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Abstract

We present a novel implementation of Kohn–Sham density-functional theory uti-

lizing London atomic orbitals as basis functions. External magnetic fields are treated

non-perturbatively, which enables the study of both magnetic response properties and

the effects of strong fields, using either standard density functionals or current-density

functionals—the implementation is the first fully self-consistent implementation of

the latter for molecules. Pilot applications are presented for the finite-field calcu-

lation of molecular magnetizabilities, hypermagnetizabilities and nuclear magnetic

resonance shielding constants, focusing on the impact of current-density functionals

on the accuracy of the results. Existing current-density functionals based on the

gauge-invariant vorticity are tested and found to be sensitive to numerical details

of their implementation. Furthermore, when appropriately regularized, the resulting

magnetic properties show no improvement over standard density-functional results.

An advantage of the present implementation is the ability to apply density-functional

theory to molecules in very strong magnetic fields, where the perturbative approach

breaks down. Comparison with high accuracy full-configuration-interaction results

shows that the inadequacies of current-density approximations are exacerbated with

increasing magnetic field strength. Standard density-functionals remain well behaved

but fail to deliver high accuracy. The need for improved current-dependent density-

functionals, and how they may be tested using the presented implementation, is

discussed in light of our findings.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Accurate and efficient calculation of magnetic properties is an important challenge for

quantum-chemical methods. The effects of the magnetic fields available in laboratory exper-

iments tend to be very weak compared with the natural energy scale for a small molecule,

and so the dominant approach to the calculation of molecular magnetic properties has relied

on the use of perturbation theory.1,2 Both static and dynamic properties may be computed

within this framework, although equations and implementations for high-order properties

rapidly become unwieldy.

Recent work has developed an alternative, non-perturbative, gauge-origin-invariant ap-

proach to study molecules in magnetic fields,3,4 without recourse to perturbation theory.

Apart from offering a simple and convenient way to estimate static response quantities, this

approach enables the study of molecules subject to very strong magnetic fields, for which

a perturbation expansion converges very slowly, if at all.4–6 In both perturbative and non-

perturbative approaches, London atomic orbitals provide an efficient means of accelerating

basis-set convergence by building part of the magnetic response and some gauge degrees

of freedom into the basis functions. In particular, the use of London orbitals makes the

calculations invariant to the choice of gauge origin for uniform magnetic fields.

While previous work was concerned with the Hartree–Fock3 and full-configuration-

interaction (FCI)6 levels of theory, the present work explores the use of Kohn–Sham density-

functional theory (KS-DFT) in magnetic fields. The standard formulation of KS-DFT is not

rigorously valid in the presence of an external magnetic field. Instead, the theory needs to be

generalized and some additional ingredient besides the charge density needs to be included

in the universal exchange-correlation functional—either the magnetic field7 or the current

density.8 We focus here on Vignale and Rasolt’s formulation of current-density functional

theory (CDFT), in which this extra ingredient is the paramagnetic current density.8–10

In practice, nearly all applications of DFT to molecular magnetic properties are per-

formed with standard, density-dependent exchange–correlation functionals, often developed

primarily for energetics in the absence of magnetic fields. As recently documented by com-

parison with high-accuracy coupled-cluster results for magnetizabilities and rotational g

tensors11 and for nuclear shielding and spin–rotation constants12, the accuracy achieved by

such Kohn–Sham calculations is rather low. For many exchange–correlation functionals, the
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Kohn–Sham results are no better than the Hartree–Fock results and never better than the

CCSD results. It has been suggested that the use of CDFT may lead to improved results.

In this paper, we present an implementation of (C)DFT using London atomic orbitals. We

commence in Section II by presenting the theoretical modifications to KS-DFT necessary

in the presence of a magnetic field, focusing on the Vignale–Rasolt (VR) formulation of

CDFT and the associated vorticity-dependent exchange–correlation functionals available in

the literature. In Section III, we present our implementation of a (C)DFT module in the

london program, capable of performing both standard DFT and CDFT calculations in the

presence of magnetic fields. Results using CDFT are presented in Section IV for magnetic

properties typically accessible by response theory. Comparisons of these results with recent

benchmark data and those from standard DFT calculations allow us to assess the quality of

the different CDFT functionals. In Section V, we extend our study to field strengths where

response theory is no longer applicable; in this regime, the results are compared with those

obtained from FCI calculations. Finally, in Section VI, we make some concluding remarks

and discuss directions for future work.

II. THEORY

In the present section, we first consider the Vignale–Rasolt formulation of CDFT in

Section II A; next, we consider the VRG functional and its parameterizations in Section II B.

A. The Vignale–Rasolt universal CDFT functional

In the presence of a magnetic field, the non-relativistic electronic Hamiltonian takes the

form (atomic units)

Ĥ[v,A] =
1

2

N∑
k=1

(p̂k + A(rk))
2 +

N∑
k=1

v(rk) +
1

2

N∑
k 6=l

1

rkl
, (1)

where N is the number of electrons, p̂k is the canonical-momentum operator of electron

k, v(r) is the external scalar potential at position r, and the magnetic vector potential

A(r) describes the external magnetic field B(r) = ∇ × A(r). In CDFT, the electronic
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ground-state energy may then be expressed as follows,8

E[v,A] = inf
ψ
〈ψ|Ĥ[v,A]|ψ〉

= inf
ρ, jp

(
F [ρ, jp] +

∫
(ρv + 1

2
ρA2 + jp ·A) dr

)
, (2)

where ρ is the electron density, jp is the paramagnetic current density, and F [ρ, jp] is the

Vignale–Rasolt constrained-search universal current-density functional:

F [ρ, jp] = inf
ψ 7→ρ, jp

〈ψ|Ĥ[0, 0]|ψ〉. (3)

In Kohn–Sham theory, this functional may be decomposed further into a Kohn–Sham non-

interacting kinetic-energy term Ts[ρ, jp], a Hartree term J [ρ], and an exchange–correlation

term Fxc[ρ, jp]:

