
Chapter 1
Infobiotics Workbench - A P Systems based Tool
for Systems and Synthetic Biology

Jonathan Blakes1, Jamie Twycross1, Savas Konur2,
Francisco Jose Romero-Campero3, Natalio Krasnogor1 and Marian Gheorghe2

Abstract This chapter gives an overview of an integrated software suite, the Info-
biotics Workbench, which is based on a novel spatial discrete-stochastic P systems
modelling framework. The Workbench incorporates three important features, simu-
lation, model checking and optimisation. Its capability for building, analysing and
optimising large spatially discrete and stochastic models of multicellular systems
makes it a useful, coherent and comprehensive in silico tool in systems and syn-
thetic biology research.

1.1 Introduction

Membrane computing is a growing area of research in computer science and, more
specifically, natural computation. Membrane computing assumes that the processes
taking place in the compartments of a living cell can be interpreted as computations.
The devices of this model are called P systems. A P system consists of a cell-like
membrane structure, in the compartments of which one places multisets of objects
which evolve according to given rules. Because a set of rules is a mathematical
entity, it can be analysed with formal rigour to discover the relationships between
rules and their subjects, potential sequences of events, and the reachability of certain
states.

The Infobiotics Workbench is an integrated stochastic P systems based platform
for computer-aided modelling, design and analysis of large-scale biological systems
which consists of three key components: (a) a simulator for a modelling language
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- discussed in Section 1.4.2; (b) a model checking module - see Section 1.4.3; and
(c) a model structure and parameter optimisation engine - details in Section 1.4.4.
The availability of deterministic and multi-compartment stochastic simulation of
population models enables comparisons between macroscopic and mesoscopic in-
terpretations of molecular interaction networks and investigation of temporo-spatial
phenomena in multicellular systems. Model checking can be used to increase con-
fidence in simulated observations by quantifying the probability of reaching de-
finable states for all possible trajectories [76]. The optimisation component of the
Workbench enables designs of synthetic circuits matching a set of desired temporal
dynamics (specified as time series of molecular species quantities) to be automati-
cally composed from modules of abstract networks motifs and/or completely speci-
fied bioparts (with corresponding DNA sequences) drawn from libraries of reusable
model components.

The modelling language allows specifications of cellular populations distributed
over different geometric surfaces, like lattices. The simulation results capabilities
of the Infobiotics Workbench enables molecular populations to be animated as a
surface over the cellular population for a visually rich semi-quantitative analysis of
behaviour in space as well as time. Time series of molecular quantities (as concen-
trations or number of molecules) in individual or averaged simulation runs can be
plotted for any combination of species, compartments and timepoints, enabling a
fine-grained quantitative comparison of expected and simulated temporal dynamics
at multiple locations in spatial models. Histograms are used to estimate the distribu-
tions of molecular species across cellular components or runs at different timepoints,
possibly revealing differentiation of cell states as initially homogeneous populations
diverge through emergent behaviours arising from the (stochastic) application of re-
action rules.

This chapter is divided into the following sections: an overview of various for-
malisms used in modelling biological systems; a presentation of the lattice popula-
tion P systems; a description of the key components of the Infobiotics Workbench;
a case study; and finally discussions regarding the benefits of the modelling frame-
work presented over other similar approaches and future developments.

1.2 Overview

In this section, we give an overview of established and emerging mathematical and
computational formalisms used to model biological systems.

1.2.1 Mathematical continuous models

The vast majority of models used in systems biology have, until recently, been math-
ematical, based on systems of coupled ordinary differential equations (ODEs). In an
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ODE model each molecular species in the model is defined as a single variable
which represents its concentration over time. The correctness of an ODE model re-
lies on the assumption that concentrations vary (with respect to time) continuously
and deterministically. ODEs aim to approximate the stochastic process, but actually
represent the limit of the stochastic process as the number of molecules and vol-
ume are taken to infinity while maintaining their ratio constant. This assumption is
only valid when the number of molecules is sufficiently high (an approximate lower
bound is 103 molecules) and reactions are fast.

1.2.2 Stochastic discrete models

When the number of particles of the reacting species is small and reactions are slow,
as is frequently the case for genetic regulation in biological systems, the previous
assumption is questionable and the deterministic continuous approach to chemical
kinetics should be complemented by an alternative approach. In this respect, one
has to recognise that the individual chemical reaction steps occur discretely and are
separated by time intervals of random length. Discrete and stochastic approaches
are more accurate in this situation, and these mechanistic formulations also have the
advantage of being closer to the molecular biological interactions that constitute our
understanding. Stochastic models are apparently closer to the underlying model on
which ODEs are based (the CME) and may produce behaviour that is more typical
of real systems.

In a discrete species population model of a chemical system, the state of the
system is defined by the number of molecules of each chemical species at any
given time. The Chemical Master Equation (CME) completely determines the prob-
abilities of each reaction in a well-mixed chemical system, at constant temperature
and volume, given the current state. The assumption of well-mixed systems allows
the analysis to consider populations (multisets) of molecules, rather than individual
molecules with spatial positions, and thus use a single rate constant for mass action
kinetics.

The CME represents a continous-time Markov chain which can capture the noise
(stochasticity) in the system. Unfortunately the CME is actually a system of as many
coupled ordinary differential equations as there are combinations of molecules that
can exist in the system, and can only be solved analytically for a very few sim-
ple systems [59]. Fortunately a more tractable approach exists. Instead of solving
the CME we can construct numerical realisations of the system’s state over time,
that is, generate trajectories of the system using a kinetic Monte Carlo algorithm,
Gillespie’s stochastic simulation algorithm (SSA) [56], in exact compliance with
the CME.

Gillespie initially produced two SSAs that simulate every reaction in the system:
the First Reaction Method [55] and the simpler but equivalent Direct Method [56];
and subsequently showed these to be a rigorous derivation of the CME [57]. More
efficient exact SSAs have been introduced since, including the dominant Next Reac-
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tion Method (NRM) [52] which scales logarithmically with the number of reactions,
the Next Subvolume Method [39] as a variation on NRM for discrete-space intra-
cellular models, the Partial-propensity Direct Method [108] scaling at most linearly
with the number of species (often far fewer than reactions), and the Composition-
Rejection SSA [120] offering constant-time performance for 105 or greater reac-
tions. Approximate methods, that simulate batches of fast non-critical reactions, in-
clude t-leaping (established in [58] and optimised in [21]) and the slow-scale SSA
[22]. These offer accelerated performance for stiff systems, with an acceptable and
tunable loss of accuracy, and enable larger models to be simulated in reasonable
time.

1.2.3 Executable modeling formalisms

The formalisation of biological systems using alternatives to mathematical equa-
tions has recently received much interest as a deeper mechanistic understanding of
biological systems is sought through modelling. Formalisms where molecular pop-
ulations and interactions are modelled as discrete entities and events have come to
be known collectively as Executable Biology. Executable biology [44, 43], or algo-
rithmic systems biology [103], propose the application of established computational
formalisms from other domains, and domain specific languages for the formalisa-
tion and implementation of biological models. Below we review a selection of these
alternative representations, their capabilities and implementations.

The Systems Biology Markup Language (SBML) [70] is an XML dialect used
to store and exchange models of biological systems between different tools. SBML
files store information about model compartments, species and reactions, as well as
events, units, etc. that are relevant to some models and approaches but not others.
Tools for the visual specification of models in SBML, e.g. CellDesigner [48], e-cell
[128], VCell [88] and COPASI [69], enable the visual creation of models from a
collection of symbols for various types of molecular and interactions.

Cellular automata were studied in the early 1950s as a possible model for bi-
ological systems ([127], p48). This formalism, inspired from cellular biology, has
been extensively used in modelling a broad spectrum of biological systems, amongst
them pattern formation (morphogenesys) [31], ecology and population biology, im-
munology, oscillations, diffusion processes, fibroblast aggregation, ant trails and
others (for more details see the overview paper [40]). In the paper coining the term
algorithmic systems biology, cellular automata are mentioned amongst the models
employing explicitly computational aspects [104].

