technically appropriate, it is worthwhile to note that the appli-
cation of the “mental models” of biologists/clinicians that QSP aims to formalize are
not typically restricted in scope.

The objective of this perspective article is to discuss the rationale for building and
using identifiable versus non-identifiable models, as well as to highlight techniques
that reduce large models, make models ‘simpler’ and identifiable, and quantify model
uncertainty especially relevant in building confidence when applying non-identifiable
models.

3 Model Development and Complexity

The usual modeling process consists of (1) model development through training or
calibration (where model structure and model parameters are derived based on experi-
mental data and hypotheses of the underlying system’s behavior), (2) model validation
or testing (where model outputs are evaluated against experimental data not used at
the calibration stage), followed by (3) model predictions.

To make sense of inherent complexity of nature, it is often helpful to start
by simplifying and partitioning a complex biological system and using simple or
phenomenological models to describe the underlying mechanisms and resulting phe-
nomena (as Occam’s razor would suggest). The resulting individual models are
typically identifiable if appropriate training data and parameter estimation techniques
are used.

As we develop and improve models, there is a tendency to describe biological and
physiological processes in more detail and hence generate more complex models.
Such models are difficult to make identifiable for a few reasons. First, experimental
data can be lacking or may insufficiently discriminate between different parameter
settings. Moreover, experimental data sets describing the same phenomenon from
different research laboratories may differ and hence result in limited reproducibility
(e.g., Niepal et al. 2019; Hirsch and Schildknecht 2019). In addition, it is more diffi-
cult to confirm uniqueness of optimal parameter settings in complex models due to the
high dimensionality of the parameter space. Also, mechanistic models are sometimes
non-identifiable due to the existing tendency in the field to combine different smaller
identifiable models (each representing, for instance, a particular compartment or path-
way inside a cell) without re-parameterizing the newly combined model using all of the
previous experimental training sets from the smaller models. In particular, the task of
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building models of multiple interacting components (e.g., proteins) or systems by one
individual, or even one research group, is laborious and sometimes intractable which
often leads to model reuse, the coupling of incompatible pre-existing models which
may represent different species and/or incompatible conditions (e.g., temperature, cell
type (Niederer et al. 2009)), further obfuscating the link between model parameters
and experimental data, again leading to non-identifiability. In addition, when perform-
ing optimization, often training experimental data does not include variation of initial
conditions which may be required to constrain the parameters of the model in cases
of multistability in biological systems (Surovyatkina et al. 2010).

From an evolutionary perspective, physiological and biological redundancy is inher-
ent to biological systems often protecting against the impairment of certain functions
that are vital for the survival of an organism. Examples of functional redundancy in
nature exist at every level from gene to protein to cell to organism. For instance, con-
sider the genetic compensation for the altered function of certain proteins (Giaever
and Nislow 2014; Roden 2008), or the pacemaker cells of the heart (sino-atrial node
cells, atrio-ventricular node cells, Purkinje fibers) that send out electrical signals to
activate cardiac muscle contraction but do it at different frequencies, hence provid-
ing a safety mechanism. Capturing such compensation mechanisms in mathematical
models can naturally lead to non-identifiability, as experiments may have trouble dis-
tinguishing between the primary mechanism and the compensation. Building models
that capture physiological redundancy and yet are identifiable requires special care in
collecting training experimental data, especially as we do not always know in advance
that redundant regulation may be involved.

Often, it is not feasible to develop an identifiable model for a system with numerous
redundant mechanisms since one cannot provide detailed experiments (e.g., knock out
each potential mechanism to constrain parameters) due to limited time and resources,
and, in addition, generation of such detailed experimental data may defeat one purpose
of modeling which is to provide a tool for evaluating different hypotheses, predicting
behavior under new conditions and suggesting additional experiments for rejecting
hypotheses. From this point of view, given the reality of limited biological a priori
knowledge of the underlying mechanism of action and sparse/limited data, a non-
identifiable model that is adequately validated (and context-appropriate) could be
argued to be fit-for-purpose, despite not being identifiable. Such a model is believed to
be useful for revealing missing mechanisms and a tool for gaining confidence in mech-
anism of action. The confidence is gained through prediction of anticipated effects of
existing mechanisms and due to a constant ‘model development — experimental val-
idation success — experimental prediction failure — model improvement’ cycle.