F [ρ, jp] = Ts[ρ, jp] + J [ρ] + Fxc[ρ, jp]. (4)

From gauge-invariance considerations, Vignale and Rasolt argued that the exchange–

correlation energy depends only on jp through the gauge-invariant vorticity,

ν(r) = ∇× jp(r)

ρ(r)

=
ρ(r)∇× jp(r)−∇ρ(r)× jp(r)

ρ(r)2
. (5)

In the expressions given above, the spin degrees of freedom and the spin-Zeeman term

have been neglected. The literature contains slightly different formalisms for taking these

into account. In particular, F and Fxc have been considered functionals of the following

variables:

1. the total density ρ, the spin density m, and the total paramagnetic current density jp,

2. the total density ρ and the total paramagnetic current–spin density jm = jp +∇×m,13

3. the fully spin-resolved densities ρ↑ and ρ↓ and the paramagnetic current densities jp;↑

and jp;↓.
9

The choice between spin-resolved or total densities matters in particular for the vorticity,

which is not additive with respect to spins, νtot 6= ν↑+ν↓ and which vanishes identically for

densities arising from a single natural orbital (or Kohn–Sham orbital). Hence, it is possible

for νtot 6= 0, yet ν↑ ≡ ν↓ ≡ 0 (e.g., for a two-electron system in a triplet spin state). In the
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present work, we apply existing approximate functionals to closed-shell systems, for which

these distinctions do not matter. We therefore suppress spin indices in the following.

The fact that vorticities arising from a single orbital vanish identically raises the question

as to which paramagnetic densities (ρ, jp) can be represented by a Kohn–Sham ground-

state wave function. Clearly, a closed-shell two-electron system with a nonzero total vor-

ticity is neither non-interacting v-representable nor N -representable by a Kohn–Sham sys-

tem. Moreover, an open-shell two-electron system may feature non-vanishing spin vor-

ticities, which also cannot be represented by a Kohn–Sham system; see also Taut et al.

for a discussion of non-interacting v-representability in two-electron systems.14 For N ≥ 4

electrons, a recent result shows that all paramagnetic densities satisfying mild regularity

conditions are non-interacting N -representable.15 Depending on how the question of non-

interacting N -representability is resolved for few-particle systems and how non-interacting

v-representability is resolved for N ≥ 3, a rigorous approach to CDFT may require extended

(ensemble) Kohn–Sham theory and the use of methods for determining fractional occupa-

tion numbers.16–19 It has recently been proved that essentially any density and paramagnetic

current density (subject only to the minimal regularity condition that a von Weizsäcker-like

bound on the kinetic energy is locally integrable) are N -representable in extended Kohn–

Sham CDFT.20

B. The VRG exchange–correlation functional

Compared with the very large number of DFT exchange–correlation functionals, there

exist only a handful of specific CDFT functionals. Some of these are based on the vorticity

expansion and take the general form

FVRG[ρ,ν] =

∫
g(ρ(r)) |ν(r)|2 dr, (6)

where approximations to g(ρ) have been established from models of the uniform electron

gas. Indeed, such a functional form was considered by Vignale and Rasolt already in Ref. 8

and subsequently fitted to reference values computed with the random-phase approximation

(RPA) by Vignale, Rasolt, and Geldart (VRG) in Ref. 21

This original parameterization has been revisited several times—specifically, re-parameterizations

have been proposed by Lee, Handy, and Colwell (LHC),22,23 by Orestes, Marcasso, and
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Capelle (OMC),24 by Tao and Perdew (TP),25 and by Tao and Vignale (TV).26 Addition-

ally, Higuchi and Higuchi (HH)27,28 have constructed an approximate exchange–correlation

functional designed to satisfy exact conditions derived from scaling relations for the CDFT

exchange and correlation energies.

For molecules, it is essential that the parameterization of the VRG functional has a

sensible low-density limit. However, in the above parameterizations, fitting reference data

for g(ρ) were available only for Wigner–Seitz radii in the range 0 < rs ≤ 10 (VRG, LHC,

OMC, TP) and in the range 0 < rs ≤ 20 (TV). The low-density limit is consequently

underdetermined by the reference data.

The low-density behaviour of the different parametrizations is shown in Fig.1. Impor-

tantly, the original VRG form and the OMC re-parametrization do not tend to zero in the

low-density limit, making them ill-suited for molecular applications. By contrast, the LHC,

TP, and TV re-parametrizations do tend to zero, albeit slowly—for sufficiently small ρ, we

find that

gLHC(ρ) ≈ gTP(ρ) ≈ gTV(ρ) ∼ −ρ1/3. (7)

For the LHC and TV re-parameterizations, which result in everywhere negative functions

gLHC(ρ) and gTV(ρ), respectively, this decay behaviour is readily visualized in a log–log plot;

see Fig. 2 (the TP parametrization is not shown as it differs very little from TV on the scale

of the plot and the low-density asymptotes coincide).

Higuchi and Higuchi’s exchange functional HHx is constant: gHHx(ρ) = 2×3.76×10−4 a.u.

By adjusting this constant (i.e., setting D̄x = −C̄0 in the notation of Ref. 27), it is possible to

make their total gHH(ρ) almost vanish for small densities ρ� 10−30 a.u; see Fig. 2. However,

the Higuchi–Higuchi correlation functional HHc has a singularity at ρ = 10−30 a.u., so the

approach to the low-density limit is interrupted by an infinite discontinuity. We denote the

modified Higuchi–Higuchi functional by HHmod.

Finally, we note that Zhu and Trickey29 compared vorticity-dependent functionals with

an exactly solvable model for a Hooke’s atom in a magnetic field, reporting that the vorticity

is a difficult quantity to work with. An alternative approach has been proposed by Becke,30

while a more elaborate version (relying on currents from individual Kohn–Sham orbitals)

was proposed by Pittalis et al.31 These functionals are based on the observation that a

gauge-invariant density can be formed from a combination of the Kohn–Sham canonical-

kinetic-energy density and the paramagnetic current density. Letting φk denote the occupied
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Kohn–Sham orbitals that give rise to the densities ρ and jp, the quantity

τ̃(r) = 1
2

∑
k

|∇φk(r)|2 −
|jp(r)|2

2ρ(r)
(8)

is gauge invariant.32 The paramagnetic current can therefore be incorporated in an exchange-

correlation functional via τ̃ . Exploration of this alternative is beyond the scope of the present

work.

