
1

How Effectively does Metamorphic Testing
Alleviate the Oracle Problem?

Huai Liu, Member, IEEE, Fei-Ching Kuo, Member, IEEE, Dave Towey, Member, IEEE, and

Tsong Yueh Chen, Member, IEEE

Abstract— In software testing, something which can verify the
correctness of test case execution results is called an oracle. The
oracle problem occurs when either an oracle does not exist, or
exists but is too expensive to be used. Metamorphic testing is a
testing approach which uses metamorphic relations, properties
of the software under test represented in the form of relations
among inputs and outputs of multiple executions, to help verify
the correctness of a program. This paper presents new empirical
evidence to support this approach, which has been used to alle-
viate the oracle problem in various applications and to enhance
several software analysis and testing techniques. It has been
observed that identification of a sufficient number of appropriate
metamorphic relations for testing, even by inexperienced testers,
was possible with a very small amount of training. Furthermore,
the cost-effectiveness of the approach could be enhanced through
the use of more diverse metamorphic relations. The empirical
studies presented in this paper clearly show that a small number
of diverse metamorphic relations, even those identified in an
ad hoc manner, had a similar fault-detection capability to a
test oracle, and could thus effectively help alleviate the oracle
problem.

Index Terms— Software testing, test oracle, oracle problem,
metamorphic testing, metamorphic relation.

I. INTRODUCTION

The scale and use of software systems around the world have

been growing exponentially, yet at the same time, reports of

problems due to software faults have also been growing. Software

quality assurance has become one of the most important areas

in the software industry as well as in the academic community.

Software testing, a major approach in software quality assurance,

is widely acknowledged as a critical activity and a main research

focus in software engineering [18]. One of the objectives of

software testing is to detect as many software faults as possible,

and to do so as quickly as possible [33].

Although many effective test case selection strategies have

been proposed [11], [14], the majority of these strategies rely

on the availability of a test oracle [20], a mechanism which can

systematically verify the correctness of a test result for any given

test case (input). Only with a test oracle can it be clearly claimed

that the output of the program under test passes or fails for any

given input. In many situations, however, a test oracle either

This research project is supported by an Australian Research Council
Discovery Grant.

H. Liu is with Australia-India Centre for Automation Software En-
gineering, RMIT University, Melbourne 3001 VIC, Australia (e-mail:
huai.liu@rmit.edu.au).

F.-C. Kuo and T. Y. Chen are with the Faculty of Information and Commu-
nication Technologies, Swinburne University of Technology, Hawthorn 3122
VIC, Australia (e-mail: dkuo@swin.edu.au; tychen@swin.edu.au).

D. Towey is with the Division of Computer Science, The University
of Nottingham Ningbo China, Ningbo 315100 Zhejiang, China (e-mail:
dave.towey@nottingham.edu.cn).

does not exist, or is too expensive to be used. This problem,

referred to as the oracle problem, is a fundamental challenge for

software testing, because it significantly restricts the applicability

and effectiveness of most test case selection strategies.

Metamorphic testing [5] is an approach to alleviating the ora-

cle problem. In metamorphic testing, some necessary properties

(hereafter referred to as metamorphic relations) are identified for

the software under test, usually from the software specifications.

These metamorphic relations provide a new perspective on ver-

ifying test results. Traditionally, after a test case is executed,

its corresponding test output is verified using a test oracle.

Unlike traditional testing, metamorphic testing always involves

multiple test case executions, with their corresponding outputs

being verified using the metamorphic relations rather than a test

oracle.

Metamorphic testing has been applied in various application

domains, successfully detecting faults [6], [25], [32], [37], [40],

and has also been integrated with other software analysis and

testing technologies to extend their applicability to those pro-

grams without test oracles [4], [10], [41]. The effectiveness of

metamorphic relations has been studied, with attempts made to

establish guidelines for the selection of “good” metamorphic

relations [7], [29]. Studies [21], [42] have also been conducted

comparing metamorphic testing with other techniques, such as

assertion checking, for alleviating the oracle problem.

There remain, however, some as yet unanswered, fundamen-

tal research questions related to metamorphic testing, such as:

whether, and to what extent, metamorphic relations can alleviate

the oracle problem; how many metamorphic relations are required

to match the fault-detection effectiveness of a test oracle; and

what are the key factors that influence the effectiveness of

metamorphic testing. This paper presents an investigation of these

questions through a series of empirical studies. The rest of the

paper is organized as follows: In Section II, the procedure and

background information for metamorphic testing are presented.

Work related to metamorphic testing is discussed in Section III.

In Section IV, the three fundamental research questions in this

study are explained. Details of the empirical studies are presented

in Section V, the results of which, and the answers to the

research questions, are reported in Section VI. In Section VII,

potential threats to the validity of this study are discussed. Finally,

Section VIII summarizes the paper.

II. METAMORPHIC TESTING

The basic steps for implementing metamorphic testing are as

follows:

1) Some necessary properties of the software under test are

identified (normally extracted from the specifications), and

Digital Object Indentifier 10.1109/TSE.2013.46 0098-5589/13/$31.00 © 2013 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

represented in the form of relations, referred to as metamor-

phic relations. Each metamorphic relation involves multiple

test case inputs and their corresponding outputs.

2) Some test cases, referred to as the source test cases, are

generated using traditional test case selection strategies.

3) New test cases, called the follow-up test cases, are con-

structed from the source test cases according to the meta-

morphic relations.

4) Both source and follow-up test cases are applied to the

software under test.

5) The test case outputs are checked against the relevant

metamorphic relations to confirm whether the relations are

satisfied, or have been violated.

The following example illustrates how metamorphic testing

works. Suppose that a program P searches for the shortest path

between two nodes in an undirected graph. One metamorphic

relation of P is that if the start and goal nodes are swapped, the

length of the shortest path should remain unchanged. Suppose that

a source test case (G, a, b) is selected according to some testing

strategy, where G is an undirected graph, and a and b are the

start and goal nodes, respectively. According to the metamorphic

relation, a follow-up test case (G, b, a) can be constructed. After

the execution of both test cases, the outputs can be checked

against the relation by confirming whether or not |P (G, a, b)| =
|P (G, b, a)| is satisfied (where |·| denotes the length of a path).

If the relation has been violated, it can be concluded that P is

faulty.

Metamorphic testing is not only simple in concept, but once

the metamorphic relations have been identified, it can also be

easily automated. Since metamorphic testing first appeared, it has

been widely applied in various application domains. Murphy et

al. [32] developed a framework for implementing metamorphic

testing in machine learning; their framework includes a degree of

automation, and can also be applied in other disciplines. Segura

et al. [37] applied metamorphic testing to the analysis of feature

models. Furthermore, metamorphic testing has detected real-life

faults in a number of programs, including a bioinformatics pro-

gram [6], two C compilers [40], a wireless metering system [25],

and three programs in the popular Siemens suite (schedule,

schedule2, and print tokens) [35], [41] which have been

extensively used and tested in the literature [13]. The detection of

these faults proves that metamorphic testing has brought a new

perspective to testing, not only for test result verification, but

also for test case generation. In other words, metamorphic testing

can be viewed as a test case selection method complementary to

existing methods.