Others argue that a mathematical model has predictive power only if it is iden-
tifiable (e.g., Beattie et al. 2013; Whittaker et al. 2020), because non-identifiable,
over-parameterized models (while reproducing datasets they are trained and validated
against) may yield misleading results and conclusions, especially when predict-
ing responses under new conditions different to the validation conditions (Lei
et al.)—which is often the goal of the mathematical modeling.
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4 Identifiable Models: Why Should One Worry about Model
Non-identifiability and What to do if the Model has Too Many
Parameters?

In the case of identifiable models, the distribution of possible model output dynam-
ics constrained by experimental data yields tightly constrained input parameters. In
the case of non-identifiable models, the model may perform well and may give con-
strained predictions in select new settings. However, certain new model dynamics
behavior in a non-identifiable model may depend strongly on the unconstrained param-
eters, leading to potentially misleading results. As stressed by Mirams and others,
over-parameterized models can reproduce the datasets they are calibrated against but
are often unable to predict new regimes of biological phenomena due to their non-
identifiable parameters (Beattie et al. 2013).

To illustrate, Mirams proposes to consider a scenario of how a non-identifiable
model might make sensible predictions when used in a dynamical regime close to
where it was developed, calibrated and/or trained, but lead to a wide and potentially
unconstrained range of predictions in situations away from this. Such a situation may
be provoked, for instance, by the activation or blocking of a reaction, or a change of
boundary or initial conditions. Mirams’ research shows that in regimes away from the
calibration regime, an overly and unrealistically wide range of possible model out-
puts may be produced by non-identifiable models (Fink et al. 2011; Whittaker et al.
2020), and this has nothing to do with biological variability—it is purely a product
of lack of knowledge about parameter values. The different sources of uncertainty in
parameter values are important to distinguish and are referred to as aleatory (‘irre-
ducible’ uncertainty, e.g., arising from natural biological variability) and epistemic
(‘reducible’ uncertainty, arising from lack of knowledge) uncertainty (Mirams et al.
2016). Uncertainty propagation should therefore be performed to determine the regime
before using predictions from models with non-identifiable parameters. Observing par-
ticularly large uncertainty in model behavior suggests that a newly predicted output
set contains model outputs that are sensitive to the non-identifiable parameter(s), and
additional experiments that determine the true value of the model outputs could then
be used to re-train the model and identify the previously ‘non-identifiable’ parameters.

Importantly, one problem is that if simply ‘best fit’ point estimates are used for
parameter values, it can be difficult to determine whether our parameters are con-
strained or not. Mirams advocates using inference techniques to derive probability
distributions for parameters, where it is immediately evident whether parameters’ val-
ues are constrained (Siekmann et al., 2012). Subsequent predictions should be made
using Uncertainty Propagation (Pathmanathan and Gray 2013) and, if it is a feature of
the system, the unconstrained behavior due to non-identifiable parameters will become
evident. These are the fundamentals of Verification, Validation and Uncertainty Quan-
tification (National Academies 2012). As highlighted by Mirams, if just point estimates
are made with an unidentifiable model, one will have no way of knowing where in the
region of possible predictions (plausible or non-plausible) one lies, or how large the
region of equally-plausible behavior is.