III. IMPLEMENTATION

In our calculations, we consider a uniform magnetic field B, described by a cylindrical

vector potential

A(r) =
1

2
B× (r− g), (9)

where g is the gauge origin. In exact calculations, with complete orbital basis sets, the

values of physical quantities are independent of the gauge origin (in fact, invariant to all

gauge transformations). For finite basis sets, gauge-origin invariance can be ensured by

employing London orbitals of the form

ωγ(r) = χγ(r) e−iA(Nγ)·r, (10)

where χγ(r) is a standard Gaussian-type basis function centred on Nγ and A(Nγ) is the

vector potential evaluated at the centre of the Gaussian. Effectively, the basis then becomes

a hybrid plane-wave/Gaussian basis for finite magnetic fields.3

The main modifications to the existing London Hartree–Fock code3 in order to enable

(C)DFT calculations are the implementation of a numerical integration scheme, the evalua-

tion of quantities such as ρ(r), ∇ρ(r), jp(r), and ν(r) on the associated numerical grid and

the assembly of these components in the expressions for the exchange–correlation energies

and the functional derivatives required for their associated potentials.

For the molecular numerical integration, we construct a set of grid points and weights

using Becke’s space partitioning scheme with atomic size corrections,33 decomposing the

molecular integral into a sum of one-centre atom-like integrations. To eliminate crowding

of points close to nuclei, grid pruning is implemented using the approach outlined by Mur-

ray, Handy and Laming.34 For the radial part of these integrations, we employ the scheme

proposed by Lindh, Malmqvist, and Gagliardi;35 for the angular part, we employ Lebedev
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quadrature.36–41 We have tested our C++ implementation for standard density functionals

by comparing with the Dalton quantum chemistry program,42,43 in which similar Fortran

77 angular and radial implementations are available. Because of the slow decay of the

vorticity-dependent integrand in the present VRG parameterizations, we have used very

conservative screening criteria when processing points on the integration grid.

The evaluation of ρ(r), ∇ρ(r), jp(r), and ν(r) at the grid points is straightforward, given

the elements of the one-particle reduced density matrix Dγζ and the values of basis functions

ωγ(r) and their gradients ∇ωγ(r) at the grid points:

ρ(r) =
∑
γζ

ωγ(r) D
γζ ω∗ζ (r), (11)

∇ρ(r) =
∑
γζ

ωγ(r) D
γζ ∇ω∗ζ (r) + c.c., (12)

jp(r) =
i

2

∑
γζ

ωγ(r) D
γζ ∇ω∗ζ (r) + c.c., (13)

where “c.c.” denotes the complex conjugate of the preceding expression. (Note that we work

with the number density and number current rather than the electrical density and electrical

current, the difference being a factor of −e in general, or −1 in atomic units.) Notably, the

curl of jp can be computed from the first-order functional derivatives of basis functions since

the second-order derivatives cancel:

∇× jp(r) = i
∑
γζ

Dγζ ∇ωγ(r)×∇ω∗ζ (r). (14)

At first glance, the right-hand side looks like an imaginary quantity; however, for a complex

vector w, the cross-product iw×w∗ is real. A transformation to natural orbitals (or Kohn–

Sham orbitals) thus makes it clear that the right-hand side is real.

The vorticity may be assembled from the above densities using the right-hand side of

Eq. (5) above. In practice, to guard against division by near-zero and the resulting loss of

precision, we prefer the regularized vorticity

νε(r) =
ρ(r)∇× jp(r)−∇ρ(r)× jp(r)√

ε4 + ρ(r)4
, (15)

where ε plays the role of a soft density cut-off. This regularization results in an underestimate

of the magnitude of the true vorticity.
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Once the required (C)DFT quantities have been assembled at the grid points, the

exchange–correlation energies and the derivatives required for construction of their associ-

ated Kohn–Sham matrix contributions can be calculated. For the standard DFT contribu-

tions, we use the flexible XCFun package,44 which uses automatic differentiation to provide

derivatives of the exchange–correlation energies from specified energy expressions. Once

these contributions have been evaluated, London constructs the associated Kohn–Sham

matrix elements.

For the CDFT contributions (which in the present work are added as corrections to

standard functionals), we have implemented the exchange–correlation energy and Kohn–

Sham matrix element constructions in the London code. For FVRG(LHC) and FVRG(TV),

which have everywhere negative integrands, the regularization of Eq. (15) is used and the

corresponding vorticity correction is therefore underestimated—at least when applied non-

self-consistently. For VRG parameterizations that decay as ρ1/3 in the low-density limit, the

regularization in Eq. (15) yields a VRG integrand of the form

g(ρ)ν2
ε ∼ −ρ1/3 |ρ∇× jp −∇ρ× jp|2

ε4 + ρ4
. (16)

Without regularization (i.e., with ε = 0), this decay may be numerically problematic—

in regions where the vorticity vanishes or is very small, numerical noise in the squared

factor would be amplified by a factor ρ−11/3. The need for appropriate regularization of the

vorticity has been noted in Ref. 45. The sensitivity of calculated properties to the choice of

the regularization parameters is investigated in Section IV.

IV. (C)DFT IN THE PERTURBATIVE REGIME

Over the last two decades, perturbative calculations of second-order properties such as

magnetizabilities and nuclear shielding constants have become routine in quantum chemistry,

also with London atomic orbitals. Properties that require higher-order responses such as

hypermagnetizabilities have received much less attention. Perturbative approaches have

been applied at the coupled-perturbed Hartree–Fock level using standard (non-London)

orbitals have been explored by Pagola et al.,46,47 while the finite-difference approach has

been explored by us at the Hartree–Fock level using London orbitals.3 However, we are not

aware of any results for hypermagnetizabilities that employ methods including a correlation
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treatment.

