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The relaxin family of peptide hormones are structurally closely related to one another sharing a hetero-
dimeric A–B structure, like that of insulin. They may also be active as unprocessed B–C–A pro-forms.
Relaxin has been shown to pay a key role within the ovary, being involved in follicle growth, and ovula-
tion. Relaxin is produced in large amounts also by the corpus luteum where it acts as an endocrine hor-
mone positively affecting implantation, placentation and vascularization during the all-important first
trimester phase of pregnancy establishment. Relaxin exerts its functions via the receptor RXFP1. Insu-
lin-like peptide 3 (INSL3) in contrast acts through the related receptor RXFP2, and plays an essential role
in the production of androgens within growing antral follicles. INSL3 is also produced in large amounts by
the male fetus shortly after sex determination, where it controls the first transabdominal phase of testic-
ular descent. However, this fetal INSL3 is also able to influence placental and maternal physiology, indi-
cating associations with later preeclampsia and/or fetal growth restriction. Other members of this
relaxin-like family of peptides, such as INSL4, INSL5 and INSL6 are less well studied, though all suggest
modulatory roles in ovarian and/or placental function.

� 2013 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

The relaxin family of peptide hormones, whilst structurally re-
lated to insulin and the IGFs, appears to have evolved as a separate
branch of informational molecules already very early in evolution.
Whilst there appear to be no members of the relaxin-like
subfamily in insects and worms, several members have been
characterized in vertebrates, and particularly in mammals. In
deuterostomes, recent discoveries from starfish now suggest that
an ancestral relaxin-3-like molecule was already present in this
phylum and most importantly was playing a key role in the mat-
uration and release of oocytes (Mita et al., 2009). Significantly, this
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molecule, called GSS (gonadal stimulating substance), is made
within the radial nerves and appears to be performing a role much
like the pituitary gonadotropins in other species.

Besides their cladistic similarity, the relaxin-like group of hor-
mones – at least in mammals – is characterized by having recep-
tors which belong to the G-protein coupled receptor (GPCR)
family, unlike the insulin branch which all make use of receptor
tyrosine kinases. The vertebrate ancestor of the relaxin-like family
of peptides, called relaxin-3, is predominantly also a neurohor-
mone, like GSS, and together with the related INSL5 (insulin-like
peptide 5), both recognize GPCRs of class A, with small N-terminal
extracellular domains (called RXFP3 and RXFP4) (Bathgate et al.,
2006). In fish and amphibians, relaxin-3-like molecules are also in-
volved in reproductive processes being highly expressed also in the
gonads (Wilson et al., 2009). At some time prior to and concomi-
tant with the emergence of mammals, with their very sophisti-
cated system of viviparity which frees the reproductive process
from the arbitrariness of the external environment, the relaxin
family of peptide hormones underwent a further radiation. Thus
in mammals, particularly in humans, we find altogether seven
members of the relaxin hormone family: relaxin-3 and INSL5, pre-
dominantly associated with the brain and gut respectively; H1-re-
laxin, H2-relaxin, INSL3, INSL4 and INSL6, are all associated with
reproductive functions specifically linked to viviparity. This has
led to the coining of the term ‘neohormone’ for this group of pep-
tide hormones (Anand-Ivell et al., 2013), which serve specifically
mammalian physiologies, though others, such as hCG or inter-
feron-tau, are also members. Significantly, H1-relaxin, H2-relaxin
and INSL3 make use of different GPCRs (RXFP1 and RXFP2) from
those used by relaxin-3 and INSL5 (INSL4 and INSL6 have as yet
no known receptors). These GPCRs are affiliated to the class A, rho-
dopsin-like GPCRs and are distantly related to the receptors for the
glycoproteohormones, LH, FSH and TSH, within subclass C of the
LGR (leucine-rich repeat-containing GPCR) family (van Hiel et al.,
2012). Thus, from an evolutionary and signaling viewpoint, the re-
laxin family of peptide hormones shares several features with the
hormones of the HPG axis, though unlike these have evolved to
accommodate additional functions related to viviparity and inter-
nal fertilization.