Mathematical, computational, physical and engineering fields other than QSP have
been faced with the dilemma of non-identifiable models, and thus an array of tools
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exists to help tackle practical questions including ‘how to know and how to test if a
model is too big?’, ‘how to test if the model is identifiable’, how to reduce a model?’.
For example, the review by Snowden (Snowden et al. 2017) summarizes model reduc-
tion methods including time scale exploitation, truncation and lumping (e.g., Gulati
et al. 2014; Hasegawa et al. 2018). The structural and practical identifiability analyses
(Raue 2009; Raue 2014) of models by exploiting the profile likelihood method and
helping reduce complex models have been increasingly employed both in application
to PK/PD including cardiac safety investigations (Cheung et al. 2011) and QSP includ-
ing modeling erythropoietin receptor (Becker et al. 2010) and JAK2/STATS signaling
(Bachmann et al. 2011). Sensitivity analysis is another tool that can be employed to
evaluate parameter significance and inform model reduction (Saltelli et al. 2008). The
listed techniques are examples and not a comprehensive review of methods and tools
available.

Successful application of phenomenological, ‘simple’ models span many disease
areas including oncology, neuroscience, immunology, cardiovascular (Gray and Path-
manathan 2016). Moreover, as highlighted by Mistry et al. 2015, Mistry 2018 and
Parikh et al. 2019 in the case of Torsades de Pointes drug safety prediction studies,
simple models and linear regression analyses can perform as well as or better than
complex models. These works highlight that complex approaches bring additional
computational cost, increased noise and increased error in predicted behaviors, yet do
not necessarily translate into additional understanding of the underlying mechanisms.

Given that a large number of existing QSP models are complex and non-identifiable,
let us consider situations when it could be appropriate to use complex models, and
what the objective of using complex models could be.

5 Non-identifiable Models: When is it Appropriate to Use Poorly
Constrained but Physiologically Rich Models?

Undoubtedly the ability to accurately predict therapeutic or toxic effects of novel com-
pounds in a cell, organ or an entire organism in animals and in humans using in silico
tools would have a dramatic impact on drug discovery and development. To achieve
this goal will require well-constrained mathematical models that provide a sufficiently
detailed representation of the underlying physiology to make useful predictions (Ribba
et al. 2017). While this is the long-term goal of quantitative systems pharmacology,
and specific examples do exist (Beattie et al. 2013; Mirams et al. 2011), in the general
sense this is not currently possible. Many models are poorly constrained (Gutenkunst
et al. 2007), often due to structural unidentifiability (Cheung et al. 2011) and/or a
scarcity of relevant data. The result is that many large complex models reuse existing
models that are not constrained to the specific setting (Fink et al. 2011; Niederer et al.
2009), implicitly assuming that inter-species differences, temperature dependence,
cell type and experimental protocol have a limited impact on the model prediction
of interest. While these assumptions do pose significant limitations on making quan-
titative predictions, the complex models do provide a physiologically motivated and
physically constrained framework for making qualitative estimates of the effect of a
novel compound on a physiological system and have a role to play in quantitative
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systems pharmacology (e.g., Guyton and Coleman 1969; Peterson and Riggs 2010;
Allen et al. 2016; Allen and Musante 2018).

There are many decisions in drug discovery and development where there is simply
insufficient information to make a decision on which compounds to progress or which
compounds to study first. In these use cases, assuming a detailed and highly predictive
model is unavailable, a pre-existing complex unidentifiable model may prove useful.
These complex models can be beneficial in specific cases. One use of complex models
is for proposing potential biological mechanisms that will be indirectly affected by a
novel compound. For example, a computational model could predict that a compound
that alters the electrophysiology of the cell by binding to a membrane-bound elec-
trogenic pump, such as the effect of digitalis on the sodium —potassium pump, can
indirectly cause significant changes in myocardial contraction (Langer 1977). Also,
complex models can be used for providing a ranking of compounds when limited
information is available. Many drugs are developed from compound libraries, and
lists of candidate compounds are iteratively refined during the drug development pro-
cess (Smith 2002). Complex models can be used to rank candidate compounds based
on a best guess of, for example the Torsade des Pointes risk (Davies et al. 2016). This
is not to suggest that a model should be used to remove a candidate compound but
if experiments are performed sequentially, one compound needs to be tested first and
complex models provide a framework for identifying that compound. Complex mod-
els can be successfully applied when building confidence in particular mechanism of
action (Tewari et al. 2016; Hallow et al. 2018), helping design preclinical and clinical
experiments, translating between species or evaluating efficacy margins (Peterson and
Riggs 2010). Further, importantly, if and when this process fails, the information can
be fed back in to improving the complex model.