In this section, we present applications of CDFT to magnetizabilities, fourth-rank hy-

permagnetizabilities, and nuclear shielding constants. The implementation of molecular

properties is much simpler by finite-field techniques than that by perturbation techniques,

allowing us to assess readily the performance of a variety of CDFT functionals, compar-

ing their results with Hartree–Fock theory, the corresponding DFT functionals and (where

available) accurate benchmark data.

We have performed calculations on a set of 27 molecules used in Ref. 12 at their

CCSD(T)/cc-pVTZ optimized geometries, namely, AlF, C3H4 (cyclopropene), FCCH, C2H4,

H2C2O (ketene), CH3F, CH4, CO, FCN, HCN, HCP, HF, LiH, LiF, NH3, N2, N2O, PN,

H4C2O (oxirane), OCFH, CH2O (formaldehyde), OCS, OF2, HOF, H2O, H2S, and SO2 (O3

has been excluded because of its multi-reference character). In all cases the aug-cc-pCVTZ

London atomic orbital basis set has been employed. The CDFT vorticity dependent func-

tionals were regularized with a hard cutoff on the Wigner–Seitz radius, rs, of 9.1055 a.u.

and a soft cutoff ε = 10−14 a.u., see Eq. (15). Experimentation revealed that results were

not particularly sensitive to the angular or radial grid parameters. The default parameters

were therefore used. For the Lebedev grid, the angular integration was specified to be

exact for spherical harmonics up to order 35; in the LMG radial integration, the accuracy

parameter specifying the upper limit of the error in the case of an atomic integration was

set to 10−13 a.u.

Even when employing the regularisation of Eq. (15) issues with SCF convergence were

still encountered for the VRG(LHC) parameterised CDFT corrections at some field strengths

when employing the standard direct-iteration-in-the-iterative-subspace (DIIS) approach. In-

terestingly, no such issues were encountered with the VRG(TP) parameterisation, for which

calculations on the full set of 27 molecules could be routinely performed at a range of field

strengths up to 1 a.u. This may reflect differences in the function g(ρ) examined in Figures 1

and 2. In particular, the 8 molecules CH3F, HCN, HCP, H4C2O, CH2O, OCS, OF2 and SO2

could not be reliably converged using the VRG(LHC) parameterisation. To account for

this all plots and error analyses in the main manuscript refer to the remaining subset of

19 molecules. The full data set may be found in the supplementary material48, including

VRG(TP) based results for all 27 molecules. We emphasize that some regularization is nec-

essary for all of the VRG based forms; even for VRG(TP) applying less regularization leads
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to similar numerical difficulties. We observe that these issues are, however, somewhat less

severe with the VRG(TP) parameterization than with VRG(LHC).

A. Molecular magnetizabilities and hypermagnetizabilities

Consider a uniform magnetic field B whose vector potential is given by Eq. (9). Expand-

ing the energy in orders of B, we obtain for a closed-shell system,

E(B) =E(0)− 1

2

∑
αβ

χαβBαBβ

− 1

4!

∑
αβγζ

XαβγζBαBβBγBζ +O(B6), (17)

where odd-order terms vanish. The magnetizability tensor χαβ and fourth-rank hypermag-

netizability tensor Xαβγζ can be obtained by least-squares fitting of a polynomial to energies

E(Bα`) for a suitable discrete grid of a sample fields Bα`. We consider here only the di-

agonal tensor elements (which require less fitting data), using Bα` = `eα. It was found

that ` = 0.00, 0.01, . . . , 0.03 a.u. in each Cartesian direction, α ∈ {x, y, z} provided suf-

ficient data to accurately determine molecular magnetizabilities and shielding constants;

the results reproducing those of the perturbative Dalton42,43 implementation to better

than 0.1× 10−30 JT−2 and 0.1 ppm, respectively, for standard density functionals. Careful

study of the convergence of hypermagnetizabilities revealed that higher field strengths were

required to obtain robust results and the grids used were supplemented with the points

` = 0.03, 0.04, . . . , 0.1 a.u. in each Cartesian direction, making the calculations considerably

more expensive. The tensor elements were calculated by fitting 6th-order polynomials in

each cartesian direction.

In a previous benchmark study of magnetizabilities and g tensors calculated from stan-

dard DFT functionals, Lutnæs et al. found that the standard DFT functionals (which neglect

the current dependence) in general give poorer results than does the Hartree–Fock model.11

Moreover, whereas the Hartree–Fock model (like the coupled-cluster models) on average

underestimates magnetizabilities, the LDA and GGA functionals overestimate the magneti-

zabilities. In Fig. 3, we have plotted the magnetizabilities obtained using the conventional

LDA, PBE, and KT3 functionals without current correction and with the VRG(LHC) and

VRG(TP) corrections; for comparison, we have included the Hartree–Fock results for the
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same systems. We see the same trends as observed in Ref. 11, the LDA, PBE, and KT3 func-

tionals overestimating the magnetizabilities and being less systematic than the Hartree–Fock

model.

Unfortunately, the addition of the VRG functional (with the LHC and TP parameter-

izations) does not improve the situation. For all three DFT functionals, the VRG(LHC)

correction increases the error in the magnetizabilities, increasing both mean errors and the

spread. The results are slightly better for the VRG(TP) functional but still poorer than

those obtained without the VRG correction. Clearly, the VRG-corrected functionals cannot

be recommended for the calculation of magnetizabilities. We note that Lee, Collwell and

Handy22 studied magnetizabilities for a few small systems in the context of CDFT using

a perturbative implementation. Many of the systems they considered are included in the

present work, however, a direct comparison is difficult because of the use of different basis

sets and the fact that the results of Ref. 22 are not gauge-origin invariant. The present

results may therefore be considered a more extensive benchmark addressing some of the

issues associated with these earlier calculations.