The present review explores the specific roles of relaxin family
peptides in female physiology with emphasis on ovarian function,
embryo formation and implantation, and early pregnancy up to the
end of the first trimester. The role of these peptide hormones in la-
ter pregnancy, in lactation and in male reproductive function have
been recently covered in other reviews (e.g. Bathgate et al., 2006;
Parry and Vodstrcil, 2007; Ivell et al., 2011) and will not be further
discussed here.
2. Relaxin

2.1. Relaxin and ovarian function

The term relaxin is used here to refer to the peptide called H2-
relaxin in humans, relaxin-1 in rodents, and its homologs, and is
thus distinct from the ancestral neurohormone relaxin-3 and its
homologs, or from the recently evolved H1-relaxin found in hu-
mans and chimpanzees. Relaxin is the major relaxin-like peptide
produced within the ovary of most mammalian species, and the
hormone which was first extracted and shown to have relaxing-
like properties on the term pubic symphysis in guinea-pigs and
other rodents, hence its name. As this function suggests, relaxin
is a major product of the corpus luteum of pregnancy, and has been
identified in this structure in almost all mammals (except bovids)
(Sherwood, 1994).
The corpus luteum develops in every estrous cycle from the
mural cells of the ovulating follicle(s), and times its development
accordingly from the day of ovulation within the normal cycle. In
ruminants and probably also rodents the corpus luteum comprises
cells of both the follicular granulosa as well as theca interna layers,
following the dissolution of the follicle basement membrane and
the LH surge-induced epithelial–mesenchymal-transition (EMT)
that these cells then undergo. In humans and other primates, the
corpus luteum appears to derive mostly from granulosa cells, with
little contribution from the theca cell layer. This is important, be-
cause at least in humans and possibly in other species, relaxin in
the corpus luteum appears to be made exclusively by the granu-
losa-derived luteal cells, beginning a few days after ovulation
and the EMT. Consequently, in cultured human granulosa-lutein
cells collected by aspiration at ovum pick-up following appropriate
hormonal stimulation as part of an IVF program, relaxin production
and secretion into culture medium occurs only after 6–10 days of
culture and in vitro cell differentiation (Stewart and Vandevoort,
1997). In vivo this luteal expression of relaxin would normally be
interrupted at luteolysis, and the commencement of a new cycle.
If pregnancy occurs, then the corpus luteum is retained and relaxin
continues to be produced and secreted by the corpus luteum
throughout pregnancy, or as long as the corpus luteum functionally
persists. It is luteal relaxin which appears to be the major contrib-
utor to circulating relaxin in female mammals, at least during the
luteal phase of the cycle and in pregnancy. This is supported by
the complete absence of circulating relaxin in ovum donor preg-
nancies in women with non-functioning or absent ovaries (Johnson
et al., 1991).

Why this is important is that relaxin expression can also be de-
tected in theca interna cells of antral follicles in both humans and
pigs before the LH surge (Blankenship et al., 1994; Ohleth and Bag-
nell, 1999), as well as in both cell types after culture with luteiniz-
ing levels of the gonadotropin (Ohleth and Bagnell, 1999). Whilst
this relaxin probably does not contribute to the circulation it likely
is the major contributor to the relaxin detected in follicular fluid
(Wathes et al., 1986). Thus within the ovary there appear to be
two different sources of relaxin – the theca interna cells of follicles
and the corpus luteum.

As mentioned above, relaxin acts primarily via the GPCR called
RXFP1 (Bathgate et al., 2006). It may also activate the alternative
receptor RXFP2 (which is specific for INSL3), but only in some spe-
cies such as the human, and then only at highly supraphysiological
concentrations. In transfected cells, and in some naturally recep-
tor-expressing primary cells, such as human endometrial stromal
cells (Bartsch et al., 2001, 2004; Ivell et al., 2007) or human myo-
metrial cells (Heng et al., 2008), relaxin interacts with RXFP1 to
activate Gs-mediated adenylyl cyclase causing an elevation of
intracellular cAMP. It may also in some circumstances activate
PI3-kinase in a Gi/o-dependent manner involving PKC-zeta (Nguyen
and Dessauer, 2005). Within the ovary, RXFP1 relaxin receptors
have been identified at the transcript or protein level on granulosa
and cumulus cells of pig antral follicles (Feugang et al., 2011a), and
possibly also on oocytes themselves (Feugang et al., 2011b). More-
over, treatment with relaxin of porcine cumulus–oocyte-com-
plexes in vitro, whilst appearing to have little effect on oocyte
maturation, did appear to positively influence the resulting em-
bryos (Feugang et al., 2011a; Kim et al., 2010). RXFP1 is also ex-
pressed within the corpus luteum of monkeys and cats (Braun
et al., 2012; Maseelall et al., 2009), though the precise cellular
localization in these tissues has not been ascertained. One report
also suggests the presence of RXFP1 in human granulosa cells of
primordial, primary and secondary follicles (Shirota et al., 2005a),
with relaxin treatment of ovarian cortical fragments leading to
development of those follicles. Moreover the same authors show
that relaxin treatment of cortical fragments can also cause
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increased vascularization (Shirota et al., 2005b). Finally, in rats,
treatment with relaxin targeted to the ovarian bursa in vivo ap-
pears to promote ovulation (Brännström and MacLennan, 1993),
suggesting an additional role of relaxin in the proteolytic induction
of follicle wall rupture (Hwang et al., 1996).