Complex models can have a number of limitations due to the potential lack of reli-
ability of their predictions, and special techniques are necessary to provide estimates
of the fidelity of the model predictions. These include the estimation of uncertainty
in model parameters given the available data and how they impact model predictions.
Specific examples include formal Monte Carlo Markov Chain Sampling Bayesian
methods (Johnstone et al. 2016), Bayesian inference approaches to uncertainty quan-
tification (McKinley et al. 2018; Ghanem et al. 2017), history matching ideas and
ensemble studies adopted from climate sciences (Williamson et al. 2013), virtual pop-
ulations generation and selection studies (Allen et al. 2016; Rieger et al. 2018), recently
proposed ‘output-matching’ approaches (Britton et al. 2013; Sobie 2009), sensitivity
analysis (Iooss and Lemaitre 2014; Chang et al. 2015; Saltelli et al. 2019). More
recently, these ideas have been extended to how uncertainty in numerical approxima-
tions will affect parameter estimation (Oates et al. 2016). If key model predictions
are dependent on well constrained parameters fitted to relevant data (even when the
model includes non-identifiable parameters), this gives more confidence in the predic-
tions. Performing model analysis (including global sensitivity) is critical and recently
has been becoming more mainstream as researchers realize that the limitations and
confidence in the predictions of complex models need to be assessed.

All models as well as all measurements are approximate, and we always have
to keep in mind the question ‘how much error can we tolerate?” Uncertainty quan-
tification and careful examination of sources of error is critical to ensure accurate
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conclusions, whether the error is due to the experimental setup, measurement bias,
reproducibility, inter-experimental variability, true underlying biological variability,
numerical solution accuracy or chosen model structure.

Examples such as Allen et al. (2016) are illustrative case studies when poorly
constrained but physiologically rich models provide significant insight in a timely
and cheap fashion, avoiding costly experiments. The right question for the model and
the right techniques of uncertainty estimation are essential components for the use of
non-identifiable models. For instance, the purpose of virtual populations is that, as
additional data becomes available, one is able to constrain the acceptable parameter
space, moving toward a more identifiable model.

Furthermore, when designing a physiological model, encountering non-
identifiability may point to a gap in biological knowledge and suggest which new
measurements would improve the understanding of the system. Finally, complex mod-
els also provide a starting point for model reduction techniques (Snowden et al. 2017);
however, it is important to ensure that these methods are not removing crucial model
components and functions.

6 Practical Challenges of Model Development and the Merit
of Different Approaches

We feel that while the use of either identifiable or non-identifiable models is valid,
what is important is that the users are aware of the assumptions they are making and
are familiar with the notion of identifiability so that they can rightly inform their
future applications of a model. The extent to which identifiability matters is also often
closely interlinked with the specific question of interest and the model’s context of
use. For instance, knowing a priori whether the context of use will involve ‘interpo-
lation’ or ‘extrapolation’ can be helpful in deciding whether a large non-identifiable
complex model is appropriate to employ. In the case of interpolation (i.e., making
predictions of behavior close to or within the validated regimes), identifiability plays
a lesser role for building confidence in the results and decrease of the uncertainty.
In such cases, it is not necessarily advantageous to aim for developing and employ-
ing minimalistic, identifiable models (which, counterintuitively, may be more time
consuming and challenging to build than a more complex throw-every-mechanism-
into-the-bag one). In the case of extrapolation, on the other hand, model identifiability
is likely to be more cost-effective by removing the need for additional iterations of the
experimental cross-check, validation, model improvement via ‘model development
— experiment — model improvement’ cycle. However, as noted, some extrapolative
questions necessitate the incorporation of additional biological mechanisms which
may lead to non-identifiability issues.