In Table I, we have listed the hypermagnetizabilities calculated at the Hartree–Fock, KT3,

and PBE levels of theory, all without VRG corrections; the corresponding VRG-corrected

results may be found in the supplementary material48. To our knowledge, these are the first

published Kohn–Sham hypermagnetizabilities.

We observe an overall qualitative agreement between the KT3 and PBE hypermagnetizabilities—

except for N2 and HFCO, the results agree on signs and relative magnitudes. As expected,

the agreement with the uncorrelated Hartree–Fock model is poorer, with more instances of

sign differences. However, without high-quality reference data (such as those provided by

coupled-cluster theory), it is difficult to assess properly the performance of the Hartree–Fock

and Kohn–Sham DFT models for hypermagnetizabilities.

We have carried out Kohn–Sham calculations of hypermagnetizabilities with the VRG

correction added; the results are included in the supplementary material48. In nearly all

cases, the VRG correction to the hypermagnetizability tensor elements is negative; how-

ever, in the absence of accurate reference data, it is difficult to judge the quality for the

CDFT results for the hypermagnetizabilities. Bearing in mind the poor performance of the

VRG correction for magnetizabilities, it is a safe assumption that the hypermagnetizability

corrections are poor as well.
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B. Nuclear shielding constants

In a recent benchmark study of NMR shielding constants and spin–rotation constants,12

the accuracy achieved by Kohn–Sham calculations was found to be rather low. Although the

various DFT approximations improve slightly upon the Hartree–Fock theory results, none

of the DFT functionals provide an accuracy similar to that of CCSD or CCSD(T) theory;

moreover, the inclusion of vibrational corrections worsened the agreement with experimental

values. Regarding the different exchange–correlation functionals, a general improvement was

observed when going from LDA to GGA functionals, with further improvements observed

for hybrid functionals—in particular, in combination with an optimized-effective-potential

(OEP) approach. Interestingly, KS[CCSD] and KS[CCSD(T)] calculations, where the Kohn–

Sham system reproduces the CCSD and CCSD(T) densities, respectively, gave errors similar

to those of the OEP calculations. This suggested that the neglect of current dependence

may be a significant factor in determining the accuracy of these calculations.

To calculate NMR shielding constants non-perturbatively we consider the dependence of

the molecular electronic energy E(B,Mk) on the external magnetic field B and the nuclear

magnetic moment Mk of nucleus k represented by the vector potential,

Ak(r) =
µ0

4π

Mk × (r−K)

|r−K|3
=
µ0

4π
Mk ×

1

∂K

1

|r−K|
, (18)

where K is the position of the nucleus. We obtain the Taylor expansion

E(B,Mk) = E(0,0) +
∑
αβ

σk;αβBαMk;β + · · · (19)

where the nuclear shielding tensor is the leading-order mixed term in the expansion of the

energy,

σk;αβ =
∂2E(B,Mk)

∂Bα∂Mk;β

∣∣∣
B=0,Mk=0

. (20)

The kinetic-energy operator in the Hamiltonian now becomes (atomic units) π̂2/2 = (p̂ +

A(r) + Ak(r))
2/2. Exploiting the Hellmann–Feynman theorem, we compute the derivative

with respect to Mk analytically,

Ξk;β(B) =
∂E(B,Mk)

∂Mk;β

∣∣∣
Mk=0

=
eµ0

4πm
εαβγ

∂

∂Kγ

〈ψ|
{
p̂α + eAα, |r−K|−1

}
|ψ〉, (21)
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where the braces denote the anti-commutator. The expectation value is similar to a nuclear

attraction integral, and may be evaluated using the McMurchie–Davidson scheme described

in previous work.3 The remaining differentiation may be performed directly by numerical

differentiation,

σk;αβ ≈
Ξk;β(εeα)− Ξk;β(−εeα)

2ε
=

Ξk;β(εeα)

ε
, (22)

or indirectly by polynomial fitting to computed Ξk;β(B) values as a function of B. The

fitting is simplified by the fact that only odd-orders of B enter in the expansion of Ξk;β(B).

Before considering the benchmark calculations, we have in Fig. 4 plotted the VRG cor-

rections to the oxygen shielding constant in H2O against the integration cut-off parameter

ρcut-off (with hard and soft cut-offs) for the LHC, TP, and HHmod parameterizations of g(ρ).

Substantial variations in the corrections are observed and no convergence is achieved with

reasonable cut-offs—in particular, for the LHC parameterization (with variations over about

60 ppm in the plot). The LDA- and BLYP-based VRG corrections are similar to each other

for cut-offs larger than about 10−5; for smaller cut-offs, the LDA-based corrections tend to

be larger than the BLYP-based corrections. Moreover, the differences between the correc-

tions obtained with hard and soft cut-offs are small compared with the differences observed

for different cut-off parameters.

The TP correction is much better behaved, with variations on the order of 3.5 ppm and

a consistent sign for the correction term. However, this variation and a lack of convergence

with respect to varying the cutoff parameters mean that it cannot be recommended for

practical use. The HHmod parameterisation shows a large variation with regularisation

parameters and so also cannot be recommended for practical use. However, it is interesting

that for the large cutoff values HHmod leads to a negative correction, which is opposite

in sign to the high cutoff value LHC and TP corrections. This difference may reflect the

qualitative difference in the functions g(ρ) in Figures 1 and 2, in particular for large densities

gHHmod(ρ) is positive, whilst gLHC(ρ) and gTP(ρ) are negative. This further re-enforces the

need for an improved parameterisation of g(ρ) – the stability of the functional obtained and

the quality of the results is strongly influenced by this parameterisation. Similar observations

may be made for all molecules in our dataset, whilst this set consists of only 27 molecules

the results indicate that the lack of convergence with respect to regularization parameters

seems to be a consistent issue, limiting the practical utility of VRG based functionals.