In conclusion, therefore, within the ovary relaxin produced by
theca and/or granulosa cells of the follicle may act in an auto-
crine/paracrine fashion to influence granulosa/cumulus cell func-
tion, though the precise localization of RXFP1 receptors and the
mechanisms of relaxin action still remains relatively obscure. Indi-
rect evidence suggest that relaxin may be involved in oocyte mat-
uration and quality, since in addition to the pre-implantation
studies described above, there is a positive association between
the subsequent capacity of cultured human granulosa-lutein cells
obtained at IVF to generate relaxin and the long-term success of
the resulting pregnancy (Stewart and Vandevoort, 1999). Whether
relaxin has an autocrine/paracrine role also within the corpus lut-
eum remains to be shown. At this stage nothing is known about the
possible signaling mechanisms that may be involved in any of
these possible actions of relaxin.

2.2. Relaxin and the early embryo

As mentioned above, exposure of oocytes, cumulus-oocyte-
complexes, and early embryos to relaxin appears to be moderately
beneficial, in terms of rate of development to blastocyst stage and
number of cells in the inner cell mass. This has been shown for por-
cine (Feugang et al., 2011a) and primate embryos (Vandevoort
et al., 2011), and most recently also for cryopreserved cat oocytes
(Luu et al., 2013). The natural source of relaxin for such effects
in vivo would either be from the ruptured follicle or the low circu-
lating levels deriving from the new corpus luteum, though both
sources would not be considerable. A further source is possibly
from the oviduct itself (Tang and Chegini, 1995). The blastocyst
is also expressing the relaxin-receptor, RXFP1, or shows specific re-
laxin-binding, in both trophoblast and inner cell mass (Einspanier
et al., 2001; Vandevoort et al., 2011). Whether relaxin is acting di-
rectly on the embryo and/or trophoblast to aid implantation is not
known, though certainly relaxin does appear to influence the
receptive endometrium. In addition to these effects on the embryo,
it should not be forgotten that relaxin may also have a positive ef-
fect directly on spermatozoa to help fertilization (Ferlin et al.,
2012).

2.3. Relaxin and the endometrium in early pregnancy

Assessing circulating relaxin profiles in different species shows
marked differences. Most such relaxin is derived from the corpus
luteum of pregnancy, supplemented in some species later by the
placenta, and in rodents and pigs there is a steady increase in relax-
in from the first days of pregnancy until term, with maximum levels
approaching 100–200 ng/ml. In contrast, in primates and particu-
larly in humans, from being virtually undetectable in the cycle, cir-
culating relaxin tends to peak in the first trimester, with a
maximum in women of only about 1 ng/ml. What is the role of this
first trimester relaxin? In addition to effects on the implanting em-
bryo itself (see above), the uterus appears to be a major relaxin tar-
get, with RXFP1 relaxin-receptors expressed on uterine epithelial
cells, on endometrial stromal cells, as well as in the myometrium
(Ivell et al., 2007; Parry and Vodstrcil, 2007; Heng et al., 2008).
Within the endometrium, the stromal cells appear to be the princi-
pal endocrine drivers dictating both the epithelial response as well
as uterine remodeling essential for placentation (Ramathal et al.,
2010). In vivo during the luteal phase of the cycle and in early preg-
nancy ovarian hormones such as progesterone, together with estra-
diol, induce the endometrial stromal compartment first to
proliferate and then to differentiate in the process known as deci-
dualisation. This decidualisation is essential to create a receptive
uterus into which a blastocyst can implant, and generally takes
about 6–10 days to provide the so-called ‘window-of-implanta-
tion’. In vivo in primates, including women, ovaries can be removed
or absent and pregnancy can still occur more or less normally only
with additional progesterone supplementation. Endometrial stro-
mal cells derived at hysterectomy from relatively normal cycling
women can be induced in vitro to decidualise under progesterone
and estradiol influence with a similar time-kinetic of about 6–
10 days (Gellersen et al., 2007). However, a similar decidualisation
response can also be induced by relaxin alone, acting through
RXFP1, but within a much shorter time-frame of only 2–3 days
(Ivell et al., 2007). Moreover, studies using monkeys have shown
that supplementary relaxin in vivo is able to specifically induce a
thickening of the endometrium, improved vascularization, and re-
duced pregnancy loss (Goldsmith et al., 2004; Hayes et al., 2004;
Einspanier et al., 2009), consistent with a very positive impact on
implantation and placentation. Also in women, it has been shown
that there is a good association between mid-pregnancy levels of
circulating relaxin, reduced spontaneous abortion, and increased
blood flow (Jauniaux et al., 1994; Anumba et al., 2009).