Cellular automata have been connected to membrane systems for different mod-
elling reasons. In [26] it is studied the behaviour of HIV infection by comparing
a cellular automaton model and a conform-P system model with respect to the ro-
bustness related to various initial conditions and parameters. The possibility of con-
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verting a cellular automaton into a generalised P systems has been also investigated
[90].

Boolean networks [73] are one of the oldest examples of executable biological
modelling formalisms. They represent the interactions of genes as a directed graph.
Each node of a Boolean network can represent a gene that is either active, or in-
active. Edges between nodes contribute either positively (activation) or negatively
(inactivation) to the node at which they are directed (providing the node from which
the edge extends is active), modelling hierarchies of genetic regulations. Boolean
networks are deterministic given their starting configuration for which there are 2n

possible system-wide states where n is the number of nodes.
Boolean networks are qualitative in terms of quantities and time. With only topo-

logical data and binary relationships required to build a model, Boolean networks
can usually be constructed when data is scarce, and are therefore often chosen as a
modelling formalism for their amenability to analysis rather than realism [42].

Similarly qualitative but more fine-grained are Statecharts, a method devised for
the engineering of complex reactive systems. Statecharts have been used to success-
fully model the interactions of two signalling pathways, specifying the fates of the
six vulval precursor cells, which provide a mechanism for pattern formation during
the C.elegans development [45].

Petri nets are formalisms that model systems with concurrent behaviour and
are particularly suited to modelling discrete asynchronous distributed systems. Petri
nets were initially applied to biological pathways [110, 109] for semi-quantitative
analysis in terms of discrete number of objects and uniform time intervals. A bibli-
ography [126] of Petri nets applications in biomolecular modelling, simulation and
analysis summarises developments up to 2002. More recent contributions include
the ubiquitously studied ERK signal transduction pathway [54], receptor signalling
and kinase cascades, cell-cycle regulation and wound healing [53], and synthetic
biology [66].

A quantitative notion of time is introduced by stochastic Petri nets [89, 123],
where each transition has an associated rate from which a period of time is calcu-
lated upon firing and added to the global clock, typically using a stochastic simu-
lation algorithm. Coloured Petri nets [72] can provide a novel way of dealing with
the combinatorial explosion of states, where differently coloured tokens can rep-
resent molecules of the place’s species with various modifications, or alternatively
molecules in different cells without extrapolating the Petri net [50].

There are numerous tools deployed to create and analyse Petri nets. We refer the
reader to [98] for the database of the available tools.

Process algebras (or process calculi) are a diverse family of related formalisms
that describe distributed concurrent processes, such as the objects inside a computer
program or a collection of programs, interacting. p-calculus [87], for concurrent
mobile processes, is an accepted model for interacting systems with communication
topologies that evolve dynamically [93]. For biological models, process algebras
consider molecules with binding sites as processes with communication channels.
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In standard p-calculus the system evolves in uniform time steps with each communi-
cation being equally likely, irrespective of the number of channels; such a simulation
is semi-quantitative in the same way as a standard Petri net.

Stochastic p-calculus (initially proposed as Sp [102]) enables fully quantitative
simulations by associating a rate constant with each channel. BioSPI [106], the
first stochastic p-calculus simulator [111], could simulate systems with hundreds
of processes in the order of seconds [105]. The current leading implementation of
a stochastic p-calculus simulator is SPiM [99]. A more intuitive understanding of
p-calculus is made possible by a graphical representation [100] that visualises the
state-space of each process as a graph and has been incorporated into SPiM. In [100]
a graphical execution model was defined and proved equivalent to Sp .

Performance Evaluation Process Algebra (PEPA) is an alternative stochastic pro-
cess algebra that has been applied to modelling signalling pathways [17, 16, 18, 15]
and synthetic biology designs [51]. PEPA can be used for reagent-centric and
pathway-centric modelling [17]. Bio-PEPA [25] is a biologically-oriented modifi-
cation of PEPA incorporating stoichiometry and the use of kinetic laws in rate func-
tions.

BlenX [30] is a high level textual language grounded in process algebra, explic-
itly designed to model biological entities and their interactions, providing several
features not found up until now in stochastic process algebras. For example, it uses
a type file which specifies stochastic rates between interacting types rather than em-
bedding those rates into the model as stochastic constants. BlenX is supported by
a set of tools collectively known as Beta Workbench [29] including a graphical
model editor, stochastic simulator and a plotter for displaying model execution time
courses. A unique feature of the plotter is the ability to plot causality, where each
simulation event (molecular interaction) is drawn as a box inside the box of the
event that led to it. Other prototype tools being developed to support BlenX include
KInfer which performs model and kinetics inference by estimating reactions and
rate constants from real concentration data measured at discrete time points.

We refer the reader to [62] for an extensive review on the application of process
algebras to biological modelling up to 2006. Other notable works include GEC [94]
and LCS [95].

Membrane computing [92] is a branch of natural computing that emphasises
the compartmentalised nature of biological systems and its power in computation.
The central objects are P systems, that consist of a membrane structure, the regions
of which contain rewriting rules operating on multisets of objects [114]. The P sys-
tem evolves by the repeated application of rules, mimicking chemical reactions and
transportation across membranes, and halts when no more rules can be applied.

The closeness of this representation to the biology make P systems highly suited
as a communication device between computer scientists and biologists collaborating
on a model. Some of the most well-studied P systems with relevance for modelling
biological systems are presented below.

• Deterministic and non-deterministic P systems consisting of a broad range of
models:
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– Metabolic P systems (MP systems) have diverged considerably from the non-
deterministic, compartmentation-based notion of P systems, being coarse-
grained models of the fluxes between molecular populations within a single
membrane computed by means of the metabolic algorithm (MA) - its equa-
tional formulation is in [80]. A methodology for inferring and validating the
model has been elaborated [83]. An overall presentation of these systems is
available in [81] and a comprehensive description in [82]. MP systems are
supported by the MetaPlab [86] software, previously Psim [11].

– Non-deterministic P systems are used in a context where the rules are selected
according to a waiting time algorithm involving a mass action law principle
[71]; this model is successfully utilised to analyse the behaviour of different
biochemical signalling networks. Another special class of P systems, called
conformon-P systems, deals with systems having rewriting and communica-
tion rules using together with multisets, some numerical values that help con-
trolling the computation. These models have been used to study how some
diseases spread [26].

• Probabilistic (stochastic) P systems include several classes of P systems:

– Stochastic P systems (SP systems) [117] directly apply stochastic rate con-
stants and Gillespie’s stochastic simulation algorithms to P systems, with
boundary rules that make the specification of molecule transport between en-
closed and enclosing members simple and intuitive. These are discussed in
much greater detail in Section 1.3.

– Dynamical Probabilistic P systems (DPP) [97] use standard P systems with
a novel rule application method to model biological phenomena in a discrete
and stochastic way (motivated by the investigation of maximal parallelism
in nature). In a procedure not unlike propensity calculation in the Gillespie
algorithm DPP rules are dynamically assigned a probability that is the prod-
uct of the possible combinations of reactant objects and an associated rate.
A tau leaping variant of it is also provided [24] which is packaged in the
BioSimWare software platform [7].

– Probabilistic Dynamics Population P systems represent a class of P systems
meant to provide an accurate model of multi-environmental systems; it has ap-
plications to ecosystems, where the methodology consists of a modular spec-
ification including probabilistic rules [28] describing transformations within
compartments as well as communications between compartments and cooper-
ations involving different parts of the environment. This approach is included
in the P-Lingua framework [118] and has a number of implementations, in-
cluding one that uses GPU hardware [84]. An integrated software environ-
ment, called MeCoSim, is supporting the modelling language with an editor
and different visualisation options [96].

– Probabilistic P systems with peripheral proteins focuses on trans-membrane
operations where a Gillespie algorithm is used for describing the system be-
haviour; a specification language is integrated into the simulation environment
Cyto-sim [23].
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• Extension of P systems with string objects for modelling protein binding domains
with ligands have been considered for specifying oscillatory phenomena; a soft-
ware environment, called SRSim, which incorporates spatial rules and a strong
visualisation engine is available [68].