In the case of extrapolation, uncertainty quantification and the back-and-forth cycle
between model and experiments has a more important role in verifying hypotheses
and improving the model. For instance, generation and selection of virtual popula-
tions (Allen et al. 2016; Rieger et al. 2018) help classify results based on assumptions
of model output correlations, input parameter and model output ranges, and model
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structure (e.g., Markov chain vs Hodgkin-Huxley formulation, reversible or irre-
versible reactions, etc.). Non-identifiable models may help exclude certain mechanistic
hypotheses by failing to generate particular outputs (plausible or experimentally
observed) in any virtual population member. Suppose that we have a model that
describes a mechanistic hypothesis: if a model cannot reproduce certain behavior
regardless of parameter setting, this provides ground for rejecting a hypothesis even
if the model is non-identifiable. The context of model use is thus central.

The impact and future of mathematical modeling of biological systems is predicated
on supporting the design and/or analysis of experimental and clinical data. To that
extent, the relevant comparison is less non-identifiable vs. identifiable models but
quantitative modeling support vs. human intuition. In this context, non-identifiable
(or more complex) models might have advantage in engaging biologists and clinicians
in the modeling process (due to typically being at a similar scope as their concept of
the system), whereas identifiable models might gain support and trust from the same
community in driving robust predictions. Again, we note that context is crucial—a
given system and dataset requires careful consideration as to the appropriate model,
and neither non-identifiable nor identifiable models should be dismissed a priori.

The ability to build, fit (i.e., calibrate) and use QSP models, while addressing
challenges associated with unidentifiability, is also highly dependent on the availability
of and access to high-quality experimental data. Each individual researcher or group
of researchers (in academia, industry, or government agency) lacks the resources to do
all experiments themselves and must rely on data from other teams. Further, in case
when complex models are built on other models, one needs access to the code and data
used for fitting of the previous models and experimental data used to fit those. As a
result, some of the challenges of building QSP models are not mathematical, but rather
practical. Examples of practical challenges include (i) transparent model code access
and transparent data (used for training and validation) storage, (ii) reproducibility of
model simulation results, (iii) automated model validation, (iv) knowledge transfer
of negative results. These challenges remain even in well-established fields such as
mathematical biology, mathematical physiology, computational biology and systems
modeling.

Transparent model code access and transparent data storage is becoming increas-
ingly important as models become larger and parameter inference becomes more
complex. Further, as the QSP field develops, for QSP modeling there will be a grow-
ing regulatory expectation on model validation and verification. The gold standard for
academia, regulatory agencies and industry is publishing models and associated data
and code in peer reviewed journals. The issue of access to training and validation data
(in the cases concerning confidential individual data or compound specific data) still
remains yet sometimes this can be overcome by providing data averaged over individ-
uals or publishing the underlying systems model without the pharmacology model.
In the latter case, removing the pharmacology portion of the model may result in the
model being less identifiable as part of datasets used to fit the model is unavailable.
However, virtual populations of such less-identifiable published model can be used by
others to constrain parameter spaces based on additional data available to them.

Ideally, in a future where significant progress has been made on the above prac-
tical challenges, we would have the time, experimental capability, and resources
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to gather enough data to identify all parameters even in complex models that are
today considered non-identifiable. However, given the limitations of the real world,
non-identifiability is a reality. Both identifiable and non-identifiable model can be
advantageous to employ, and the pros and cons of model identifiability depend on the
intended context of use. One thing is certain: managing and quantifying uncertainty
in parameters and output features is a critical component in assessing the validity and
predictive power of a model.
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