Following from work by Linda Tseng and others (Bell et al.,
1991; Guo et al., 1994), we have explored the signaling pathways
used by relaxin in human endometrial stromal cells from the cycle
(hESC cells). Whilst superficially relaxin simply causes an elevation
of cAMP because of the Gs-mediated stimulation of adenylyl cy-
clase, as can be seen also in RXFP1-transfected over-expressing
HEK293T cells (Bartsch et al., 2001; Hsu et al., 2002; Halls et al.,
2006; Ivell et al., 2007; Heng et al., 2008), relaxin’s impact in the
naturally receptor-expressing cells is more complex. Firstly, it
additionally causes a modest induction of type 4 phosphodiester-
ases (Bartsch et al., 2004), in part to act as a feedback mechanism
to regulate intracellular cAMP. More importantly, however, relax-
in-stimulated activation of adenylyl cyclase in these cells is abso-
lutely dependent on a specific tyrosine-kinase activity (Bartsch
et al., 2001; Ivell et al., 2007), which is unlike the activity of any
other GPCR. In a recent microarray analysis on hESC cells stimu-
lated by relaxin for 3 days (Ivell et al., unpublished) we have shown
that relaxin not only activates cAMP and downstream protein-ki-
nase A targets, but also specifically activates the Wnt5a/TWIST
morphogenetic pathway with concomitant down-regulation of
the Wnt inhibitor dikkopf-1. At the same time it down-regulates
a series of cell cycle genes, thereby switching the hESC cells from
a proliferative to a non-proliferative phenotype. Thirdly, relaxin
activates a series of cytokine-dependent genes, such as CXCL12,
at the same time suppressing genes otherwise regulated by PI3-ki-
nase. Finally, relaxin action induces a series of TGFß-dependent
genes. Altogether, this pattern of gene regulation is reminiscent
of what happens during an EMT (epithelial-mesenchymal transi-
tion), is largely in concordance with what occurs during decidual-
isation, and cannot be explained simply by an elevation of
intracellular cAMP. Importantly, this is occurring in the absence
of progesterone.

In the myometrium, it is long established that in some species,
such as rat and pig, relaxin acts directly on smooth muscle cells to
induce quiescence, effectively blocking both spontaneous and oxy-
tocin-induced contractions (MacLennan et al., 1986). Whilst this is
generally considered in the context of the pre-term uterus where
preemptive labor is deleterious, it is also reported to be a property
of the early pregnant uterus. Here it is thought that, by inhibiting
myometrial contraction, relaxin may have a positive effect on
implantation. Additionally, in the rat it has been shown that relax-
in acting on the myometrium may be involved in spacing of em-
bryos in multiparous species (Rogers et al., 1983). In the human,
relaxin does not appear to have any effect to inhibit spontaneous
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or oxytocin-induced contractility (MacLennan et al., 1986),
although we have recently shown that human myometrial cells ob-
tained at routine hysterectomy do indeed respond via RXFP1 to re-
laxin, and just like hESC cultures generate cAMP in a tyrosine
kinase-dependent manner (Heng et al., 2008).
2.4. Relaxin and the cardiovascular system

Pregnancy represents a major physiological disruption from the
point of view of fluid and osmolyte control in the body. In order to
cope with this new situation set-points for vasopressin secretion,
heart stroke volume, vasodilation, and arterial compliance are
readjusted. Largely based on experiments in rats, this shift appears
to be achieved uniquely by circulating relaxin (Conrad, 2011). It is
now established that relaxin can directly act on both arterial
smooth muscle cells as well as on endothelial cells. The former
slow response involves the production of metalloproteinases, and
the generation of endothelin, which then acts via endothelin recep-
tors to activate cGMP and NO (Conrad, 2011). Additionally, there is
a rapid relaxin response in these vessels involving RXFP1 coupling
to PI3-kinase and the phosphorylation/activation of eNOS (McGu-
ane et al., 2011).