In this volume some of the above mentioned variants of P systems, like metabolic
P systems, non-deterministic P systems, dynamical probabilistic P systems, proba-
bilistic dynamics P systems and probabilistic P systems with peripheral proteins,
appear as models of various biological systems or scenarios.

A general-purpose class of computational tools has been introduced for tackling
the challenge of a combinatorial explosion in the number of interactions that arises
when many species with coincidental modifications, conformations or states need
to be represented explicitly. Some of the most prominent rule-based systems that
deal with these issues are NFsim [121], BioNetGen [41], Kappa [27] and little b
[79]. While each of these approaches can model some aspects regarding pathways
and their molecular components, none of the approaches can fully capture “quan-
titative dynamics, interactions among molecular entities and structural organisation
of cells” [114].

1.3 Lattice Population P systems

Many multicellular biological systems have a spatial component where molecule
exchange between adjacent cells determines the overall phenotypes. However, this
structure cannot be captured by stochastic P systems, which have only a hierarchical
membrane structure of compartments within other compartments or a simple popu-
lation of such entities. Therefore, stochastic P systems need to be augmented with an
additional level of organisation, a 2-dimensional geometric lattice on which a pop-
ulation of P systems can be placed and over which molecules can be translocated.
Rules that move objects from one P system to another on the lattice are associ-
ated a vector that describes where to put that molecules. We call this extension of
stochastic P systems Lattice Population P systems (LPP systems for short) and, in
the tradition of P systems, proceed with their formal definition (published in [117]).

Each cell type with its compartmentalised structure, characteristic molecular
species and molecular processes, is represented using a stochastic system according
to Definition 1. The rules of each such system are possibly specified in a modular
way. The spatial distribution of cells in the population is represented using a finite
point lattice, Definition 2, and finally different copies of the corresponding stochas-
tic system representing each cell type are distributed over the points of the lattice
according to the spatial distribution of an LPP systems in Definition 3.

Before providing the formal definitions mentioned above let us notice that the
idea of a lattice of functional units has been discussed for conformon-P systems
[26] and stochastic P systems distributed in communicating environments [9] have
been studied.
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Definition 1. A stochastic P system (SP system) is a formal rule-based specifica-
tion of a multicompartmental and discrete dynamical system with stochastic seman-
tics given by a tuple:

SP = (O,L,µ,M1, . . . ,Mn,R1, . . . ,Rn) (1.1)

where:

• O is a finite set (alphabet) of objects specifying the entities involved in the system
(genes, RNAs, proteins, etc.);

• L = {l1, . . . , ln} is a finite set of labels naming compartments (e.g. nucleus);
• µ is membrane structure composed of n � 1 membranes defining the regions or

compartments of the system. The outermost membrane is called the skin mem-
brane;

• Mi = (li,wi,si), for each 1  i  n, is the initial configuration of the compartment
or region defined by the membrane i, where li 2 L is the label of the membrane,
wi 2 O⇤ is a finite multiset of objects and si is a finite set of strings over O (in
this presentation the strings will not be used);

• Rlk = {rlk
1 , . . . ,r

lk
mlk

}, for each 1  k  n is a set of multiset rewriting rules de-
scribing the interactions between the molecules, such as complex formation and
gene regulation. Each set of rewriting rules Rlk is specifically associated to the
compartment identified by the label lk. These multiset rewriting rules are of the
following form:

rlk
i : o1 [ o2 ]l

c
lk
i! o01 [ o02 ]l (1.2)

where o1,o2 and o01,o
0
2 are multisets of objects (possibly empty), over O, represent-

ing the molecular species consumed and produced in the corresponding molecular
interaction. The square brackets and the label l describe the compartment involved
in the interaction. An application of a rule of this form changes the content of the
membrane with label l by replacing the multisite o2 with o02 and the content of the
membrane outside by replacing the objects o1 with o01. The stochastic constant clk

i
is used to compute the propensity of the rule by multiplying it by the number of
available reactants in the membrane, where the same object is not counted twice for
homogenous bimolecular reactions [6]. The propensity associated with each rule
is used to compute the probability and time needed to apply it (according to the
stochastic semantics of Gillespie’s theory of chemical kinetics [55]).

Definition 1 provides the formalism needed for the specification of an individual
cell with its structure given by µ and the outer membrane called the skin membrane.
To specify the possible spatial distribution of cells assembled into colonies and tis-
sues we define an array of regularly distributed points according to a finite point
lattice or grid [78] capable of describing the spatial geometries (see Fig. 1.1).

This model looks very similar to a cellular automaton although in lattice popula-
tion P systems we have considered that each cell of the grid has a cell-like stochastic
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Fig. 1.1: A square lattice.

membrane system inside and this type of grid has been chosen to illustrate a specific
geometry we have considered so far. Our model is more general than a cellular au-
tomaton and in the future some more complex geometries describing 3D complex
structures will be introduced.

Definition 2. Given B = {v1, . . . ,vn} a list of linearly independent basis vectors,
o 2 R

n a point referred to as origin and a list of integer bounds (amin
1 ,amax

1 ,
. . . ,amin

n ,amax
n ), a finite point lattice generated by:

Lat = (B,o,(amin
1 ,amax

1 , . . . ,amin
n ,amax

n )) (1.3)

is the collection of regularly distributed points, P(Lat), obtained as follows:

P(Lat) = {o+
n

Â
i=1

aivi : 8i = 1, . . . ,n (ai 2 Z^amin
i  ai  amax

i )} (1.4)

Given a finite point lattice, generated by Lat, each point x = o+Ân
i=1 aivi 2 P(Lat)

is uniquely identified by the coefficients {ai : i = 1, . . . ,n} and consequently it will
be denoted as x = (a1, . . . ,an).

SP systems are distributed on the lattice according to an LPP system (see Defini-
tion 3), as shown in Fig. 1.2.
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(a)

(b)
Fig. 1.2: SP systems containing reactions of a gene network, single (a) and dis-
tributed over the LPP system lattice (b).

Definition 3. A lattice population P system, or LPP system for short, is a formal
specification of an ensemble of cells distributed according to a specific geometric
disposition given by the following tuple:

LPP = (Lat,{SP1, . . . ,SPp},Pos,{T1, . . . ,Tp}) (1.5)
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where

• Lat defines a finite point lattice in R

n (typically n = 2) as in Definition 2 that
describes the geometry of cellular population.

• SP1, . . . ,SPp are SP systems as in Definition 1 specifying the different cell types
in the population.

• Pos : P(Lat)! {SP1, . . . ,SPp} is a function distributing different copies of the
SP systems SP1, . . . ,SPp over the points of the lattice.

• Tk = {rk
1, . . . ,r

k
nk
} for each 1  k  p is a finite set of rewriting rules termed

translocation rules that are added to the skin membrane of the respective SP sys-
tem SPk in order to allow the interchange of objects between SP systems located
in different points in the lattice. These rules are of the following form:

rk
i : [ ob j ]k

v
on [ ]k0

ck
i! [ ]k

v
on [ ob j ]k0 (1.6)

where ob j is a multiset of objects, v is a vector in R

n and ck
i is the stochastic constant

used in our algorithm to determine the dynamics of rule applications. The applica-
tion of a rule of this form in the skin membrane with the label l of the SP system SPk
located in the point p, Pos(p) = SPk, removes the objects ob j from this membrane
and places them in the skin membrane of the SP system SPk0 located at the point
p+v, Pos(p+v) = SPk0 . Note that vectors allow for any topology to be encoded in
the lattice geometry.

Molecular reaction networks can, to a certain degree, be decomposed into mod-
ules acting as discrete entities carrying out particular tasks [65]. It has been shown
that there exist specific modules termed motifs that appear recurrently in transcrip-
tional networks performing specific functions like response acceleration and noise
filtering [1]. Modularisation is also a central technique used in the engineering of
synthetic cellular systems by combining well-characterised and standardised cellu-
lar models [19] as exemplified in the MIT BioBricks project [119].