Metamorphic testing has also been integrated with other soft-

ware analysis and testing techniques. Beydeda [4], for example,

presented an approach integrating the self-testing COTS compo-

nents method with metamorphic testing, which, because metamor-

phic testing provided an automatic way for test result verification,

significantly enhanced the COTS self-testability. Chen et al. [10]

integrated metamorphic testing with symbolic execution, resulting

in a method which can help verify program correctness with

respect to certain necessary properties. The method also provided

some important and useful information to support debugging.

Gotlieb and Botella [17] developed an automatic testing frame-

work by combining metamorphic testing with constraint logic

programming. Xie et al. [41] applied metamorphic testing to fault

localization, and proposed a methodology that supports spectrum-

based fault localization without the need for a test oracle. Their

investigations included the development of metamorphic slicing,

an integration of metamorphic relations with slicing techniques.

III. RELATED WORK

An approach to addressing the oracle problem may involve the

construction of oracles from formal specifications. Hierons [20],

for example, developed algorithms for two types of conformance

relations to test physically distributed systems using the frame-

work of finite state machines. However, such an approach requires

specifications expressed in a formal notation, which is not always

feasible. Compared with this, metamorphic testing is a more

generic approach, because it is applicable regardless of how the

specifications are written.

The assertion checking technique [36] uses assertions, normally

embedded in the source code during the programming phase.

These assertions are constraints on specific portions of the source

code, which, when the program is executed, help detect software

faults that violate the constraints at runtime. With assertion

checking, a fault could be revealed with a single execution of

the program under test, whereas metamorphic testing always

requires multiple executions. The fault-detection capability of

assertion checking has been compared with that of metamorphic

testing [21], [42]. It has been demonstrated that metamorphic

testing consistently detects more faults than assertion checking,

but may incur additional overheads. Different from these studies,

in the current paper we attempt to directly compare the fault-

detection effectiveness of metamorphic testing with that of a test

oracle, and thus answer more fundamental research questions,

such as, whether or not metamorphic testing really provides

an effective mechanism for imitating a test oracle. As will be

discussed in Section V-C, random testing with a base program as

the oracle is used to simulate the automatic test result verification

against an oracle, and thus provides a benchmark for evaluating

the effectiveness of metamorphic testing.

Another approach to alleviating the oracle problem has been to

use multiple versions of the program under test to play the role

of test oracle. Manolache and Kourie [28] achieved this using

N-version programming [2], which was originally designed as

a fault tolerance technique. They developed a so-called M-mp

testing strategy, in which M (M ≥ 1) “model programs” are used

together with the program under test to construct “an approximate

test oracle.” Such an approach, however, is not always reliable:

Knight and Leveson [24] have reported that different versions

of a program may not be developed independently. Furthermore,

there is also the possibility of faults common to all versions

appearing. Ammann and Knight [1] proposed the fault tolerance

technique of data diversity for situations where one and only one

version of a program exists. Their method requires an input t to be

“reexpressed” into t′, where t′ and t contain the same information,

but in different forms. For example, since a property of sine is

that for a given angle t, sin (t) = sin (π − t); if P is a program

which calculates the sine value of t, and outputs a value greater

than 1 (which obviously shows that P does not compute this

input correctly), then input t′ is set to (π − t), and executed,

hopefully resulting in a correct output. However, this technique

was designed with the assumed existence of a test oracle, and,

given the nature of fault tolerance, has the constraint that only

the equality relation is allowed.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

Recently, the mutation analysis technique [12] was used to help

construct test oracles. Staats et al. [38] proposed a mutation-based

method for automatically selecting some variables to construct

a test oracle, however, such a method assumed the existence

of an oracle — among all well-defined internal state or output

variables, it selects some which show high effectiveness in killing

mutants. Fraser and Zeller [16] investigated how to generate

unit tests and oracles based on a mutation technique, but the

oracles defined in their method are effectively a list of assertions.

Our study focuses on whether, and to what extent, metamorphic

testing effectively alleviates the oracle problem. Thus, rather

than comparing metamorphic testing with other techniques, we

concentrate on evaluating its effectiveness against the benchmark

provided by a simulated and automated oracle — which is

actually random testing applied to a base program, as explained

in Section V-C.

Some relatively simple ways to detect faults without a complete

test oracle also exist. Testers can use as inputs, some “special”

values for which the expected outputs are well-known (e.g.,

sin(π/2) must be 1). However, the applicability of such special

case testing is very limited. Another method is to reveal faults by

causing the program under test to crash (have an execution error,

such as segmentation fault, infinite loop, divide-by-zero, etc).

Although such an approach has successfully revealed faults [15],

[30], [31], only certain types of faults can be detected.

In addition to research into the application of metamorphic

testing, studies of its core components, metamorphic relations,

have also been conducted. Chen et al. [7] investigated how

to distinguish metamorphic relations with better fault-detection

potential. They suggested that testers should understand not only

the application domain, but also the algorithm’s structure, and

reported that for “good” metamorphic relations, the execution

behavior of the source test case should be very different from

that of the follow-up test case. In addition, Mayer and Guder-

lei [29] examined several determinant computation programs to

identify their metamorphic relations, finding that relations with

rich semantic properties had better fault-detection effectiveness.

Although there have already been many studies of various

aspects of metamorphic testing, to date, no work has been done

to evaluate how effectively metamorphic relations may be able to

approach the fault-finding efficiency of a test oracle. This paper

attempts to answer the research questions surrounding this issue

through a series of empirical studies.

IV. RESEARCH QUESTIONS

This section summarizes the fundamental research questions

for metamorphic testing, and how they will be answered through

the empirical studies.

• RQ1: How effectively can metamorphic relations detect

software faults?

Metamorphic relations, the core components of metamorphic

testing, provide a test result verification mechanism which

can imitate a test oracle. Their fault-detection effectiveness

is the major factor determining to what extent metamorphic

testing can alleviate the oracle problem. In the empirical

studies presented in this paper, the fault-detection effec-

tiveness of metamorphic relations was evaluated from the

following perspectives: the performance of each individual

metamorphic relation was measured according to the number

of faults it revealed; the total number of faults revealed by all

identified metamorphic relations for a subject program was

calculated; and finally, the relationship between the number

of metamorphic relations used and the overall fault-detection

effectiveness was analyzed. Through the investigation of

RQ1, not only can we qualitatively assess how effectively

metamorphic testing alleviates the oracle problem, but we

can also quantitatively evaluate how many metamorphic rela-

tions would normally be required to effectively imitate a test

oracle, based on which some guidelines could be provided

for applying metamorphic testing in practice. As detailed

in Section V-C, the effectiveness of metamorphic relations

is evaluated against two benchmarks: random testing with

and without an oracle. If a set of metamorphic relations

can deliver a fault-detection effectiveness much higher than

that of random testing without oracle, and similar to that of

random testing with an oracle, they could be considered to

effectively imitate a test oracle.

• RQ2: How capable are testers of alleviating the oracle

problem using metamorphic testing?

Obviously, the applicability and effectiveness of a testing

method depend on human factors, such as how easily testers

can learn the method, and how effectively they can apply

it. Previous studies [21], [42] have shown that it is not

difficult for testers to understand the basic concept of meta-

morphic testing, and be able to identify some appropriate

metamorphic relations. In this study, an in-depth analysis was

conducted of how easily metamorphic testing is understood

and applied, and also of the extent to which testers could

use metamorphic testing to alleviate the oracle problem. This

was done as follows: the number of faults detected by the

metamorphic relations identified by each individual tester

was measured; the overall performance of individual testing

teams, each consisting of several testers, was examined; and

the relationship between the fault-detection effectiveness and

the number of testers involved was investigated.