With these caveats in mind, we consider the nuclear shieldings calculated for the 27
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molecules in our benchmark set at the same levels of theory and same parameterizations

(with a hard cut-off ρcut-off = 3.1 × 10−4 ≡ rs = 9.1055) as for the magnetizabilities in

Section IV A. In Fig. 5 we present the data for chemically unique nuclei in the subset of

19 molecules defined in Section IV (a total of 48 data points), all values are available in

the supplementary material48. We note that the Kohn–Sham DFT shielding constants for

LDA and PBE do not represent a substantial improvement over Hartree–Fock, although

they have a smaller spread their mean errors are in general worse. The KT3 functional does

lead to a small improvement in both the mean error and a more significant improvement in

the spread of the values. The overall trend is consistent with that observed in Ref 12.

However, as for the magnetizabilities in Fig. 3, the addition of the VRG correction does

not improve the calculated shieldings — in fact their quality tends to deteriorate with the

application of VRG correction to the functional, especially for the LHC parameterisation.

These results are in line with the early observations of Lee, Handy, and Colwell (LHC)23

and indicate that (at least at the GGA level) improvement of the underlying functional to

describe NMR properties, as is the case for KT3, does not lead to any significant difference

when the associated VRG correction is calculated. The interplay between the choice of

functional and the quality of VRG-type corrections beyond the GGA level remains to be

investigated in future work.

V. (C)DFT BEYOND THE PERTURBATIVE REGIME

The availability of accurate current-density functionals would facilitate the study of

molecules in very strong magnetic fields such as those encountered around white dwarf

stars and magnetars.49 Such strong fields may have a dramatic impact on the physics and

chemistry of small molecules. Several studies have applied quantum-chemical methods such

as the Hartree–Fock and FCI methods to small atoms as well as one- and two-electron

molecular systems50–56. Such systems have also been studied with methods constructed for

very high-accuracy57. Larger systems have been explored using density functionals based on

asymptotic estimates for energies.58,59

On a technical note, very strong magnetic fields, B � 1 a.u. = 2.35 × 105 T result in

a substantial deformation and compression of atomic orbitals.56,60–62 In such fields, tradi-

tional (isotropic) Gaussian-type orbitals are ill suited for the expansion of the electronic
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wave function. In the present work, we use conventional quantum-chemical Gaussian-type

basis sets. As a result, we are limited to field strengths up to B ∼ 1 a.u., for which the

orbital deformation may be handled by decontracting the basis set and adding polarization

functions.

An interesting phenomenon that can be addressed within the present computational

limitations is the quality of (C)DFT approximations in describing chemical bonding and

molecular orientation in magnetic fields. In magnetic fields B ∼ 1 a.u., molecules that are

otherwise unstable such as H2 in the triplet state become stable, with a favoured orientation

in the field.4,6,56 In Ref. 6, this phenomenon was explained in terms of a new chemical

bonding mechanism, perpendicular paramagnetic bonding, that arises from a stabilization

of antibonding orbitals in a perpendicular orientation relative to the magnetic field. Hartree–

Fock and FCI calculations have shown that this bonding is present in triplet H2 and singlet

He2. Moreover, calculations at the Hartree–Fock level (which gives a qualitatively but not

quantitatively correct description for paramagnetic bonding) on singlet helium clusters up

to size He6 indicate this bonding mechanism is not restricted to diatomic molecules.

Figures 6 and 7 show dissociation curves for the helium dimer subject to parallel and

perpendicular fields of strength B = 1 a.u. The Hartree–Fock and FCI results are shown

together with results obtained with standard (C)DFT functionals. The u-aug-cc-pVTZ ba-

sis set, where u stands for uncontracted, equipped with London orbital factors, was used.

The dimer has a weak minimum for both parallel and perpendicular magnetic fields. The

Hartree–Fock model underbinds, while all tested DFT functionals overbind. By symme-

try, the vorticity vanishes for parallel fields. A vorticity-dependent VRG-type functional

consequently vanishes too in this case.

For perpendicular fields, however, the vorticity does not vanish—see the dissociation

curves for conventional and vorticity-dependent functionals in Fig. 7. (The vorticity-

dependent functionals were regularized by a soft cut-off ε = 2.3873 × 10−4 a.u., which

corresponds to rs = 10 a.u., in these calculations.) While the Hartree–Fock model and con-

ventional DFT functionals show similar under- and overbinding, respectively, the addition

of the VRG(LHC) and VRG(TP) functionals only degrade the accuracy. Both the depth

and location of the minima become less accurate, with spurious plateaus appearing in the

dissociation curves.

This behaviour may be understood from the observation that the vorticity vanishes for
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perpendicular fields in the dissociation and united-atom limits. Hence, the effect of the

vorticity may be expected to be largest at intermediate bond lengths perpendicular to the

field. Qualitatively, this behaviour is similar to the energetic preference introduced by the

perpendicular paramagnetic bonding mechanism.6 The VRG functionals tested thus show a

spurious bias towards this bonding.

The self-consistent-field (SCF) Kohn–Sham optimization appears to be more difficult

when VRG functionals are used. Our implementation, which relies on a standard DIIS

method, often finds states above the ground state when VRG functionals are used. We have

dealt with this problem by starting the SCF optimization from different density matrices—

for example, obtained by projection from a calculation with a different functional or different

geometry.

Neither the tested conventional functionals (LDA, BLYP, B3LYP, and KT3) nor the

VRG functionals (LHC and TP) were constructed for use with very strong magnetic fields.

Whilst Hartree–Fock theory tends to lead to an under-binding, the standard LDA, BLYP

and B3LYP tend to over-bind. For LDA this error is dramatic and similar to those observed

in the absence of magnetic fields. The GGAs improve the situation but do not fully correct

the error. By contrast, the VRG(LHC) and VRG(TP) corrected functionals are much less

robust, leading to an exaggeration of this over-binding effect and the introduction of spurious

features on the potential energy curve. At least the VRG(TV) functional is likely to share

this problem, since its model function gTV(ρ) is similar to gLHC(ρ) and gTP(ρ).