Definition 4 gives the definition of a P system module that we use [115] to de-
compose large sets of rules into more meaningful and reusable subsets. Other similar
concepts of modularity in P systems for various other classes of P systems. Modules
of a conformon-P systems are discussed in [47]. In [32] P modules are introduced
with the aim of facilitating a modular decomposition of complex P systems, whereas
in [67] it is defined as a functional unit fulfilling some elementary computational
tasks. In the context of generalised communicating P systems [125] it is introduced
a concept of a module as a network of cells. Subsequently we introduce the concept
of a module for stochastic P systems with the aim of capturing some high level be-
haviour which can be characterised by some specific parameters and which outlines
some generic names that are instantiated with specific values in various contexts.

Definition 4. A P system module, Mod, is parameterised with three finite ordered
sets of variables O = {O1, . . . ,Ox}, C = {C1, . . . ,Cy} and Lab = {L1, . . . ,Lz} (ob-
jects, stochastic rate constants and compartment labels respectively), and consists of
a finite set of rewriting rules of the form in equation 1.3:
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Mod(O,C,Lab) = {r1, . . . ,rm} (1.7)

The objects, stochastic constants and labels of the rules in module Mod can
contain variables from O, C or Lab which are instantiated with specific values
o = {o1, . . . ,ox}, c = {c1, . . . ,cy} and lab = {l1, . . . , lz} for O, C and Lab respec-
tively as in:

Mod({o1, . . . ,ox},{c1, . . . ,cy},{l1, . . . , lz}) (1.8)

the rules are obtained by applying the corresponding substitutions O1 = o1, . . . , Ox =
ox, C1 = c1, . . . ,Cy = cy and L1 = l1, . . . ,Lz = lz.

Our definition of P system module allows the hierarchical description of a
complex module, M(O,C,Lab), by obtaining its rules as the set union of sim-
pler modules, M(O,C,Lab) = M1(O1,C1,Lab1)[ · · ·[Mq(Oq,Cq,Labq) with O =
O1 [ · · ·[Oq, C =C1 [ · · ·[Cq and Lab = Lab1 [ · · ·[Labq.

Finally, the set of rules, Rlk , in SP systems can be specified in a modular way as
the set union of several instantiated P system modules, Rlk = M1(o1,c1, lab1)[ · · ·[
Mqk(oqk ,cqk , labqk).

The use of modularity allows us to define libraries or collections of modules:

Lib = {Mod1(O1,C1,Lab1), . . . ,Modp(Op,Cp,Labp)} (1.9)

An SP system model may contain instantiations of modules from multiple li-
braries, and the same module can be instantiated multiple times with different pa-
rameters. In Section 1.5 we provide examples for SP system models, libraries and
lattice systems.

P systems modules can be made more or less abstract by changing the number of
components exposed as parameters (species identities and stochastic rate constants).
Motifs of biological networks, corresponding to the topology of the underlying re-
action network modelled at a particular level of detail, can be captured by fully
abstract modules where all components are parameters. In this usage the names of
parameters should indicate the role that their values will play in the module.

Well-characterised synthetic biological parts and devices can be captured by fully
concrete modules (i.e. without parameters) because the identity of every species and
the stochastic rate constants of each reaction are validated.

1.4 Infobiotics Workbench

The Infobiotics Workbench (IBW)1 is an integrated software suite of tools to per-
form in silico experiments for LPP models in Systems and Synthetic Biology [14].
Models are simulated either using stochastic simulation or deterministic numerical
integration using MCSS, an application for simulating multi-compartment stochastic
P system models, and visualised in time and space with the Infobiotics Dashboard.

1 http://www.infobiotics.org

http://www.infobiotics.org
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Model structure and parameters can be optimised with evolutionary algorithms us-
ing POPTIMIZER, and properties of a model’s temporo-spatial behaviour calculated
using probabilistic or simulative model checking with PMODELCHECKER.

The Infobiotics Dashboard window uses an adjustable tabbed interface to display
multiple views on to files (Fig. 1.3). LPP DSL specifications of Infobiotics models
can be edited with the simple editor provided by the Dashboard or an external editor
of the user’s choosing.

Fig. 1.3: The Infobiotics Dashboard with multiple text editors displaying LPP sys-
tem DSL files for a pulse generating synthetic biology model.

In IBW, the experiments can be accessed through the integrated interface or with
individual GUIs outside the workbench. Experiments are parameterised with XML
parameter files, edited interactively with help and validation, and performed within
the GUI. Fig. 1.4 summarises the overall flow of information through the compo-
nents of the Infobiotics Workbench.

1.4.1 Modelling in LPP Systems

For LPP system models to be specified and manipulated by computers it is necessary
that they have a machine-readable equivalent. LPP system XML is a set of machine-
readable data formats which closely mirrors our formal definitions. It allows us to
define, in a single file or multiple files, modules of stochastic P system rules, P
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Fig. 1.4: Flow of information through the components of the Infobiotics Workbench. Data
is passed between components as files. Parameter files (.params), referencing model files
(.sbml, .lpp or .xml), are produced by the Infobiotics Dashboard and supplied to the exper-
iment executables for simulation (MCSS), model checking (PMODELCHECKER) and optimisation
(POPTIMIZER). Executables communicate progress to stdout which is read and interpreted by
the Dashboard to report the percentage completed and estimate time remaining. Files produced by
the experiments (.h5 simulation data, .psm model checking property probabilities) are presented
by the Dashboard for analysis, and can be exported as tabulated data, images and video files.
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systems with initial multisets and instantiations of modules of rules, a geometric
lattice and distribution of P systems over the lattice, which together constitute an
LPP system model.

The LPP XML formats are well suited to software development with LPP sys-
tems, but clearly writing models in XML by hand and reading them back is a cum-
bersome process with syntax obscuring information. A parser for an LPP system
DSL (domain-specific language) that is essentially the XML formats without the
angle-brackets, quotes and some closing tags has been developed. The parser is
used to read DSL files directly, but it also silently converts them into XML.

The LPP formalism enables three types of modelling component reuse:

• Inter-model reuse: Modules (in libraries), SP systems and lattices (encoding
neighbourhood relationships between SP systems in 2D space) reside in different
files which can be referred to by multiple LPP system models.

• Intra-model reuse: multiple copies of different SP system can be placed within
each LPP system, facilitating the building of models of homogeneous or hetero-
geneous bacterial colonies or tissues.

• Intra-submodel reuse: parameterisable modules of rules can be instantiated mul-
tiple times within each compartment of an SP system, using different parameters
(species identities and rule constants).

Modules of rules are a means of grouping sets of reactions that repeatedly occur
together within a model, and by moving modules into libraries they can be shared
between sets of models. We use modules as a means of constraining model structure
optimisation to biological plausible reaction interaction networks and maintaining a
consistent level of detail across models.

1.4.2 Simulation

Simulation recreates the dynamics of a system as described by a model. Quantita-
tive simulations enables measurements of model features changing in time which
can be compared with observations of the real system for validation and predic-
tive purposes. The Infobiotics Workbench simulator, MCSS, offers a choice of two
types of quantitative simulations: deterministic numerical approximation with stan-
dard solvers, and execution of the model with stochastic simulation algorithms.
In addition to providing a baseline implementation of the canonical Gillespie Di-
rect Method, MCSS implements an optimised multi-compartmental SSA with queue
[116] that takes advantage of the compartmentalised nature of LPP system models
by storing the next reaction to fire for each compartment in the heap and only recal-
culating the propensities of the reactions in the compartments where a reaction oc-
curs, both compartments involved in a species translocation. This greatly improves
performance, decreasing the simulation time of models with tens of thousands of
compartments and hundreds of reactions and species per compartment.
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Fig. 1.5: The simulation results interface.