• RQ3: How can the cost-effectiveness of metamorphic testing

be optimized?

The two previous research questions focus on fault-detection

effectiveness, which is measured as the number of detected

faults. However, high fault-detection effectiveness may not

be useful if its cost is too high. A good testing method

should have high cost-effectiveness, that is, it should detect

as many faults as possible at a relatively low cost. The

cost-effectiveness of metamorphic testing depends on the

number of metamorphic relations and their fault-detection

effectiveness. This study investigated the fundamental factors

affecting the cost-effectiveness of metamorphic relations; a

better understanding of these factors should make it possible

to optimize the cost-effectiveness of metamorphic testing.

V. EXPERIMENT

An empirical analysis was adopted to answer the research ques-

tions in Section IV. The design and settings of the experiments

are described in this section.

A. Subject programs and mutant generation

When we selected the subject programs, a consideration was

that for appropriate identification of proper metamorphic relations,

the testers may need a significant amount of specific domain

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

knowledge. Because there are many application domains (such

as scientific computing, financial calculations, web services,

database applications, image processing, clinical systems, etc), it

is practically infeasible, if not impossible, to conduct an investi-

gation for general domains — it is extremely difficult to recruit a

sufficient number of testers with in-depth domain knowledge for

the various applications — therefore, our investigation needed

to be constrained to just a few domains. In the experiments, all

the testers were university students in computer science and/or

software engineering without any commercial experience. We

selected the algorithmic programs for which the testers had

sufficient domain knowledge to identify metamorphic relations.

In addition, the subject programs were selected such that they

were neither too complex nor too simple: If too complex, the

experiment would have required a prohibitively long time, and

this study aimed to complete both the training and experimental

application, for each individual participant, within a single day.

If too simple, the faults could easily have been detected by any

testing method, and might thereby undermine the validity of the

experiment.

Five Java programs representing different application areas

were selected as the subjects of the experiments (see Table I).

Understanding their specifications only required some basic

knowledge of data structures and search algorithms, which the

university students in these studies had already acquired. Mutants

for the subject programs were generated automatically using

muJava [27]. Since the focus was on the basic functionality of

each program, not the class interfaces, only the “traditional” muta-

tion operators (such as arithmetic operator replacement, relational

operator replacement, etc) were used to generate the mutants,

each of which contained a single fault. It should also be noted

that, like other specification-based techniques, the effectiveness of

metamorphic testing is hindered if mistakes exist in the software’s

specifications. Nevertheless, the subject programs’ specifications

were well-defined, with little ambiguity, and were examined very

carefully before being distributed to the testers. Therefore, the

possibility of problems in the specifications, and their potential

impact on our study, were minimized.

As will be discussed in Sections V-B and VI-A, the

metamorphic relations identified in this study detected real-

life faults in the original MultipleKnapsack [26] and

SparseMatrixMultiply [22] programs. These faulty pro-

grams were fixed, and the corrected versions were then used as

subjects in the study.

B. Metamorphic relation identification

For each subject program, two testing teams were assigned

to identify its metamorphic relations. Each team was composed

of four to seven members, who were postgraduate or senior

undergraduate students in computer science and/or software en-

gineering from the same university.

Although some of the students participating in the study had

already learned some basic software testing concepts, they had

neither the knowledge of metamorphic testing nor the practical

experience in testing. Before working on the subject programs, all

students were given a three-hour training session covering basic

metamorphic testing concepts and some examples of metamorphic

relations for applications other than the subject programs. The

training session consisted of a ninety-minute tutorial and a ninety-

minute exercise. In the tutorial, a trainer (a co-author of this paper)

first gave a one-hour presentation on metamorphic testing and

metamorphic relations, during which several examples were used

to illustrate the metamorphic relation identification. The trainer

then hosted a thirty-minute discussion session, during which the

students were encouraged to raise any questions and to discuss

the related topics. Next, to examine their understanding of the

training content, the students were given an exercise involving the

calculation of average, standard deviation, and median values for

a set of real numbers. They were then asked to work individually

to identify as many metamorphic relations as possible within

a period of one hour. In the final thirty minutes, the trainer

commented on the identified relations, discussing and providing

feedback to the students.

After the three-hour training, each student was next assigned

up to two subject programs, for each of which they were asked to

identify as many metamorphic relations as possible within ninety

minutes. Students worked individually and independently during

the metamorphic relation identification process: They were not

permitted to communicate with each other. At this point, students

who had been given the same subject program, and who came

from the same university, were considered to form a testing

team (even though they had not collaborated on the relations

identification). To minimize the learning effects, we allocated the

subject programs according to the following criteria: (1) Subject

programs were given in different orders — for example, one

team was required to first work on the MultipleKnapsack
program, and then, after this, on a different program; at the same

time, another team was given a different program, after they

finished with which, they then worked on MultipleKnapsack.

(2) Each pair of testing teams had at most one common subject

program — no two testing teams were allocated exactly the same

subject programs. For example, a testing team from University

A worked on the SparseMatrixMultiply and FindKNN
programs; while another testing team, from University B, worked

on FindKNN and SetCover.

After the identification process, the trainer (different testing

teams may be associated with different trainers) checked all

identified metamorphic relations, keeping the valid relations,

and discarding all others. The checked results were then also

confirmed by other trainers/co-authors, to further assure the

correctness. Table II summarizes the results of the metamorphic

relation identification process. In the table, the totals for meta-

morphic and invalid relations refer to distinct relations — for

MinimizeDFA, for example, the testing team from University

B identified eleven distinct metamorphic relations and two distinct

invalid relations, and the team from University C identified ten

distinct metamorphic relations and two distinct invalid relations,

but in total, only sixteen distinct metamorphic relations and

three distinct invalid relations were identified. From the table

it can be observed that, on average, each student was able to

identify two to six distinct metamorphic relations for each subject

program, which is consistent with other studies involving ad hoc

identification of metamorphic relations [21], [42]. It can also be

observed that each testing team could identify seven to eighteen

distinct metamorphic relations for each program. Table II also

shows that for each subject program, only up to three of the

relations identified by the testers were not valid metamorphic

relations. The average number of invalid relations was always

less than one per tester, per subject program, and usually no

greater than 0.5. Moreover, it was also easy for the trainer (who is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

TABLE I

SUBJECT PROGRAM INFORMATION

Program
Line of Number of

Basic functionality
code mutants

FindKNN 153 698 Finding the k nearest neighbors of a sample point [34]
MinimizeDFA 929 1,660 Minimizing a deterministic finite automaton [23]
MultipleKnapsack 808 1,905 Solving the multiple knapsack problem [26]
SparseMatrixMultiply 259 212 Multiplying two sparse matrices [22]
SetCover 211 258 Solving the set coverage problem using a greedy algorithm [3]

very familiar with the specifications) to identify invalid relations,

usually in less than a minute, simply by reading them. In other

words, the impact of invalid relations was very small. As a

reminder, the identification process was conducted in an ad hoc

manner: The students were not taught any systematic method to

generate the metamorphic relations.
All identified metamorphic relations were first verified against

the original programs. Surprisingly, this verification process re-

vealed two real-life faults in MultipleKnapsack, and one

fault in SparseMatrixMultiply (details are reported in

Section VI-A) — in other words, the metamorphic relations, even

defined in such an ad hoc way, were very effective at revealing

real faults! After fixing these faults, since the corrected versions of

these two programs, and the other three original subject programs,

satisfied all metamorphic relations, they were referred to as the

base programs in the experiments.