Higuchi and Higuchi’s functional,27,28 modified as described above, is based on a model

gHH(ρ) that is rather different from the other functionals studied. The contribution from

VRG(HHmod) produces a purely dissociative potential energy curve for perpendicular fields

(data not shown). Since the VRG(HHmod) functional gives errors in the opposite direction

compared to the VRG(LHC) and VRG(TP) functionals, an interesting possibility is to try to

fit a parameterization flexible enough to interpolate between these functionals to benchmark

data.

VI. CONCLUSIONS

We have reported an implementation of DFT and CDFT for molecular calculations in

magnetic fields. The implementation has several novel features: First, external magnetic
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fields are treated non-perturbatively, enabling both static response quantities and intrinsi-

cally non-perturbative phenomena to be investigated. Second, London atomic orbitals are

used in conjunction with finite magnetic fields to achieve gauge-origin invariance and faster

basis-set convergence. Third, the treatment of the current-dependent contribution to the

exchange–correlation functional is fully self consistent.

Our DFT implementation has been demonstrated by computing magentizabilities, NMR

shielding constants and hypermagnetizabilities for a set of small molecules. The CDFT

implementation has been used to explore the accuracy of several parametrizations of the

vorticity-dependent VRG functionals. For magnetizabilities and nuclear shielding constants,

these functionals tend to degrade accuracy compared to conventional DFT functionals. Also

the description of the non-perturbative phenomenon of perpendicular paramagnetic bonding

degrades when the VRG functional is added. Although these functionals were constructed to

account for the effects of external magnetic fields, a common problem is that the parameter

values have been selected to describe a uniform electron gas in the medium to high-density

regime (i.e, rs ≤ 10 or rs ≤ 20). The low-density limit, which is important in molecular

calculations, is thus left underdetermined. The asymptotic decay of ∼ ρ−1/3ν2 seen in

the presently available parametrizations appears to be too slow for molecular calculations,

making regularization necessary. Moreover, results obtained with the VRG functionals are

too sensitive to the choice of regularization parameter to be useful.

Interestingly, a modified version Higuchi and Higuchi’s functional,27,28 reparametrized so

as to have a useful low-density behaviour, stands out from the other VRG functionals. It

decays as ∼ ρν2, which is substantially faster, and because it has the opposite sign in the

medium to high-density regime compared to the VRG(LHC) and VRG(TP) functionals, for

example, it yields errors in the opposite direction. The latter point raises the tempting

possibility of attempting to fit an interpolation between VRG(HHmod) and VRG(LHC) or

VRG(TP) to benchmark data.

There are several possible directions for future work on improved CDFT corrections.

Firstly, as already discussed, the form of the g(ρ) parameterisation warrants further inves-

tigation, particularly in light of the strong sensitivity of the results and functional stability

to these parameterisations. The generation of accurate data at the CI or coupled-cluster

levels at different field strengths using the London program may provide a useful way to

taylor these parameterisations for practical use. Secondly, the development of corrections
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appropriate for addition to functionals beyond the GGA level can be pursued and should

lead to a better understanding of the interplay between errors in the CDFT corrections and

the underlying functionals. Finally, to circumvent difficulties with the vorticity it may be

fruitful to consider other quantities on which CDFT corrections may be constructed, such as

the form of Eq. (8). In all of these areas the present CDFT implementation should provide

a useful testbed for new CDFT approximations.

APPENDIX

In this Appendix, we collect all parametrizations of g(ρ) plotted in Fig. 1. For consistency

of presentation, the notation has been modified from the original papers. Atomic units are

used.

Introducing the Fermi momentum kF = (3π2ρ)1/3 and the Wigner–Seitz radius rs =

(4πρ/3)−1/3, the original VRG parametrization of Refs. 8 and 21 is given by

gorig(ρ) =
1

24π2
kF(0.02764rs ln rs + 0.01407rs), (23)

where the first constant comes from an analytical expression: (9π/4)−1/3/(6π) ≈ 0.02764.

The Lee–Handy–Colwell (LHC) parameterization of the VRG functional is given by

gLHC(ρ) = − 1

24π2
kF

[
1− e−a0rs(a1 + a2rs)

]
, (24)

with a0 = 0.042, a1 = 1, and a2 = 0.028.23 Orestes, Marcasso, and Capelle24 presented a

three-term fit and a five-term fit of the VRG integrand, the latter OMC fit being given by

gOMC(ρ) = − 1

24π2
kF

[
1− COMC(ρ)

]
, (25)

with

COMC(ρ) = 1.038− 0.4990r1/3
s + 0.4423

√
rs

− 0.06696rs + 0.0008432r2
s .

(26)

The Tao–Perdew (TP) parameterization is defined by25

gTP(ρ) = − 1

24π2
kF

[
1− C̄TP(ρ)

]
, (27)

20



with

CTP
1 (ρ) = 1 + 0.027643rs log rs, (28)

CTP
2 (ρ) = COMC(ρ) = 1.1038− 0.4990r1/3

s + 0.4423
√
rs

− 0.06696rs + 0.0008432r2
s , (29)

CTP
3 (ρ) = (1 + 0.027rs)e

−0.041rs , (30)

C̄TP(ρ) =
[
CTP

1 e−2.8rs + (1− e−2.8rs)CTP
2

]
e−0.05rs

+ (1− e−0.05rs)CTP
3 . (31)

Finally, the Tao–Vignale (TV) parameterization of the VRG functional is defined by26

gTV(ρ) = − 1

24π2
kF

[
1− C̄TV(ρ)

]
, (32)

with

CTV
1 (ρ) = 1 + b1rs log rs, (33)

CTV
2 (ρ) = b3 + b4r

1/3
s + b5

√
rs + b6rs + b7r

2
s , (34)

CTV
3 (ρ) = (1 + b9rs)e

−b10rs , (35)

C̄TV(ρ) =
[
CTV

1 e−b2rs + CTV
2 (1− e−b2rs)

]
e−b8rs

+ (1− e−b8rs)CTV
3 , (36)

where b1 = (9π/4)−1/3/(6π), b2 = 2.5, b3 = 1.1, b4 = −0.49, b5 = 0.438, b6 = −0.07,

b7 = 0.00182, b8 = 0.054, b9 = 0.02, and b10 = 0.05.