In order to perform deterministic simulations MCSS derives a set of ordinary
different equations from the stochastic rules of the entire LPP system: each pool
of identical objects in different compartments is treated as a separate continuous
variable whose rate of change is determined by mass-action kinetics involving only
the variables corresponding to reactants and products of those rules affecting the
pool. A solution of the resultant equations is obtained using algorithms provided by
the GNU Scientific Library (GSL) [49], including explicit 4th order Runge-Kutta
and implicit ODE solvers.

When a model is simulated via the GUI, the output data file of a completed
simulation is auto-loaded into the simulation results interface under a new tab, as
shown in Fig. 1.5. The purpose of this interface is to enable the user to select a subset
of the datapoints logged during a simulation (for some or all of the runs, species,
compartments and timepoints), which can then be visualised using the provided
time series, histogram or surface plotting functions (explained in detail below), or
exported in various data formats for manipulation by third party software.

The simulation GUI has the following useful features to make the analysis sim-
ple, customisable and reproducible:

– Individual entries, multiple or all runs, species and compartments can be selected.
– The list of species names can be sorted in either ascending or descending alpha-

betical order, and filtered by name.
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– The list of compartments can similarly be sorted or filtered by name, and com-
partments can additionally be sorted by their X and Y positions on the lattice.

– The number of time points to use can be adjusted by changing the interval values
of the from, to and every spinboxes.

– The data units of the model components can be set, and the display units, in
which simulation results are to be handled and presented in plots, can be spec-
ified for timepoints, species quantities and compartment volumes. For instance,
species amounts may be interpreted as either molecules, moles or concentrations,
the choice determines which display units are available.

– The user can choose whether or not to average the amounts of each species in
each compartment over the set of selected runs (default for stochastic simula-
tions, hidden along with the list of runs for deterministic simulations). Averaging
over many runs can approximate the deterministic outcome for systems where
stochasticity is of lesser importance.

– The Dashboard displays the number of time series and surfaces, and estimate the
memory requirements of each action, allowing the user to determine how quickly
the action can be performed and whether the results will be comprehensible.

– The selected and rescaled datapoints can be exported from the Infobiotics Dash-
board by clicking the Export data as... button to open a save file dialog
limited to files with the extensions .csv (comma-separated value), .xls (Mi-
crosoft Excel) and .npz (NumPy).

– Distributions of the average quantity of each selected species at a single time-
point can be plotted as histograms for either each selected compartment over all
selected runs, or each selected run over all selected compartments.

– With the time series plotting functionality, users can make exact (combined) or
relative (stacked/tiled) quantitative comparisons of the temporal behaviour
of multiple molecular species in multiple compartments, between several, or av-
eraged over many, simulation runs. These plots can be exported as images for
further comparison with experimental observations. Fig. 1.6 shows the time se-
ries plotting interface for the stacked style. When working on a stacked or tiled
plot, the Refine time series selection button will open a dialog in
which the order and visibility of subplots can be adjusted.
When averaging over multiple runs, each line is the sample mean and each
marker is overlaid with error bars of either the standard deviation of
the sample (SD) or the confidence interval (CI) describing the ac-
curacy of the standard deviation.
The figure toolbar provided by Matplotlib [85] enables zooming, panning, Sub-
plot configuration: adjustment of the spacing between multiple plots and the fig-
ure boundary and exporting plot image, as it appears for publication in bitmap
and vector formats.

– The Infobiotics Dashboard enables users to visualise how species quantities
change in time and 2D space by using 3D heat-mapped meshes or surface (where
the vertices of the mesh correspond to model lattice points and the height of
the peaks to the species quantities), to capture the distribution of each selected
species over the model at a single timepoint. Multiple surfaces, one per species,
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Fig. 1.6: Time series: Stacked plot style.

each corresponding to particular species, can be visualized simultaneously side-
by-side for qualitative comparison. The overlaid scalar bars map heat as colour
to quantities.
Figure 1.7 shows an example in which two surfaces plots of 1600 compartments
(40x40) are rendered. Time is progressed either manually, by dragging the time-
point index slider, or automatically using the Play/Pause button.
Surfaces plots provide an intuitive means of qualitatively gauging the behaviour
of population level models, that may (cautiously) be compared to microscopy
data.
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Fig. 1.7: Surface plots showing expression patterns of two fluorescent proteins.

1.4.3 Model Checking

By encoding a biological system into a formal system we can make inferences about
the system and discover novel knowledge about the system properties. A central
mission of executable biology is to apply model checking techniques to biological
systems. Model checking goes beyond repeated simulation and observation to pro-
vide a formal verification method that the model of real-life system is correct in all
circumstances. Namely, model checking a system means exhaustively enumerating
all of its possible states over the range of possible inputs and transitions to produce
every possible sequence of events, which cannot be done using simulation.

Probabilistic model checking is a probabilistic variant of classical model check-
ing augmented with quantitative information regarding the likelihood that certain
transitions occur and the times which they do so. Probabilistic model checking
works with Discrete time Markov Chains (DTMCs), Continuous time Markov chains
(CTMCs) or Markov Decision Processes (MDPs). A continuous time Markov chain
(CTMC) is defined by a set of states, a set of initial states and a transition rate
matrix from which the rate at which a transition occurs between each pair of states
is taken as a parameter of an exponential distribution. Queries which check model
properties are defined as logical statements, often probabilistic logics: CSL (Con-
tinuous Stochastic Logic) [3] for CTMCs, PCTL (Probabilistic Computation Tree
Logic) [64] for DTMCs and MDPs.
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The Infobiotics Workbench is equipped with a model checking module, called
PMODELCHECKER. Properties of stochastic P system models can be expressed
as probabilistic logic formulas and automatically verified using third party model
checking softwares, namely PRISM [75, 77] and MC2 [35, 33, 34]. PMODELCHECKER
[112] extends this capability to LPP system models by acting as wrapper interface
between LPP systems and the model checkers PRISM and MC2.

To perform probabilistic model checking with PRISM, LPP systems are loaded
and automatically converted into a Reactive Modules specification (a CTMC) [2]
that PRISM can accept as input. Parameters are created for the lower and upper
bounds of the number of molecules of each species in each compartment: the user
defined values of which are used to constrain the potential state space of the PRISM
model. PRISM is then called to perform statistical model checking using its own dis-
crete event simulator, performing simulations up to a specified maximum number
of runs or a confidence threshold (typically 95%). The state space and the gener-
ated transitions matrix can also be used to “Build” an efficient representation of the
complete Markov chain and then “Verify” whether each property is satisfied in all
states of the model. Such exhaustive verification is generally infeasible for all but
very small models due to the size of the underlying CTMC, but can be useful for
checking critical components of small reaction networks, such as synthetic bioparts.

To perform statistical model checking with MC2, previous simulation results
can be reused or a new simulation can be performed with a large number of runs
to achieve higher confidence in the model checking results. With model checking,
properties such as the probability of a species exceeding a certain threshold after a
certain time can be determined to a specified degree of confidence (corresponding
to the number of independent simulation runs for simulative model checking).

The Infobiotics Dashboard provides two parameterisation interfaces to PMOD-
ELCHECKER, one for each of the model checkers it uses, as some of the parameters
are specific to one but not the other. Figure 1.8 illustrates the PRISM interface show-
ing the P system model, Temporal Formulas and Results file parameter widgets.

Multiple formulas can be loaded from, and must be saved to, a file. The currently
selected formula can be edited or removed, or a new formula added via the respec-
tive buttons. Formulas are edited manually and can be parameterised with variables
that are finite ranges with equal steps.

Once a model checking experiment has completed the results interface is loaded
from the file specified by the results file parameter. The output is the same
for either model checking experiment: for each formula a list of the probability of
each property being fulfilled for each combination of formula parameters, usually
time plus several others (e.g. Fig. 1.9). The varying probabilities of each property
can be plotted in two ways: a 2D plot of the probability that the property is satisfied
against all values of one variable (Fig. 1.9a) or a 3D plot of probability against
all values two variables (Fig. 1.9b), at a single value of each remaining variable.
The constant values of the remaining variables can be set using sliders which are
dynamically added to the results interface above the plot depending on availability
and the currently selected axis variables. In this way both 2D and 3D plots can be
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Fig. 1.8: PMODELCHECKER parameterisation interfaces.

used to visualise queries with greater numbers of variables, enabling the results of
N-dimensional queries to be interrogated in a consistent manner.