Besides the cardiovascular properties of relaxin discussed
above, relaxin is also known as an inducer of angiogenesis in the
context of wound-healing (Unemori et al., 2000; Segal et al.,
2012), as well as in other tissues subject to growth stimulus such
as the endometrium during early pregnancy (e.g. Goldsmith
et al., 2004). It appears to achieve this by a local induction of vas-
cular endothelial growth factor, VEGF, for example by endometrial
stromal cells (Unemori et al., 1999). Moreover, the property of re-
laxin to encourage extracellular matrix turnover, and thus to be a
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Fig. 1. Relaxin (100 ng/ml) stimulates cAMP production in THP1 monocytes (A) as
well as in THP1 macrophages, obtained from the former by treatment with 100 nM
phorbol myristate acetate. Moreover, relaxin-dependent cAMP production is
completely inhibited in both cell types by incubation with the tyrosine kinase
inhibitor tyrphostin AG879 (10 lM).
permissive factor in the invasion of blood vessels, has led to a dis-
cussion as to whether relaxin is a positive or rather a negative fac-
tor in regard to tumor expression of relaxin, for example in the
context of breast or prostate cancer and their metastasis (Klonisch
et al., 2007).
2.5. Relaxin and the immune system

One of the best used cell models to explore relaxin signaling in
cells, where the RXFP1 receptor is naturally expressed, is the hu-
man monocyte cell-line THP1 (Anand-Ivell et al., 2007). These cells
appear to show a biphasic relaxin-dependent signaling mecha-
nism. Within minutes, relaxin first appears to engage the classical
Gs-dependent pathway with induction of adenylyl cyclase (Anand-
Ivell et al., 2007; Ivell et al., 2007), though very quickly it subse-
quently shifts to the PI3-kinase pathway, and PKC-zeta transloca-
tion (Nguyen and Dessauer, 2005; Halls et al., 2007). As for
human endometrial stromal cells, also this activation of adenylyl
cyclase is absolutely dependent on a very specific tyrosine kinase
activity (Bartsch et al., 2001; Anand-Ivell et al., 2007). Not only
these monocytes are relaxin-responsive, but in vitro induction of
their differentiation into macrophages by phorbol esters, also leads
to a relaxin-responsive cell type (Fig. 1; Anand-Ivell et al., unpub-
lished). It should therefore be no surprise that relaxin is able to
stimulate a number of immune cell types, particularly in the endo-
metrium (Piccinni et al., 1999, 2006). It has been shown that relax-
in encourages the activation of resident T cells into Th1-like
effectors producing IFNgamma (Piccinni et al., 1999), which in turn
has been shown to assist in the remodeling of spiral arteries (Monk
et al., 2005). Recently, we have been able to show that relaxin in
the uterine lumen of mice is specifically able to induce a number
of pro-inflammatory cytokines, including CXCL1 and CXCL10
(Glynn, Ivell et al., unpublished), though the precise mechanisms
involved are not yet clear. Importantly, however, together these re-
sults show that relaxin in the endometrium is a potent modulator
of the pro-inflammatory cytokine network, which is important for
appropriate implantation and placentation (Granot et al., 2012).
3. INSL3

