SUPPLEMENTARY INFORMATION

Inelastic Neutron Scattering Study of Binding of Para-hydrogen in an Ultra-Microporous Metal-Organic Framework

Sihai Yang,^a Anibal J. Ramirez-Cuesta^{b,c} and Martin Schröder^a

[^a] School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD (UK)

Fax: +44 115 951 3563 E-mail: Sihai.Yang@nottingham.ac.uk; M.Schroder@nottingham.ac.uk

^[b] ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX (UK)

^[c] CEMD, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge TN 37831 (USA)

A Langmuir plot (1) was used to estimate the maximum uptake of supercritical hydrogen at 77K in NOTT-300:

$$\frac{P}{W} = \frac{1}{W_0}P + \frac{1}{W_0 \bullet K}$$
(1)

where *W* is the amount adsorbed at the pressure of *P*, W_0 is the amount adsorbed at saturation, and *K* is a coefficient. Linear fitting of (*P*/*W*) vs *P* is shown in Figure S1, and the maximum uptake is estimated as 26 cc/g, consistent with the experimental saturated uptake at 4 bar.

The H_2 adsorption isotherm was also studied using the Dubinin-Radushkelvich (DR) equation (2) which was then converted into a linear format (3) to analyse the porosity:

$$\sqrt{\ln(\frac{W_0}{W})} = (\frac{RT}{\beta E_0})(\ln(P_0) - \ln(P))$$
(2)

$$RT\ln P = RT\ln P_{0q} - \beta E_0 \sqrt{\ln\left(\frac{W_0}{W}\right)}$$
(3)

where W_0 is the estimated maximum uptake obtained from Langmuir plot, and P_{0q} is the saturated vapour pressure of the quasi-vaporized supercritical H₂. In the high pressure region, the DR plot has a linear relationship which was used to estimate the adsorption energy βE_0 and the isosteric heat of gas adsorption (Q_{st}) at the loading of 1/e by using equation (4):

$$Q_{st} (1/e) = \Delta H_v + \beta E_0 \tag{4}$$

where the ΔH_V is the vaporisation heat of H₂ at its boiling point (H₂ = 0.91 kJ mol⁻¹ at 20.39 K). The linear fitting of equation (3) is shown in Figure S2, and the heat of adsorption at 1/e loading is estimated as 6.5 kJ/mol.

Figure S1. Linear fitting plot for H₂ adsorption isotherm of NOTT-300 by Langmuir equation.

Figure S2. Linear fitting plot for H_2 adsorption isotherm of NOTT-300 by DR equation.