1.4.4 Optimisation

Both stochastic and deterministic models are dependent on the correct model struc-
ture and accurate rate constants to accurately reproduce cellular behaviour. Unfor-
tunately well-characterised rate constants are in very short supply, and those that
are known for some models are used as ersatz values in models of similar systems.
In the scenario, where the components and interactions are known but other pa-
rameters are not, it is acceptable to try estimate the rate constants using parameter
optimisation to fit model dynamics to laboratory observations.
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(a) 1 variable 2D plot. (b) 2 variable 3D plot.

Fig. 1.9: Model checking experiments results interface.

POPTIMIZER is the model optimisation component of the Infobiotics Work-
bench. Optimisation is the process of maximising or minimising certain criteria by
adjusting variable components of a model, fitting simulated behaviour (quantitative
measurements sampled at various time intervals) to observed or desired behaviour
in the case of natural or synthetic biological systems respectively. There are two as-
pects of P system models that can be readily varied to optimise temporal behaviour:

1. numerical model parameters - the values of the stochastic rate constants associ-
ated with rules can be tuned to fit the given target,

2. model structure - the composition of the rulesets governing the possible state
transitions of the compartments can be altered to produce alternative reaction
networks that recreate the target dynamics more precisely.

Both seek to minimise the distance between the stochastically simulated quantities
of molecular species and a set of user-provided values of the same species at each
target timepoint; a quantitative means of evaluating the fitness of candidate models
and discriminating between them in a automated manner.

POPTIMIZER searches the parameter and structure spaces of single compartment
stochastic P systems with implementations of state-of-the-art population-based op-
timisation algorithms: Covariance Matrix Adaptation Evolution Strategies (CMA-
ES) [63], Estimation of Distribution Algorithms (EDA), Differential Evolution (DE)
[122] and Genetic Algorithms (GA) [60]. Optimisation is limited to single compart-
ment models, partly due to the increased complexity of algorithmically manipulat-
ing spatially distributed or hierarchically organised compartmental structures (and
the distinction made between these by the LPP formalism), but more pragmatically
because repeated stochastic simulation of each individual in a population of (po-
tentially unfeasible) single compartment models (with suboptimal rate constants) is
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Fig. 1.10: POPTIMIZER results interface.

very computationally expensive. Simulating many copies of those compartments,
interacting on a 2D lattice would multiply the cost and providing suitable or accu-
rate target data would be difficult also. Thus model optimisation is generally only
tractable with smaller models (as with model verification). However, submodels can
be optimised in isolation and then reintegrated, provided they can be decoupled: the
assumption made by the modularised, engineering approach to synthetic biology.

POPTIMIZER uses a nested genetic algorithm [113, 20] to generate a set of can-
didate models, initially by random choice and thereafter by mutating the fittest in-
dividuals of the previous generation, performing several rounds of parameter op-
timisation on each individual to ensure that the candidates are given a fair chance
of fitting the desired behaviour (as previous rate constants may be unsuited to the
updated reaction network) before using the final fitness to select the next generation.

The output of an optimisation experiment is the fittest model produced. For a vi-
sual comparison of the output models suitability and the optimisation algorithms
success, time series of the target and the optimised output are plotted for each
species, as shown in Fig. 1.10. A summary of the experiments inputs and the mod-
ules that comprise the optimised model are captured from POPTIMIZER and dis-
played alongside the time series.
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(a) Sender cell. (b) Pulsing cell.

Fig. 1.11: Two different bacterial strains of the pulse generator.

1.5 Case study

In this section, we demonstrate the use of the IBW features in a case study. Here, we
select the pulse generator example, which consists of the synthetic bacterial colony
designed by Ron Weiss’ group in [5, 4]. This model implements the propagation
of a wave of gene expression in a bacterial colony. For other applications of this
modelling see [46, 124].

The pulse generator consists of two different bacterial strains, sender cells and
pulsing cells (see Fig. 1.11):

– Sender cells contain the gene luxI from Vibrio fischeri. This gene codifies the
enzyme LuxI responsible for the synthesis of the molecular signal 3OC6-HSL
(AHL). The luxI gene is expressed constitutively under the regulation of the
promoter PLtetO1 from the tetracycline resistance transposon.

– Pulsing cells contain the luxR gene from Vibrio fischeri that codifies the 3OC6-HSL
receptor protein LuxR. This gene is under the constitutive expression of the pro-
moter PluxL. It also contains the gene cI from lambda phage codifying the
repressor CI under the regulation of the promoter PluxR that is activated upon
binding of the transcription factor LuxR 3OC6 2. Finally, this bacterial strain
carries the gene gfp that codifies the green fluorescent protein under the regula-
tion of the synthetic promoter PluxPR combining the Plux promoter (activated
by the transcription factor LuxR 3OC6 2) and the PR promoter from lambda
phage (repressed by the transcription factor CI).

The bacterial strains above are distributed in a specific spatial distribution. As
shown in Fig. 1.12, sender cells are located at one end of the bacterial colony and
the rest of the system is filled with pulsing cells.
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Fig. 1.12: Spatial distribution of sender and pulsing cells.

1.5.1 LPP Model

As discussed in Section 1.3, the Infobiotics Workbench accepts system models in
LPP language to activate its features. LPP systems are an extension of stochastic P
systems with spacial dimension. Namely, they allow us to model a 2-dimensional
geometric lattice on which a population of stochastic P systems could be placed and
over which molecules could be translocated.

Here, we give a short account on the LPP model. Our model of the pulse gen-
erator uses a module library describing the regulation of the different promoters
used in the two bacterial strains. An additional module library describing several
post-transcriptional regulatory mechanisms is also used in our model. The bacterial
strain, sender cell, producing the signal 3OC6-HSL (AHL) is modelled using the SP-
system model. The bacterial strain, pulsing cell, producing a pulse of GFP protein
as a response to the signal 3OC6-HSL (AHL) is modelled using another SP-system
model. In order to prevent any modelling issues in our framework, we add an extra
cell to represent the boundary of the system. The geometry of a bacterial colony of
the cell type or bacterial strain represented in the previous model is captured using a
rectangular lattice. Finally, the model of the synthetical bacterial colony is obtained
by distributing cellular clones of the sender cell strain at one end of the lattice and
cellular clones of the pulsing cell strain over the rest of the points.
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Fig. 1.13: Spatial propagation of GFP over the bacterial colony.

Fig. 1.14: Propagation of GFP over a pulsing cell.

1.5.2 Simulations

The final model has 341 compartments (11⇥ 31), 28 molecular species and 8783
rules in total. 5 stochastic simulation runs of 800 simulated seconds required an av-
erage of 2 minutes and 4 seconds wall clock time on a single 2.20GHz core of an
Intel(R) Core(TM) i7-2670QM. The enhanced multi-compartmental stochastic sim-
ulation algorithm performed 65,679,239 total reactions per run on average, achiev-
ing a rate of 528,968 reactions per second. It should be noted the time required to
simulate a model is highly dependent on the structure of the reaction network in
addition to the number of the compartments and reactions, and that flucutations in
the number of molecules in the system as its state changes can dramatically impact
the rate of simulation.
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Fig. 1.15: signal3OC6 level over time.

Fig. 1.16: signal3OC6 level over time.

The IBW interface enables the user to select a subset of the datapoints logged
during a simulation for each species, which can then be visualised using the pro-
vided time series, histogram or surface plotting functions.

Fig. 1.13 and 1.14 show the spatial propagation of a pulse of GFP over the bac-
terial colony and a single pulsing cell, respectively. As the figures show, the GFP
protein propagates through pulsing cells until the concentration level drops to 0.