C. Random testing with and without a test oracle
The fault-detection effectiveness of metamorphic testing was

evaluated against two benchmarks: random testing without a test

oracle, referred to as RT in this paper; and random testing with a

test oracle, referred to as RTo in this paper. Both of these methods

show a high degree of testing automation — test case generation

and test result verification are automated — with little human

bias, and thus provide simple, but fair, comparison benchmarks

for evaluating how effectively metamorphic testing alleviates the

oracle problem.
Intuitively speaking, the fault-detection effectiveness of RT

should be the lower bound for the effectiveness of metamorphic

testing: If the performance of metamorphic testing is similar to

that of RT, then metamorphic testing cannot effectively alleviate

the oracle problem. In the absence of a test oracle, as was the

case with RT, a fault could only be revealed when the program

crashed (refer to Section III for the definition of “crash”). Such a

“crash only” verification scheme has been widely used in research

into random testing without a test oracle [15], [30], [31]. Since,

in addition to crashing the program, metamorphic testing uses

the violation of metamorphic relations to detect faults, intuitively

speaking, it should not perform worse than RT.
On the other hand, RTo provides an upper bound for the fault-

detection effectiveness of metamorphic testing: If a number of

metamorphic relations can collectively detect a similar number of

faults to RTo, then they could be considered to effectively imitate

a test oracle. In RTo, the base program served as a test oracle

to verify the results of mutants, as has been commonly adopted

in other experiments using mutation analysis techniques [12]. In

addition to crashing, for certain test cases, some mutants produced

different outputs to the base program, in which case these mutants

were said to be “killed” by these test cases. Both crashing and

killing implied the detection of faults.

In the testing, the following categories of fault-detection were

of interest: (i) crashed only mutants that were not killed by

any other test cases (hereafter referred to as crashed mutants);

(ii) crashed mutants that were also killed by some other test

cases (hereafter referred to as crashed and killed mutants); and

(iii) non-crashed mutants that were killed by some test cases

(hereafter referred to as killed mutants). RT could only identify

mutants of category (i) (that is, crashed mutants), while both

RTo and metamorphic testing could identify mutants of all three

categories (that is, killed or crashed mutants). Note that RTo and

metamorphic testing had slightly different meanings of “kill”: RTo

killed a mutant when the mutant had an output different from that

of the corresponding base program which was used as the test

oracle; metamorphic testing killed a mutant when a metamorphic

relation was violated by the outputs of some related source and

follow-up test cases for that mutant.

Suppose that nc mutants were crashed by RT, nkc mutants were

killed or crashed by RTo, and nMT mutants were killed or crashed

by metamorphic testing using a set of metamorphic relations.

In order to quantitatively evaluate how effectively metamorphic

testing imitates a test oracle, we introduce an oracle imitation
measure (Moim), defined as follows.

Moim =
nMT − nc

nkc − nc
. (1)

Note that Equation 1 is applicable when nkc > nc. Theoretically

speaking, although extremely unlikely, it is possible for nkc to

equal nc, which would imply that all faults can be revealed

by crashing alone, and thus neither an automated oracle nor

metamorphic relations would improve the fault-detection effec-

tiveness. If Moim approaches 0 (that is, nMT ≈ nc), it means

that metamorphic testing could not effectively alleviate the oracle

problem. On the other hand, if Moim approaches 1 (that is,

nMT ≈ nkc), it implies that metamorphic testing could effectively

imitate a test oracle. However, it should be pointed out that, as

explained in Section VI, because metamorphic testing and RTo

use different test cases in our experiments, metamorphic testing

was able to detect more faults than RTo (that is, Moim was

greater than 1 in some cases); in other words, the fault-detection

effectiveness of RTo is only considered to be the theoretical upper

bound.

D. Test case generation

For each subject program, one thousand test cases were gener-

ated randomly according to uniform distribution using the pseu-

dorandom number generator provided in the Java standard library.

By uniform distribution, we mean that all possible program inputs

had the same probability of being selected as test cases. For

instance, the MultipleKnapsack program accepts three sets

of integers as input: two n-tuple sets P = {p1, p2, · · · , pn}

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

TABLE II

IDENTIFICATION OF METAMORPHIC RELATIONS

Program Team

Number Number of metamorphic Number of invalid
of testers relations identified relations identified

in the team Team Total Average per tester Team Total Average per tester

FindKNN
University A 5 10 3.8 0 0
University B 5 11 4.2 2 0.4
total 10 16 4 2 0.2

MinimizeDFA
University B 6 11 2.8 2 0.33
University C 7 10 2.3 2 0.29
total 13 16 2.5 3 0.31

MultipleKnapsack
University D 5 17 6 1 0.2
University A 4 18 5.3 2 0.5
total 9 27 5.7 3 0.33

SparseMatrixMultiply
University D 5 18 4 0 0
University A 5 7 2.8 0 0
total 10 22 3.4 0 0

SetCover
University A 4 11 3.8 1 0.25
University B 5 15 3.8 3 0.6
total 9 18 3.8 3 0.44

and W = {w1, w2, · · · , wn}, which respectively represent the

profits and weights of n items to be selected, and one m-tuple

set C = {c1, c2, · · · , cm}, which represents the capacities of

m knapsacks to hold the selected items. The following proce-

dure was implemented to generate the random test cases for

MultipleKnapsack: First, randomly select the values for n

and m. Second, randomly select the values of pi and wi for each

of the n items (i = 1, 2, · · · , n). Third, randomly select the value

of cj for each of the m knapsacks (j = 1, 2, · · · ,m). An example

of the test cases randomly generated for MultipleKnapsack
is as follows: P = {95, 30, 93, 72, 19, 14, 68, 31, 56, 99}, W =

{46, 70, 91, 17, 80, 39, 88, 35, 24, 62}, and C = {113, 129, 150},

where n = 10 and m = 3. All one thousand random test cases

were used in the execution of RT and RTo.

Metamorphic testing involves two types of test cases, the source

and the follow-up. In the experiments, some of the one thousand

random test cases were selected as the source test cases, based

on which follow-up test cases were generated. In order to have

a fair comparison with RT and RTo, both of which used one

thousand random test cases, the total number of source and

follow-up test cases was kept as close as possible to one thousand,

without exceeding it, and the number of common test cases for

metamorphic testing and RT/RTo was maximized.

We applied the following settings in the experiments: Suppose

a metamorphic relation requires ms source test cases and mf

follow-up test cases. When only one metamorphic relation was

used in testing, the first
⌊

1000
1+mf/ms

⌋
random test cases were used

as source test cases. For example, suppose that MRa was used,

and it required two source test cases and one follow-up test case.

First,
⌊

1000
1+1/2

⌋
= 666 random test cases were used as source test

cases. Then, 333 follow-up test cases were generated, each of

which was constructed from two source test cases according to

MRa. Thus, a total of 999 (666 source + 333 follow-up) test cases

were used for testing with MRa.