3.1. INSL3 in the ovary during the cycle and early pregnancy

INSL3 (insulin-like peptide 3) is structurally very closely related
to relaxin, and for this reason was originally referred to as the re-
laxin-like factor (RLF; Büllesbach et al., 1999; Ivell, 1997). It was
originally identified as a major product of the testicular Leydig
cells in the male by independent differential cloning strategies
(Adham et al., 1993; Pusch et al., 1996). In the female, it is pro-
duced in much lower amounts than in the male, but in the equiv-
alent cells to those in the male, namely in the theca interna cells of
ovarian antral follicles from cows, monkeys and humans (Bathgate
et al., 1996; Bamberger et al., 1999; Hanna et al., 2010), as also in
the corpus luteum (Bathgate et al., 1996; Balvers et al., 1998).
Although no information is available for females, in males it ap-
pears to circulate as both the heterodimeric A–B peptide, as also
the larger unprocessed B–C–A pro-form retaining the C (connect-
ing) peptide (Minagawa et al., 2012; Ivell et al., 2013; Siqin
et al., 2013). Both forms appear to be fully bioactive. Immunohis-
tochemical studies suggest that INSL3 is expressed almost exclu-
sively by the theca cells of growing healthy antral follicles. In the
cow, no staining is observed in secondary follicles, and there is a
negative correlation with signs of atresia (Irving-Rodgers et al.,
2002). In bovine theca cell primary cultures INSL3 appears to be
stimulated by low concentrations of LH but is inhibited by high
luteinizing concentrations of the gonadotropin (Bathgate et al.,
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1999), supporting studies at the mRNA level which suggest that
INSL3 gene expression is inhibited in vivo by the LH surge (Bath-
gate et al., 1996, 1999). However, more recent studies suggest no
effect of low LH concentrations (Glister et al., 2013). In vivo INSL3
mRNA appears to recover expression in the corpus luteum, at least
in the cow (Bathgate et al., 1996, 1999).

An INSL3 knockout mouse has been described by two indepen-
dent groups, and indicates a significant female reproductive phe-
notype, with reduced numbers of antral follicles, fewer corpora
lutea, and smaller litter sizes, together implying an importance
for INSL3 in promoting the numbers of growing antral follicles
and resulting ovulations (Nef and Parada, 1999; Spanel-Borowski
et al., 2001). Together with the immunohistochemical studies on
bovine follicles (Irving-Rodgers et al., 2002), as well as some stud-
ies in the male (Amory et al., 2007; Kawamura et al., 2004), the
implication is that INSL3 acts in an anti-apoptotic/pro-survival role
within growing antral follicles.

INSL3 interacts with a Class A GPCR with a large extracellular
domain, referred to as RXFP2 (Bathgate et al., 2006). This receptor,
though very similar to the relaxin-receptor RXFP1, cannot be acti-
vated in vivo by any other known peptide, not even relaxin (Bogat-
cheva et al., 2003), making the INSL3-RXFP2 ligand-receptor pair
unique. Human RXFP2 may respond to relaxin in vitro, but only
at very high concentrations not found in vivo. Within the ovary,
RXFP2 has been identified at the mRNA level by RT-PCR in oocytes
as well as in the theca interna cells themselves (Glister et al., 2013).
It is absent from granulosa or cumulus cells. Functionally, it ap-
pears that INSL3 is involved in an autocrine/paracrine short-loop
feedback system regulating the production of androgens, particu-
larly androstenedione, by theca cells (Glister et al., 2013). Down-
regulation of RXFP2 expression in theca cells using antisense
RNA suppresses androgen production (Glister et al., 2013). More-
over BMPs generated within the antrum from granulosa cells
and/or the oocyte also suppress theca cell INSL3 expression and
thus help to regulate follicular androgen production (Fig. 2). It
should be remembered that theca cell androgen production is a
major rate-limiting step in ovarian steroidogenesis during the fol-
licular phase, since estrogens can only be made within the follicles
by aromatase in the granulosa cells converting imported
androgens.
FSHR
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AMH

INSL3RXFP2

A4
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inhibits theca cell
INSL3 produc�on