Fig. 1.15 shows the concentration of the PluxPR LuxR2 GFP promoter, which
regulates the expression of the protein GFP, in different cells. As shown in the fig-
ure, the concentration first increases, and then permanently becomes zero after 100
seconds. This explains the behaviour observed in Fig 1.14, because when the pro-
moter concentration becomes zero, the protein GFP cannot be expressed.

Fig. 1.16 shows the signal molecule signal3OC6 amount over time. The figure
suggests that the further away the pulsing cells are from the sender cells the less
likely they are to produce a pulse.
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1.5.3 Model Checking

We now present our results of the system analysis using the probabilistic model
checking techniques. Before presenting the experiments performed, we give a brief
overview on the property specification in PRISM and MC2 model checkers.

PRISM

In PRISM, properties are specified in Continuous Stochastic Logic (CSL) [3] - an
extension of Probabilistic Continuous Time Logic (PCTL) [64] for CTMCs.

CSL fomulas are interpreted over CTMCs. The execution of a CTMC constructs
a set of paths, which are infinite sequences of states. Apart from the usual operators
from classical logic such as ^ (and), _ (or) and ) (implies), CSL has the probabilis-
tic operator P⇠r, where 0  r  1 is a probability bound and ⇠2 {<,>,,�,=}2.
Intuitively, a state, s, of a model satisfies P⇠r[j] if, and only if, the probability of
taking a path from s satisfying the path formula j is bounded by ‘⇠ r’. The follow-
ing path formulas j are allowed: Xf ; Ff ; Gf ; fUy; and fUky (Note that the
operators Ff and Gf can actually be derived from fUy).

As an example, the property that “the probability of j eventually occurring is
greater than or equal to b” can expressed in CSL as follows:

P�b[true U j] .

The informal meanings of such formulas are:

– Xf is true at a state on a path if, and only if, f is satisfied in the next state on the
path;

– Ff is true at a state on a path if, and only if, f holds at some present/future state
on that path;

– Gf is true at a state on a path if, and only if, f holds at all present/future states
on that path;

– fUy is true at a state on a path if, and only if, f holds on the path up until y
holds; and

– fUky is true at a state on a path if, and only if, y satisfied within k steps on the
path and f is true up until that moment.

As well as the probabilistic operator P⇠r, CSL also includes S⇠r and R⇠r opera-
tors to express properties regarding the steady-state behaviour and expected values
of rewards respectively. There are four different types of reward formulas, which
are the reachability reward R⇠r[Fj], cumulative reward R⇠r[C  t], instantaneous
reward R⇠r[I = t] and steady-state reward R⇠r[S]. The informal semantics of these
formulas are given below [76]:

2 The P⇠r operator is the probabilistic counter-part of path-quantifiers 8 and 9 of CTL.
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– S⇠r[j] asserts that the steady-state probability of being in a state satisfying j
meets the bound ⇠ r.

– R⇠r[Fj] the expected reward accumulated before a state satisfying j is reached
meets the bound ⇠ r.

– R⇠r[C  t] refers to the expected reward accumulated up until time t.
– R⇠r[I = t] asserts that the expected value of the state reward at time instant t

meets the bound ⇠ r.
– R⇠r[S] asserts the long-run average expected reward meets the bound ⇠ r.

MC2

In MC2, properties are specified in a variant of Probabilistic Linear Temporal Logic
(PLTL) [91] (which is a probabilistic extension of Linear Temporal Logic (LTL)
[101]. This variant is called PLTLc [36], the discrete time steps of which correspond
to the logging interval of the simulation.

PLTLc formulas are interpreted over a finite set of finite paths (e.g., simula-
tion traces and time series). The PLTLc language extends the syntax of LTL with
numerical constraints and a probability operator. Therefore, in addition to the stan-
dard boolean operators (e.g., ^, _ and )) and temporal operators (e.g., Xf , Ff ,
Gf and fUy), PLTLc includes numerical constraints in the form of value ⇠ value
(⇠2 {<,>,,�,=, 6=}), where value is defined as follows [36]:

value ::=
Int | Real | [molecule] | max[molecule] | d[molecule] | $fVariable
value+ value | value� value | value⇤ value | value/value

where Int denotes integer numbers, Real denotes real numbers, $fVariable
denotes free variables, [molecule] denotes molecular concentrations of biochem-
ical species, max[molecule] denotes a function which “operates over all the val-
ues of a species and returns the maximum of the species value in simulation runs”
[36] and d[molecule] denotes a function which returns “the derivative of the con-
centration of the species at each time point” [36] in a simulation run.

PLTLc also includes the probabilistic operators P⇠r, where 0  r  1 is a prob-
ability bound and ⇠2 {<,>,,�} (without equality “=”).

Property Patterns

Model checking is a very useful method to analyse the expected behaviour of bio-
logical models. It formalises simulation and observation to verify that the model of
a biological system is correct in all circumstances.

Although model checking is a well-established and widely used formal method,
it requires formulating properties in a dedicated formal syntax, and hence, formal
specification can be a very complex and error-prone task especially for non-expert
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Pattern Example

Occurrence The number of molecules of x exceeds 100 within 50 seconds in
90% of the cases.

Until Until the concentration of the promoter x is greater than 0.5,
the probability of expressing the gene x is less than 0.01.

Universality The concentration of the signalling protein never drops below the threshold.

Response
If the concentration of the repressor protein is more than 0.5,
then the probability that the regulation of the protein will be repressed
is greater than 0.9.

Precedence
Only, after the concentration of the repressor protein is more than 0.5,
the probability that the regulation of the protein will be repressed
is greater than 0.9.

Steady State In the steady state, the probability that the concentration of the signalling
protein is more than 1nM is greater than 0.9.

Reward The expected concentration of the signalling protein at the time instant 100 is
between 0.9nM and 1.0nM.

Table 1.1: Property patterns.

users. For example, the question what is the probability that the number of molecules
exceeds 100 within 60 minutes in 90% of the cases is expressed in CSL as follows:

P=0.9[true U60 molecules � 100].

Clearly, this property is very simple to express in natural language, but it is difficult
(for non-experts) to specify formally as it requires familiarity with the syntax of
the formalism. In the case of more complex properties, the formal specification of
certain properties might become a more cumbersome task.

To facilitate property specification and therefore to increase the accessibility of
useful capabilities of model checking to a wider group of users, we have developed
the NLQ (Natural Language Query) tool, which converts natural language queries
into their corresponding formal specification language. NLQ is based on the proto-
type tool introduced in [37] with extra added features and support for probabilistic
logics used in the model checking module of the Infobiotics Dashboard. Using the
NLQ tool, users can create a set of properties simply by manipulating a configurable
form with graphical user interface elements such as drop-down lists and text fields3.

Another important feature of the NLQ tool is that it provides users with a set of
so called property patterns based on most frequent properties in the model checking
study. Since the seminal paper of Dwyer et al. [38], there have been many devel-
opments in categorising recurring properties into specific property patterns, which
can be considered as generic representations of instances of numerous properties
utilised in different contexts. Indeed, [38] surveyed more than five hundred temporal
properties and categorised them into a handful of property patterns. [74] extended

3 At the moment, the NLQ tool is not integrated into the Infobiotics Workbench. But, the properties
it generates can be directly used in IBW’s model checking component.
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Prop. Informal and Formal Specification PRISM vrf.
1 Probability that GFP concentration at row 3 exceeds 100 within 50 s.

P=?[true U50 GFP pulsing 3� 100] 0.87
2 Probability that GFP concentration at row 3 exceeds 100 between 50 and 100 s.

P=?[true U[50,100] GFP pulsing 3� 100] 0.92
3 Probability that GFP protein at row 3 always exists after 200 s.