When the testing of a subject program used multiple meta-

morphic relations, MR1, MR2, · · · , and MRn, each of which

required mi
s source test cases and mi

f follow-up test cases

(i = 1, 2, · · · , n), the first

⌊
1000

1+
∑n

i=1 mi
f/m

i
s

⌋
random test cases

were used as source test cases. Based on the source test cases,

follow-up test cases were constructed according to each of the

relevant metamorphic relations. For example, suppose that two

metamorphic relations, MRb and MRc, were used: MRb required

one source test case and one follow-up test case; and MRc

required one source test case and two follow-up test cases. First,⌊
1000

1+(1+2)

⌋
= 250 random test cases were selected as source test

cases. Next, each source test case was then used to construct one

follow-up test case according to MRb, and two follow-up test

cases according to MRc. This resulted in a total of 1, 000 test

cases (250 × (1 source + 1 follow-up for MRb + 2 follow-up for

MRc)).

As shown, this test case generation arrangement ensured that

up to a thousand test cases were generated and executed for each

run of metamorphic testing on an individual subject program.

VI. EXPERIMENTAL RESULTS

A. Detection of real-life faults

The metamorphic relations identified by the testers

were first tested on the original programs, surprisingly

revealing real-life faults in the MultipleKnapsack and

SparseMatrixMultiply programs, as detailed in this

section.

In the Java code of SparseMatrixMultiply [22], the

194th line was “ic[0] = 1;”, but should have been “ic[1] = 1;”.

This fault was revealed by 17 of the 22 identified metamorphic

relations. Nine of the ten testers who had been assigned the

SparseMatrixMultiply program identified metamorphic re-

lations capable of revealing this fault.

There were two faults found in the Java code of

MultipleKnapsack [26]: one was on the 95th line, which

was “q += origw[j]” but should have been “q += origp[j]”; and

the other was on the 190th line, which was “idex1 = aux[i]”

but should have been “idx1 = aux[1]”. Of all 27 metamorphic

relations identified for MultipleKnapsack, 11 could reveal

the first fault, and 19 could reveal the second. All nine testers

who had been assigned MultipleKnapsack identified meta-

morphic relations that revealed the second fault; and seven testers

identified relations that revealed the first.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

Previous studies of metamorphic testing have also reported

revealing real-life faults, even for well-tested software, includ-

ing three programs in the popular Siemens suite (schedule,

schedule2, and print tokens) [35], [41], C compil-

ers [40], bioinformatics programs [6], and wireless embedded

systems [25]. The detection of these real-life faults implies that

in addition to alleviating the oracle problem, metamorphic testing

is also an effective test case selection method complementary to

existing methods.

As a reminder, the mutation analysis in the following Sec-

tions (VI-B to VI-D) was based on the corrected versions of

MultipleKnapsack and SparseMatrixMultiply, and

the original versions of the other three programs. In other words,

the base programs satisfied all the metamorphic relations before

mutation began, and hence were used as test oracles in this

analysis.

B. RQ1: Fault-detection effectiveness of metamorphic relations

1) Fault-detection effectiveness of individual metamorphic re-
lations: Fig. 1 summarizes the fault-detection effectiveness of

individual metamorphic relations compared with RT; with RTo;

and with all identified metamorphic relations. In Fig. 1 (also in

Fig. 3 and Fig. 4), crashed mutants are displayed as white boxes;

crashed and killed mutants are displayed as black boxes on top of

white ones; and killed mutants are displayed as grey boxes on top

of black ones. As a reminder, since RT referred to random testing

without a test oracle, it could only identify crashed mutants, while

both RTo and metamorphic testing could kill mutants in addition

to crashing.

Because different test cases were used, the numbers of crashed

mutants for metamorphic testing were not necessarily equal to

those for RT (although they were quite similar): RT used the

whole pool of the one thousand randomly generated test cases;

while metamorphic testing used part of this random pool as

source test cases, and generated new follow-up test cases. As

can be observed from Fig. 1, apart from two metamorphic

relations (MR13 for SparseMatrixMultiply and MR10 for

FindKNN), the overwhelming majority of the relations (97 out

of 99) both killed and crashed mutants. In other words, it was

very likely that metamorphic testing using a single metamorphic

relation had a higher fault-detection effectiveness than RT.

Hypothesis testing was conducted to verify whether this obser-

vation was statistically significant. The significance level was set

to 0.05, and the null hypotheses (H0) were that each individual

metamorphic relation had similar fault-detection effectiveness to

RT. When the p-value was smaller than the significance level of

0.05, the null hypothesis was rejected; otherwise, it was accepted.

The two-tailed t-tests results are reported in the 2nd column of

Table III, in each cell of which, the decision (reject or accept)

was given based on the p-value represented by the number in

parentheses. It was shown that for each subject program, the null

hypothesis was rejected. Based on these t-test results, and the

data shown in Fig. 1, it can be concluded that even though the

metamorphic relations were identified in an ad hoc way, each

one by itself had significantly higher fault-detection effectiveness

than RT. In summary, in this instance of the oracle problem,

metamorphic relations definitely helped to reveal more faults than

RT, which depended entirely on program “crashing” to reveal

faults.

The t-tests for the comparison between individual metamor-

phic relations and RTo are summarized in the 3rd column of

Table III. Obviously, an arbitrary metamorphic relation could not

be expected to outperform a test oracle, therefore an investigation

was conducted into how well individual metamorphic relations

could alleviate the oracle problem. A histogram analysis was

used to quantitatively compare the fault-detection capabilities

of the individual metamorphic relations and a test oracle. For

each subject program, 10 groups of metamorphic relations were

defined as follows: Each of the first 9 groups was defined as the

group of metamorphic relations that individually has the value of

Moim ∈ [(i− 1)× 0.1, i× 0.1), where i = 1, 2, · · · , 9. The 10th

group contains the metamorphic relations that have Moim ≥ 0.9.

Technically speaking, each group (with the exception of Group

10) represents a 10% difference in effectiveness between RT and

RTo. The grouping of metamorphic relations is summarized in

Table IV, where the number of metamorphic relations in each

group for each program is given. For example, the value of

“5” in the entry corresponding to Group 7 and the program

MinimizeDFA means that there were five metamorphic relations

for MinimizeDFA, each of which outperformed RT by 60% to

70% of the difference in effectiveness between RT and RTo.

Based on Table IV, it can be observed that there were 19

metamorphic relations (Group 10, 19.19% of all), each of which

outperformed RT by at least 90% of the difference in effectiveness

between RT and RTo. Since 55.56% ((6+10+8+12+19)/99) of

the metamorphic relations are in Groups 6-10, this means that over

half of identified metamorphic relations each achieved a fault-

detection effectiveness at least half way between that of RT and

that of RTo.

2) Fault-detection effectiveness when using all identified meta-
morphic relations: We compared the fault-detection effectiveness

of using all identified metamorphic relations with that of RTo

and of RT, as summarized in Table V. It can be observed

that the use of all identified metamorphic relations always had

much higher fault-detection effectiveness than RT. It can also be

observed that when using all identified metamorphic relations,

metamorphic testing killed or crashed a similar (or sometimes

even larger) number of mutants compared with RTo. For one

program (FindKNN), the fault-detection effectiveness when us-

ing all identified metamorphic relations was only marginally

lower than that of RTo (0.95 < Moim < 1). For another

program (SetCover), the use of all identified metamorphic re-

lations and RTo had exactly the same fault-detection effectiveness

(Moim = 1). For the remaining three programs (MinimizeDFA,

MultipleKnapsack, and SparseMatrixMultiply), the

use of all identified metamorphic relations was able to outperform

RTo. Note that although RTo had been expected to play the role of

an upper bound on performance, it was possible for metamorphic

testing in this experiment to detect more faults than RTo because

they used different test cases. In summary, the collection of all

identified metamorphic relations, even though they were identified

in an ad hoc way, can be regarded as an effective imitation for a

test oracle.