INSL3

LH surge

atresia

ovula�on

INSL3 and the follicle wave 

feedforward
loop making
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Fig. 2. The role of INSL3 within the growing antral follicle. INSL3 is produced by the
follicular theca interna cells prior to the LH surge and following the production by
these follicles of anti-mullerian hormone, AMH. Within the antral follicle Bone
Morphogenetic Proteins (BMPs) from the granulosa cells (yellow) and/or the oocyte
(red) inhibit INSL3 production, which itself via its receptor RXFP2 stimulates the
production of the main androgen, androstenedione (A4) by the theca cells (green).
Although INSL3 in circulating blood is much lower in women
than in men, it is nevertheless mostly measurable (ca. 0–100 pg/
ml) and appears to reflect the growth of antral follicles (Anand-
Ivell et al., 2013). In cows, blood concentrations are a little higher
(Anand-Ivell et al., 2011; Satchell et al., 2013), and in in heifers
whose ovarian cycle has been synchronized by a luteolytic dose
of prostaglandin F2alpha, INSL3 rises to a coordinated peak reflect-
ing the growth of an antral follicle wave (Satchell et al., 2013). Such
experiments also confirm that antral follicles are indeed the major,
if not exclusive, source of circulating INSL3 within the non-preg-
nant female mammal. Because INSL3 is produced largely by grow-
ing antral follicles, circulating levels are influenced by the number
of such follicles in the ovary. Thus circulating INSL3 is significantly
elevated in women with diagnosed PCOS (polycystic ovarian syn-
drome) (Havelock et al., 2005; Gambineri et al., 2007; Anand-Ivell
et al., 2013), and is reduced in women with low ovarian reserve
(Anand-Ivell et al., 2013), or who are peri- or post-menopausal
(Ivell and Anand-Ivell, 2009). We are currently following up such
studies to determine whether INSL3 can become an important
new clinical parameter to assess follicle growth and development
in women of reproductive age.

Although, functions for INSL3 in the female mammal are cur-
rently focused on ovarian physiology, circulating concentrations
are still sufficiently high to be able to activate RXFP2 receptors in
distant organs. In this context it is important to observe that re-
cently INSL3 by acting on osteoclasts has been shown to have a sig-
nificant role in the context of bone turnover and metabolism
(Ferlin et al., 2008). Indeed, where the RXFP2 receptor (human sub-
jects with a homozygous RXFP2 mutation) or its ligand INSL3
(INSL3 knockout mice) are dysfunctional, then there is a markedly
increased osteopaenia (Ferlin et al., 2008). Thus in addition to
estradiol, INSL3 is a further player in women of reproductive age
contributing to the maintenance of healthy bone metabolism,
and whose loss following the menopause may contribute to the in-
creased prevalence of osteoporosis in older women.

3.2. INSL3 in the early fetus and amniotic fluid

We know very little about any role for INSL3 in the early pre-
implantation embryo, or indeed in the endometrium or myome-
trium at any stage of reproductive life. Human myometrial cells
do not appear to respond to INSL3, although they do possess full-
length RXFP2 receptor mRNA (Heng et al., 2008). However, it is
becoming very clear that the male fetus is a major producer of
INSL3 already by mid-gestation. INSL3 is made by the fetal-type
Leydig cells (FLC) of the embryonic testis very shortly after SRY-
dependent sex determination. In humans, this INSL3 can be de-
tected in amniotic fluid already at 12 weeks of gestation (Anand-
Ivell et al., 2008), and the timing of INSL3 production in the fetus
coincides with the first transabdominal phase of testicular descent
(Anand-Ivell et al., 2008; Hughes and Acerini, 2008). In fact the fail-
ure of the testes to descend (cryptorchidism) is the sentinel pheno-
type of INSL3- as well as RXFP2-knockout mice (Nef and Parada,
1999; Zimmermann et al., 1999; Kamat et al., 2004).

The early first–second trimester fetus has very permeable skin,
such that hormones produced within the fetus early in gestation
are clearly measurable also in amniotic fluid. In human amniotic
fluid obtained at routine amniocentesis we can measure quite con-
siderable amounts of INSL3 of fetal testis origin (it is not detectable
in amniotic fluid from female fetuses) between weeks 12 and 18;
thereafter it appears to decline to baseline (Anand-Ivell et al.,
2008). We can also detect INSL3 in amniotic fluids from rats and
ruminants (Anand-Ivell et al., unpublished). Why this is important
is that we were able to show for male fetuses a significant relation-
ship between the amniotic fluid level of INSL3 and later onset of
preeclampsia and/or reduced corrected birthweights (Anand-Ivell
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et al., 2008). Such findings imply an interaction between fetal
INSL3 and placental function in the mother early in gestation at a
time when the placental bed is being established. More recently,
in a study using pregnant cows, it was possible to show that INSL3
of fetal origin was definitely able to cross the placenta to enter the
maternal circulation (Anand-Ivell et al., 2011), again implying that
at least in the first half of gestation fetal INSL3 is potentially able to
influence maternal and/or placental physiology. We are currently
looking at possible ways that INSL3 can gender-specifically influ-
ence this important establishment phase of pregnancy, which has
been shown to be decisive for the health and wellbeing of all off-
spring (McMillen and Robinson, 2005).
4. Other insulin/relaxin-like peptides and female reproduction

Although INSL3 and relaxin are the most studied members of
this relaxin-like family of peptides, at least two other members
are also thought to be of physiological importance for reproduc-
tion, namely INSL4 and INSL6. For neither peptide has a receptor
yet been identified, though both have been shown to possess spe-
cific functionality.