The Higuchi–Higuchi parameterization is given by27,28

gHHx(ρ) = 2Dx, (37)

gHHc(ρ) = 2C0e−αρ
ρ3

(ρ− δ)3
, (38)

gHH(ρ) = gHHx(ρ) + gHHc(ρ), (39)

where α = 0.653, Dx = 3.76 × 10−4, C0 = −4.669 × 10−4, and δ = 10−30. In our modified

functional, HHmod, the value of Dx was changed to Dx = −C0 = 4.669× 10−4 to ensure a

useful low-density limit. We have also set δ = 0, since this makes no difference, to within

normal numerical precision, in regions where ρ � 10−30 and inclusion of regions where

ρ ≈ 10−30 would make the original exchange-correlation energy ill-defined.
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TABLE I. Hypermagnetizability tensor elements (SI a.u.) calculated using DFT functionals in the

aug-cc-pCVTZ basis set. The corresponding Hartree–Fock results are included for comparison.

Results are presented here for the subset of 19 molecules described in Section IV. Data for the full

set of 27 molecules may be found in the supplementary material48.

HF KT3 PBE

xxxx yyyy zzzz xxxx yyyy zzzz xxxx yyyy zzzz

AlF 94.9 94.9 91.0 90.9 90.9 95.5 84.7 84.7 95.7

C3H4 −3.8 −250.0 222.0 45.0 −300.0 233.0 25.3 −297.0 223.0

FCCH −9.6 −9.6 40.3 −19.0 −19.0 45.8 −21.6 −21.6 45.8

C2H4 −60.1 −41.1 −4.6 −50.4 −70.9 −45.0 −69.9 −91.7 −43.5

H2C2O −1.3 −94.4 228.0 −6.8 −115.0 252.0 −10.6 −113.0 259.0

CH4 91.0 91.1 100.0 104.0 104.0 115.0 105.0 105.0 116.0

CO −6.4 −6.4 17.5 15.8 15.8 21.2 9.9 9.9 21.8

FCN −10.1 −10.1 23.4 −12.6 −12.6 26.6 −16.0 −16.0 26.7

HF 7.9 7.9 5.7 11.8 11.8 8.8 11.9 11.9 9.2

LiH 75.1 75.1 67.9 160.0 160.0 94.9 157.0 157.0 97.4

LiF 4.9 4.9 12.7 41.7 41.7 26.7 35.3 35.3 26.8

NH3 38.9 38.9 50.7 49.2 49.2 60.3 49.3 49.3 61.0

N2 −16.7 −16.7 15.8 6.4 6.4 17.8 −1.7 −1.7 18.2

N2O −69.6 −69.6 19.1 −81.6 −81.6 21.8 −85.3 −85.3 22.2

PN −230.0 −230.0 56.2 −294.0 −294.0 57.0 −381.0 −381.0 57.4

HFCO 16.4 −20.5 −65.2 22.4 −18.9 −49.3 27.1 −26.2 −66.1

HOF 29.9 26.6 15.9 6.1 −12.7 24.4 5.1 −18.7 24.9

H2O 22.3 14.8 13.5 30.6 21.5 21.7 30.7 21.8 21.8

H2S 197.0 81.7 117.0 206.0 90.0 124.0 209.0 90.4 125.0
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FIG. 3. Tellgren et al. submitted to J. Chem. Phys.
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FIG. 4. Tellgren et al. submitted to J. Chem. Phys.
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FIG. 5. Tellgren et al. submitted to J. Chem. Phys.
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FIG. 6. Tellgren et al. submitted to J. Chem. Phys.
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FIG. 7. Tellgren et al. submitted to J. Chem. Phys.
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FIGURE CAPTIONS

Figure 1 : Different model functions g(ρ) used in the VRG functional.

Figure 2 : The low-density behaviour of three model functions g(ρ) used in the VRG

functional. The Higuchi–Higuchi exchange functional HHx has been reparametrized so that

the total exchange–correlation functional approaches zero for small densities; however, the

correlation functional HHc goes through a singularity and a sign shift at ρ = 10−30 a.u.. The

indicated asymptotic HHx+HHc behaviour therefore does not extend to this region.

Figure 3 : Illustration of the errors in isotropic molecular magnetizabilities (10−30 JT−2)

calculated using DFT functionals with and without the VRG(LHC) and VRG(TP) correc-

tions in the aug-cc-pCVTZ basis set. Results that failed to converge during SCF optimiza-

tion with the VRG(LHC) corrections have been omitted. The grey boxes enclose one sample

standard deviation above and below the mean error. The mean error for each method is

indicated by a horizontal blue line. The plot markers show the individual errors for each of

the 19 molecules listed in Section IV.

Figure 4 : The VRG correction to the oxygen shielding constant in the water molecule

plotted against the integration regularization cut-off parameter ρcut-off for the LHC (left),

TP (middle), and HHmod (right) parameterizations of g(ρ) in Eq. (6). Both hard and soft

cut-offs are illustrated in the plots. The Huz-II basis, with London gauge factors, was used

in all cases.

Figure 5 : Illustration of the errors in isotropic shielding constants (ppm) calculated

using DFT functionals with and without the VRG(LHC) and VRG(TP) corrections in the

aug-cc-pCVTZ basis set. Results that failed to converge during the SCF optimization with

the VRG(LHC) correction have been omitted. The grey boxes enclose one sample standard

deviation above and below the mean error. The mean error for each method is indicated

by a horizontal blue line. The plot markers show the individual errors for each chemically

unique nuclei in the 19 molecules listed in Section IV (a total of 48 data points).

Figure 6 : Dissociation curves for He2 subject to a parallel field B‖ = 1 au. The
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u-aug-cc-pVTZ basis set was used. Note that the curves have been aligned at R = 9 bohr.

Figure 7 : Dissociation curves for He2 subject to a perpendicular field B⊥ = 1 au. The

u-aug-cc-pVTZ basis set was used. Note that the curves have been aligned at R = 9 bohr.
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