3) Relationship between fault-detection effectiveness and the
number of metamorphic relations used in metamorphic testing:
Fig. 2 reports how many mutants for individual subject programs

were killed or crashed when a certain number of metamorphic

relations were used together in the testing. In Fig. 2, each box-

plot represents the statistical distribution of the number of mutants

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

RT

RTo

0

100

200

300

400

500

600

700

RT

M
R1

M
R2

M
R3

M
R4

M
R5

M
R6

M
R7

M
R8

M
R9

M
R1

0

M
R1

1

M
R1

2

M
R1

3

M
R1

4

M
R1

5

M
R1

6

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(a) FindKNN

RT

RTo

0

200

400

600

800

1000

1200

1400

1600

RT

M
R1

M
R2

M
R3

M
R4

M
R5

M
R6

M
R7

M
R8

M
R9

M
R1

0

M
R1

1

M
R1

2

M
R1

3

M
R1

4

M
R1

5

M
R1

6

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(b) MinimizeDFA

killed or crashed by a given number of metamorphic relations

(note that for this given number, there were various possible

groups of metamorphic relations). The upper and lower bounds

of the box denote the third and first quartile of the number of

killed or crashed mutants, respectively, while the middle line

inside the box represents the median value. The top and bottom

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

RT

RTo

0

200

400

600

800

1000

1200

1400

1600

RT
M
R1

M
R2

M
R3

M
R4

M
R5

M
R6

M
R7

M
R8

M
R9

M
R1

0
M
R1

1
M
R1

2
M
R1

3
M
R1

4
M
R1

5
M
R1

6
M
R1

7
M
R1

8
M
R1

9
M
R2

0
M
R2

1
M
R2

2
M
R2

3
M
R2

4
M
R2

5
M
R2

6
M
R2

7
al
lM

Rs
RT

o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(c) MultipleKnapsack

RT

RTo

0

20

40

60

80

100

120

140

160

180

200

RT
M
R1

M
R2

M
R3

M
R4

M
R5

M
R6

M
R7

M
R8

M
R9

M
R1

0
M
R1

1
M
R1

2
M
R1

3
M
R1

4
M
R1

5
M
R1

6
M
R1

7
M
R1

8
M
R1

9
M
R2

0
M
R2

1
M
R2

2
al
lM

Rs
RT

o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(d) SparseMatrixMultiply

whiskers denote the maximum and minimum values, respectively,

and a square dot denotes the mean number of mutants killed or

crashed by a given number of metamorphic relations. For ease of

comparison, the fault-detection effectiveness of RTo and RT are

given as the horizontal dot lines in Fig. 2.

Fig. 2 shows a trend that when more metamorphic relations

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

RT

RTo

0

50

100

150

200

250

RT
M
R1

M
R2

M
R3

M
R4

M
R5

M
R6

M
R7

M
R8

M
R9

M
R1

0
M
R1

1
M
R1

2
M
R1

3
M
R1

4
M
R1

5
M
R1

6
M
R1

7
M
R1

8
al
lM

Rs
RT

o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(e) SetCover

crashed mutants crashed and killed mutants killed mutants

Fig. 1. Relationship between individual metamorphic relations and the number of killed/crashed mutants

TABLE III

T-TESTS FOR COMPARING INDIVIDUAL METAMORPHIC RELATIONS WITH RT AND RTO

Program
Decision on the comparison with
RT RTo

FindKNN
REJECT REJECT

(1.33× 10−4) (1.19× 10−4)

MinimizeDFA
REJECT REJECT

(1.13× 10−10) (6.70× 10−7)

MultipleKnapsack
REJECT REJECT

(1.69× 10−9) (8.59× 10−7)

SparseMatrixMultiply
REJECT REJECT

(1.51× 10−8) (3.83× 10−5)

SetCover
REJECT REJECT

(2.07× 10−4) (3.59× 10−7)

H0: Each individual metamorphic relation had similar fault-detection effectiveness to RT/RTo.

were used, not only were more mutants killed or crashed, but also

the variation between the fault-detection capabilities of various

groups of the same number of metamorphic relations decreased.

In other words, with an increase in the number of metamorphic

relations, the fault-detection effectiveness was not only increased,

but also stabilized.

Based on the data in Fig. 2, it is possible to calcu-

late the average number (nMR) of metamorphic relations re-

quired to outperform RT by at least 90% of the differ-

ence in effectiveness between RT and RTo. It was found

that for FindKNN, MinimizeDFA, MultipleKnapsack,

SparseMatrixMultiply, and SetCover, nMR was 5

(31.25% of 16), 4 (25% of 16), 4 (14.81% of 27), 3 (13.63% of 22),

and 6 (33.33% of 18), respectively. These results imply that even

though 16 to 27 metamorphic relations were identified for each

subject program in this investigation, it may not have been cost-

effective to use all of them in the testing. For each program under

investigation, there was a very good chance of outperforming RT

by at least 90% of the difference in effectiveness between RT and

RTo by using just three to six of the metamorphic relations. In

other words, to imitate a test oracle, it may have been more cost-

effective for metamorphic testing to use an arbitrary choice of at

most a third of all the identified metamorphic relations — even

though these relations were identified by different testers without

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

TABLE IV

GROUPING OF METAMORPHIC RELATIONS, COMPARING WITH RT AND RTO

Group FindKNN

Total number
Minimize Multiple SparseMatrix Set of metamorphic

DFA Knapsack Multiply Cover relations in
a group

1 5 0 2 3 4 14
2 0 0 2 0 4 6
3 1 0 1 2 2 6
4 1 1 4 2 2 10
5 1 1 4 0 2 8
6 0 4 2 0 0 6
7 0 5 1 4 0 10
8 3 1 2 2 0 8
9 2 3 2 4 1 12
10 3 1 7 5 3 19

Total number

16 16 27 22 18 99
of metamorphic

relations for
a program

TABLE V

FAULT-DETECTION EFFECTIVENESS FOR ALL METAMORPHIC RELATIONS COMPARED WITH RTO/RT

Program
Moim when using all
metamorphic relations

FindKNN 0.9582
MinimizeDFA 1.0328
MultipleKnapsack 1.0241
SparseMatrixMultiply 1.1757
SetCover 1

extensive experience in testing.

C. RQ2: Capabilities of testers

1) Capability of individual testers: The fault-detection effec-

tiveness of metamorphic relations identified by individual testers

for each subject program is reported in Fig. 3, which, for ease of

comparison, also includes the results for using all metamorphic

relations, for RTo, and for RT.

Fig. 3 clearly shows that each tester was able to identify

metamorphic relations that were sufficient by themselves to reveal

more faults than RT. It can also be observed that the fault-

detection effectiveness of the identified metamorphic relations

varied from tester to tester. Table VI reports the results of two-

tailed t-tests conducted to compare the fault-detection effective-

ness of the metamorphic relations identified by each tester with

RT and RTo. In the tests, the null hypotheses (H0) were that

the group of metamorphic relations identified by an individual

tester had similar fault-detection effectiveness to RT/RTo; the

significance level was set to 0.05.