INSL4 (previously called EPIL or early placental insulin-like) is
made in the human placenta and evidently evolved as a paralogue
from the relaxin gene with which it remains syntenous (Ivell and
Grutzner, 2009; Arroyo et al., 2012). INSL4 is made in large
amounts by the syncytiotrophoblast and maternal decidua (Lau-
rent et al., 1998; Millar et al., 2005), and experiments on amniotic
epithelial cells suggest that unlike relaxin it has a pro-apoptotic
role (Millar et al., 2005), a view which is strengthened by its in-
creased expression in placentae of growth-restricted fetuses (Mil-
lar et al., 2005). INSL6 is also a paralogue of relaxin and in the
male is expressed in substantial amounts by meiotic and post-mei-
otic germ cells (Lok et al., 2000; Ivell et al., 2011). Indeed a recent
INSL6-knockout mouse shows a marked male infertility phenotype
(Burnicka-Turek et al., 2009). Much less is known about INSL6 in
the female. The INSL6 knockout mouse indicates only a male repro-
ductive phenotype, with no impairment of female fertility (Burni-
cka-Turek et al., 2009). Although it is expressed largely by germ
cells in the testis, for the female gonad, GEO microarray records
suggest expression of INSL6 rather in the somatic cell compart-
ment. However, a targeted and systematic analysis of INSL6
expression and function in the female is lacking.

Although we know least about its physiology, H1-relaxin is a
paralogue of ovarian relaxin found in the placenta only in women
and higher apes (Hansell et al., 1991). Because of its very close
structural similarity to relaxin, not only can it activate RXFP1,
and thus behave like ovarian relaxin, most immunoassays cross-re-
act, thus preventing an understanding of any discrete functionality.

For the remaining members of the relaxin-like family of pep-
tides, INSL5 and relaxin-3, their main physiological roles appear
to be predominantly as gut or brain hormones, respectively. How-
ever, the INSL5 knockout mouse displays impaired fertility in both
males and females (Burnicka-Turek et al., 2012). In the female
there appear to be no significant differences from wild type in re-
gard to numbers of oocytes ovulated, follicle number or number of
corpora lutea. Instead there is a markedly perturbed ovarian cyclic-
ity suggesting a systemic impairment of ovarian control, possibly
linked to the marked distortion of glucose homeostasis in these
genetically modified mice. The relaxin-3 knockout mice show no
impairment of either male or female fertility (Smith et al., 2009).
However, there is a suggestion that relaxin-3 can modulate the
HPG axis, presumably acting at the hypothalamus (McGowan
et al., 2008). Moreover, there is a single report, using an unvalidat-
ed assay, suggesting circulating levels of relaxin-3 in women as
high as 100–200 ng/ml (Ghattas et al., 2013), with a slight increase
associated with metabolic syndrome. Why this is significant is that
at this concentration, which is markedly higher than that for ovar-
ian relaxin in women (maximally 1 ng/ml), circulating relaxin-3 is
likely to be able to activate peripheral RXFP1 receptors, for which it
is a cognate ligand (Hossain et al., 2011). There is no information
about the source of this circulating relaxin-3, though highest relax-
in-3 gene expression occurs in the brain. There may also be some
local expression of relaxin-3 in organs of the female reproductive
system, particularly in the ovary, since it has been shown to be ex-
pressed by Leydig cells in the testes (Silvertown et al., 2010), and in
fish relaxin-3 has a major source within the ovary (Wilson et al.,
2009). More research is clearly needed on this important topic.

5. Conclusions

Relaxin-like peptides have evolved very much in association
with reproductive function, particularly in mammals, where they
can be considered as neohormones (Anand-Ivell et al., 2013), and
where in both males and females they play key roles in the modu-
lation of reproductive physiology associated with viviparity. In this
review, we have highlighted the importance of both relaxin and
INSL3 in female reproduction, and drawn attention to substantial
gaps in our knowledge of these hormones and of the other mem-
bers of this peptide family. With increasing availability of new
molecular tools, assays and antibodies, specific for these peptides,
we should expect to see substantial new advances made in our
understanding of their roles and importance, particularly in regard
to female reproductive physiology.
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