P=?[G�200(GFP pulsing 3> 0)] 0.0
4 Probability that GFP concentration at row 5 stays greater than 100 before

GFP concentration at row 3 exceeds 100.
P=?[GFP pulsing 5� 100 W GFP pulsing 3� 100] 0.0

5 Probability that GFP concentration at row n 2 {3,4,5,6} exceeds 100 at instant T .
P=?[true U[T,T ] GFP pulsing n� 100] see Fig. 1.17a

6 Probability that GFP concentration at row n 2 {3,4,5} stays greater than GFP
concentration at row 6 until time instant is T where GFP concentration at row 6
exceeds GFP concentration at row n.
P=?[GFP pulsing n� GFP pulsing 6 U[T,T ] GFP pulsing 6> GFP pulsing n] see Fig. 1.17b

7 Expected GFP concentration at row n 2 {3,4,5,6} at instant T .
R{“GFP pulsing n”}=? [I = T ] see Fig. 1.17c

8 Expected signal3OC6 concentration at row n 2 {3,4,5,6} at instant T .
R{“signal3OC6 pulsing n”}=? [I = T ] see Fig. 1.17d

Table 1.2: PRISM properties.

this work to include real-time specification patterns. [61] presented a similar pattern
system for probabilistic properties.

Some of the patterns used in the NLQ tool is shown in Table 1.1. These patterns
provide a coherent set of templates, which guide users to construct formal expres-
sions to represent desired properties.

Experiments

We now present the results of the probabilistic model checking experiments we
carried out. Due to the well-known scalability issues that model checkers suffer we
reduced the size of the lattice to 4⇥ 8, where the surrounding cells are boundary
cells and 2⇥ 2-sender cells are located inside at one edge, which are followed by
4⇥2-pulsing cells (see Fig. 1.12).

Table 1.2 shows the informal specifications of the properties and the correspond-
ing CSL formulas that PRISM accepts as input. It presents query results for each of
Prop. 1, 2, 3 and 4. The verification results of Prop. 5, 6, 7 and 8 are illustrated
as a 2D plot in Fig. 1.17, where Row n denotes the nth row of the pulsing cells
in the lattice, T denotes time and y�axis represents the verification result of the
corresponding PRISM query.

Based on these results, we have made some observations. Firstly, as Fig. 1.17a
and 1.17c suggest, the GFP protein propagates through the pulsing cells. Namely,
the GFP protein is first observed in the rows closer to the sender cells, then the
concentration level drops until it permanently becomes zero. On the other hand, the
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(a) Prob. of GFP exceeds threshold (Prop. 5). (b) Prob. of relative GFP (Prop. 6).

(c) Expected GFP protein (Prop. 7). (d) Expected signal3OC6 (Prop. 8).

Fig. 1.17: Model checking experiment results.

concentration level in the next rows shows a similar pattern with some delay, which
is proportional to the distance of the row to the sender cells. This behaviour can
also be observed from Prop. 1, 2, 3 and 4. Fig. 1.17d also suggests that the further
away the pulsing cells are from the sender cells the less likely they are of produc-
ing a pulse. Clearly, these results are in line with the simulation results discussed
previously.

As verification experiments result show, model checking can provide more in-
sight into system models than simulations to analyse system dynamics and complex
behaviour by means of formal queries. Table 1.2 illustrates how the NLQ tool au-
tomatically translates informal queries into formal representations, which can be
directly used to query model checkers.

1.5.4 Supplementary Material

The complete model and experimental results of the pulse generator example can be
downloaded from the IBW website [107]. These include LPP model files, simulation
parameters, simulation results, PRISM model file, model checking parameters, a list
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of PRISM properties and model checking experimental results. The interested read-
ers can try running the experiments themselves. The “README.txt” file provides a
detailed guidance on how to perform the same or similar experiments.

1.6 Discussions and Conclusions

In this last section we compare the best known tools based on the P system mod-
elling paradigm which are used in system and synthetic biology. In the last part
further developments for IBW are presented.

As we have seen so far, IBW is a complex software environment combining the
power and flexibility of a formal modelling framework based on stochastic P sys-
tems enhanced with a lattice-based geometry and a modular way of grouping rules.
It also includes an advanced formal verification component consisting of some prob-
abilistic and stochastic model checking tools, PRISM and MC2, together with a
natural language pattern facility allowing to formulate various queries in a free style
without paying attention to specific syntactic constraints. The other key component
of this tool is a model structure and parameter optimisation engine. These three com-
ponents are fully integrated into an environment where they smoothly communicate,
models can be edited and results of various experiments are visualised according to
a broad range of options.

In what follows we compare the IBW set of functions with other similar P sys-
tems based modelling and analysis software platforms presented in Section 1.2.3.
In order to asses the modelling capabilities of these tools with respect to their flex-
ibility, analysis power and efficiency, we have considered features like modularisa-
tion, formal verification capability, structure and/or parameter optimisation aspects
and the option to execute the simulation on parallel hardware architectures. All the
considered tools benefit from an integrated development environment (IDE) with
different levels of complexity. The results of the assessment are presented in Table
1.3.

Tool IDE Modules Verification Optimisation Parallel
MetaPlab Yes No No Yes No
MeCoSim Yes ? No No Yes

BioSimWare Yes No No Yes Yes
Cyto-Sim Yes No Yes No No

SRSim Yes Yes No No No
IBW Yes Yes Yes Yes Yes

Table 1.3: Tools comparison.
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It is difficult to compare the expressiveness of the modelling languages used by
these tools, as although they all use the same P systems paradigm, they implement
different features - some use deterministic execution style [11], whereas many rely
on probabilistic or stochastic behaviour [7, 28, 14, 23, 68]; SRSim uses strings as
opposed to all the others employing multisets; some use explicitly geometric ele-
ments [68, 14] or a topology of the environment [28], but the others make use only
of the membrane structure.

It is well-known that most of the systems and synthetic biology models are com-
plex, with a rich combinatorics of biochemical interactions and certain motifs oc-
curring. A way of coping with this aspect is to provide some modularisation capabil-
ities. P systems by their very nature introduce a type of modularisation by defining
compartments. In many cases these are utilised as topological components rather
than functional units and do not provide adequate mechanisms to instantiate units
of functionality with the same behaviour, but with different biochemical elements
or concentrations. IBW and SRSim make use of modules directly in their specifi-
cation languages, MeCoSim through its associated P-Lingua language define them
as blocks of rules expressing a certain behaviour, without an explicit instantiation
mechanism.

Simulations represent the key component of all these tools and these are quite
different as the simulation methods depend on the semantics associated to the P
systems utilised by the tools. We can not compare them as, on the one hand, there is
not much data published regarding the performance of the simulators, and the size
of the models, and, on the other hand, the scope of them is quite broad and different.

The results of the simulations require a form of validation, through experiments,
or in depth analysis, with mathematical and/or computational instruments, comple-
menting the simulation. Such an analysis method is the formal verification approach
based on computational models [44, 43], especially model checking. So far, only
IBW and, very recently, Cyto-Sim [23] support this type of analysis. In IBW this
analysis is fully integrated with the rest, the translation into PRISM is automati-
cally obtained from the specification and the queries formulated for each model are
expressed using natural language patterns. Another feature of these tools that helps
post-simulation analysis is the visualisation capability. This can be observed in some
of these tools, MeCoSim, SRSim, MetaPlab, IBW, as being fully integrated with the
other components.

Biological systems in contrast to complex engineering systems are in many cases
not fully specified. At least two aspects are not always known, the kinetic rates of
some interactions and the structure of certain components. These issues are over-
come by employing optimisation methods for approximating the unknown aspects.
MetaPlab uses such methods to approximate functions associated to rules in MP
models, BioSimWare deals with parameter estimation [12] and IBW provides mech-
anisms for parameter estimation and model structure optimisation in the case of
stochastic systems. Recently, it is reported the possibility of using similar methods
for BioSimWare [10].

Complex simulations require better algorithms implementing various semantics
associated to P systems models and also the use of novel technologies. In the last
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years there have been investigations related to the use of parallel hardware architec-
tures for speeding-up simulations. IBW has a parallel version that distributes sim-
ulation runs over HPC clusters. BioSimWare has a version running on distributed
architectures such as grid and CUDA [8]. MeCoSim/P-Lingua platform uses CUDA
for PDP systems showing in certain cases significant increase in speed and new ex-
citing research avenues [84]. However, this facility is not fully integrated in the
software platform.
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