As can be observed from Table VI and Fig. 3, it is statistically

significant that the metamorphic relations identified by a single

tester detected more faults than RT. However, we could not obtain

a general conclusion whether the metamorphic relations identified

by a single tester were as effective as RTo with respect to the num-

ber of revealed faults. For two programs (MultipleKnapsack
and SparseMatrixMultiply), there was no statistically sig-

nificant difference between the fault-detection effectiveness of

RTo and the metamorphic relations identified by a single tester;

for the remaining three programs, it was statistically significant

that RTo had higher fault-detection effectiveness than all the

metamorphic relations identified by a single tester.

A histogram analysis was again used to quantitatively compare

the fault-detection capabilities of the metamorphic relations iden-

tified by a single tester and a test oracle (refer to Table IV and

related discussion in Section VI-B.1 for details of such a method

and the grouping scheme). The grouping of the fault-detection

effectiveness of testers is summarized in Table VII, where the

number of testers in each group for each subject program is given.

For example, the value of “2” in the entry corresponding to Group

9 and the program FindKNN means that there were two testers

who individually identified a group of metamorphic relations for

FindKNN that outperformed RT by 80% to 90% of the difference

in effectiveness between RT and RTo.

Table VII shows that, on average, 58.82% (30/51) of testers

identified metamorphic relations that outperformed RT by at least

90% of the difference in effectiveness between RT and RTo (that

is, Group 10). 94.12% ((3 + 5 + 2 + 8 + 30)/51, from Groups 6

to 10) of testers were able to identify metamorphic relations that

achieved a fault-detection effectiveness half way between that of

RT and that of RTo.

In summary, although each tester was a student without training

or experience in metamorphic testing prior to this experiment,

and was asked to identify metamorphic relations in an indepen-

dent and ad hoc way, the majority of these students performed

well (achieving a fault-detection effectiveness at least half way

between that of RT and that of RTo), and over half of them could

use metamorphic testing to achieve a very high fault-detection

effectiveness (improving on RT by at least 90% of the difference

between RT and RTo). Nevertheless, no single tester applying

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

RT

RTo

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of used metamorphic relations

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(a) FindKNN

RT

RTo

1150

1200

1250

1300

1350

1400

1450

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of used metamorphic relations

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(b) MinimizeDFA

RT

RTo

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627
Number of used metamorphic relations

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(c) MultipleKnapsack

RT

RTo

120

130

140

150

160

170

180

190

200

210

1 2 3 4 5 6 7 8 9 10111213141516171819202122
Number of used metamorphic relations

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(d) SparseMatrixMultiply

RT

RTo

100

120

140

160

180

200

220

240

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of used metamorphic relations

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(e) SetCover

Fig. 2. Relationship between the number of metamorphic relations used and the number of killed/crashed mutants

metamorphic testing could guarantee that a sufficient number of

metamorphic relations were identified to imitate an oracle: A

testing team composed of different testers was required, as is

discussed in the following.

2) Capability of testing teams: In the experiments, every sub-

ject program was investigated by two testing teams, each of which

consisted of four to seven students from the same university. Fig. 4

reports the fault-detection effectiveness of metamorphic relations

with respect to the testing teams, and Table VIII compares this

fault-detection effectiveness with that of RT and that of RTo.

As can be observed from Table VIII and Fig. 4, each testing

team always identified a set of metamorphic relations that were

altogether more effective than RT at revealing faults. On the

other hand, generally speaking, there was no significant difference

between the fault-detection effectiveness of RTo and the metamor-

phic relations identified by a testing team. In other words, the set

of metamorphic relations identified by a testing team effectively

imitates a test oracle, in spite of the fact that the team consisted

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

RT

RTo

0

100

200

300

400

500

600

700

RT

U
ni
A
F1

U
ni
A
F2

U
ni
A
F3

U
ni
A
F4

U
ni
A
F5

U
ni
B
F1

U
ni
B
F2

U
ni
B
F3

U
ni
B
F4

U
ni
B
F5

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(a) FindKNN

RT

RTo

0

200

400

600

800

1000

1200

1400

1600

RT

U
ni
B
D
1

U
ni
B
D
2

U
ni
B
D
3

U
ni
B
D
4

U
ni
B
D
5

U
ni
B
D
6

U
ni
C
D
1

U
ni
C
D
2

U
ni
C
D
3

U
ni
C
D
4

U
ni
C
D
5

U
ni
C
D
6

U
ni
C
D
7

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(b) MinimizeDFA

RT

RTo

0

200

400

600

800

1000

1200

1400

1600

RT

U
ni
D
K1

U
ni
D
K2

U
ni
D
K3

U
ni
D
K4

U
ni
D
K5

U
ni
A
K1

U
ni
A
K2

U
ni
A
K3

U
ni
A
K4

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(c) MultipleKnapsack

RT

RTo

0

20

40

60

80

100

120

140

160

180

200

RT

U
ni
D
M
1

U
ni
D
M
2

U
ni
D
M
3

U
ni
D
M
4

U
ni
D
M
5

U
ni
A
M
1

U
ni
A
M
2

U
ni
A
M
3

U
ni
A
M
4

U
ni
A
M
5

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(d) SparseMatrixMultiply

RT

RTo

0

50

100

150

200

250

RT

U
ni
A
S1

U
ni
A
S2

U
ni
A
S3

U
ni
A
S4

U
ni
B
S1

U
ni
B
S2

U
ni
B
S3

U
ni
B
S4

U
ni
B
S5

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(e) SetCover

crashed mutants crashed and killed mutants killed mutants

Fig. 3. Relationship between metamorphic relations identified by the same tester and the number of killed/crashed mutants

of inexperienced testers who identified the metamorphic relations

in an individual and ad hoc way.

3) Relationship between fault-detection effectiveness and the
number of testers: Fig. 5 reports the fault-detection effectiveness

of metamorphic relations identified by a group of testers.

Based on the data in Fig. 5, it is possible to calcu-

late the average number of testers (ntr) required to identify

a sufficient number of metamorphic relations to outperform

RT by at least 90% of the difference in effectiveness be-

tween RT and RTo. It was found that ntr = 2, 3, 1, 2,

and 1, for FindKNN, MinimizeDFA, MultipleKnapsack,

SparseMatrixMultiply, and SetCover, respectively.

These results imply that if three testers were involved, then the

metamorphic testing in this case could have been as effective

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

14

TABLE VI

T-TESTS FOR COMPARING THE METAMORPHIC RELATIONS IDENTIFIED BY A SINGLE TESTER WITH RT AND RTO

Program
Decision on the comparison with
RT RTo

FindKNN
REJECT REJECT

(5.61× 10−7) (0.0243)

MinimizeDFA
REJECT REJECT

(3.86× 10−11) (5.50× 10−5)

MultipleKnapsack
REJECT ACCEPT

(8.87× 10−7) (0.2113)

SparseMatrixMultiply
REJECT ACCEPT

(1.50× 10−5) (0.2172)

SetCover
REJECT REJECT

(2.97× 10−9) (0.0462)

H0: The group of metamorphic relations identified by the same individual tester had similar fault-detection effectiveness to RT/RTo.

TABLE VII

GROUPING OF TESTERS AS COMPARED WITH RT AND RTO

Group FindKNN
Minimize Multiple SparseMatrix Set

Total number

DFA Knapsack Multiply Cover
of testers

in a group
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 1 0 0 2 0 3
4 0 0 0 0 0 0
5 0 0 0 0 0 0
6 0 1 2 0 0 3
7 0 4 0 0 1 5
8 2 0 0 0 0 2
9 2 5 0 0 1 8
10 5 3 7 8 7 30

Total number
10 13 9 10 9 51of testers

for a program

TABLE VIII

FAULT-DETECTION EFFECTIVENESS FOR METAMORPHIC RELATIONS IDENTIFIED BY THE TESTING TEAMS COMPARED WITH RTO/RT

Program Team
Moim when using metamorphic relations
identified by a testing team

FindKNN
University A 0.9582
University B 0.95

MinimizeDFA
University B 1.0287
University C 0.9549

MultipleKnapsack
University D 1.0101
University A 1.0262

SparseMatrixMultiply
University D 1.1757
University A 1

SetCover
University A 1
University B 1

as RTo. In other words, only a small number of testers were

sufficient to identify metamorphic relations acting as a test result

verification mechanism which was as effective as a test oracle,

even though the metamorphic relations were identified in an ad

hoc way by inexperienced testers.

D. RQ3: Enhancement of metamorphic testing cost-effectiveness

Further investigations revealed that the groups of metamorphic

relations with the smallest number of killed or crashed mutants

displayed some degree of “similarity”: These metamorphic rela-

tions appeared to be related to the same properties or character-

istics of the subject program. These observations motivated the

question of how to enhance the cost-effectiveness of metamorphic

testing, and led to the conjecture that relations having more “diver-

sity” (less similarity) would be more cost-effective. Intuitively, for

the same number of metamorphic relations, more diverse relations

could deliver higher fault-detection effectiveness than similar

relations; likewise, comparable fault-detection effectiveness could

still be achieved using fewer, but more diverse, metamorphic

relations. Therefore, diversity in metamorphic relations should

enhance the cost-effectiveness of metamorphic testing.

Experiments were conducted to validate this conjecture. Four

assessors with experience in metamorphic testing were recruited

to group the metamorphic relations identified in the previous

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

15

RT

RTo

0

100

200

300

400

500

600

700

RT

U
ni
A
F

U
ni
B
F

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(a) FindKNN

RT

RTo

0

200

400

600

800

1000

1200

1400

1600

RT

U
ni
B
D

U
ni
C
D

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(b) MinimizeDFA

RT

RTo

0

200

400

600

800

1000

1200

1400

1600

RT

U
ni
D
K

U
ni
A
K

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(c) MultipleKnapsack

RT

RTo

0

20

40

60

80

100

120

140

160

180

200

RT

U
ni
D
M

U
ni
A
M

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(d) SparseMatrixMultiply

RT

RTo

0

50

100

150

200

250

RT

U
ni
A
S

U
ni
B
S

al
lM

Rs

RT
o

N
um

be
ro

fk
ill
ed

or
cr
as
he

d
m
ut
an

ts

(e) SetCover

crashed mutants crashed and killed mutants killed mutants

Fig. 4. Relationship between metamorphic relations identified by the same testing team and the number of killed/crashed mutants

experiments based on their own ideas of similarity. As expected,

Table IX shows that different assessors had different grouping

outcomes, reflecting their different interpretations of similarity.

The effectiveness of an assessor’s grouping was analyzed as

follows. Suppose that an assessor had classified all metamorphic

relations for the same subject program into g groups. From these

g groups, m (m = 2, 3, · · · , g) groups were randomly chosen,

and from each of these m groups, one and only one metamorphic

relation was then randomly selected. Intuitively speaking, such

m selected metamorphic relations exhibit some kind of diversity

because they have been selected from different groups of similar

metamorphic relations. The fault-detection effectiveness of these

m “diverse” metamorphic relations was then compared with

that of m randomly sampled metamorphic relations, which was

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

16

RT

RTo

250

300

350

400

450

500

550

600

650

700

1 2 3 4 5 6 7 8 9 10
Number of involved testers

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(a) FindKNN

RT

RTo

1150

1200

1250

1300

1350

1400

1450

1500

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of involved testers

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(b) MinimizeDFA

RT

RTo

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9
Number of involved testers

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(c) MultipleKnapsack

RT

RTo

120

130

140

150

160

170

180

190

200

210

1 2 3 4 5 6 7 8 9 10
Number of involved testers

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(d) SparseMatrixMultiply

RT

RTo

100

120

140

160

180

200

220

240

1 2 3 4 5 6 7 8 9
Number of involved testers

N
um

be
r o

f k
ill

ed
 o

r c
ra

sh
ed

 m
ut

an
ts

(e) SetCover

Fig. 5. Relationship between the number of testers involved and the number of killed/crashed mutants

reported in Section VI-B.3 and Fig. 2. The comparisons were

conducted from two perspectives: the average number of killed

or crashed mutants (average effectiveness); and the standard

deviation of the number of killed or crashed mutants (effective-
ness reliability). Note that we removed redundant metamorphic

relations prior to the random sampling: The random sampling

was on a pool of distinct metamorphic relations.

The massive amount of data used to derive the average ef-

fectiveness and effectiveness reliability of diverse metamorphic

relations will not be reported here, but Tables X and XI summarize

the two-tailed t-test results for the comparisons. In the tables, the

rightmost bottom cell presents the t-test result for all programs

and all assessors; each cell in the rightmost column shows the t-

test result for each program for all assessors; each cell in the

bottom row reports the t-test result for each assessor for all

programs; and each of the remaining cells has the t-test result for

each combination of program and assessor. The null hypotheses

for these t-tests were that m diverse metamorphic relations had

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

17

TABLE IX

GROUPING OF METAMORPHIC RELATIONS ACCORDING TO THE ASSESSOR’S OWN INTUITION OF SIMILARITY

Program
Number of Number of groups classified by

metamorphic
Assessor1 Assessor2 Assessor3 Assessor4

relations
FindKNN 16 4 6 10 7
MinimizeDFA 16 4 7 13 9
MultipleKnapsack 27 9 12 17 12
SparseMatrixMultiply 22 6 8 13 10
SetCover 18 7 12 13 8

a similar performance to m randomly sampled metamorphic

relations in terms of the average effectiveness (Tables X) and

the effectiveness reliability (Tables XI). In each cell of the tables,

the number in parentheses represents the p-value, based on which

the decision (reject or accept) was made.

Based on the experimental data and the t-test results in Tables X

and XI, it can be observed that when considering all programs

and all assessors, it was statistically significant that both the

average effectiveness and the average effectiveness reliability

were enhanced by the use of diverse metamorphic relations. 14

of the 20 different assessor–program scenarios had statistically

significant higher fault-detection effectiveness and reliability for

m diverse metamorphic relations than m randomly sampled

metamorphic relations. Only in one scenario (Assessor1 for

program SparseMatrixMultiply), was there no statistically

significant difference for either the average effectiveness or the

effectiveness reliability.

With respect to individual subject programs, the t-test results

show that the average effectiveness could not be significantly

enhanced by more diverse metamorphic relations for two pro-

grams (FindKNN and MultipleKnapsack, as shown in the

rightmost column of Table X), but more diverse metamorphic

relations could result in more statistically reliable fault-detection

effectiveness for all five subject programs (as shown in the right-

most column of Table XI). Furthermore, although the different as-

sessors had different intuitions regarding similarity and diversity,

their groupings helped to select diverse metamorphic relations

which significantly enhanced both the average effectiveness and

the effectiveness reliability (as shown in the bottom rows of

Tables X and XI).

VII. THREATS TO VALIDITY

The threats to validity of this study are discussed as follows.

The threat to internal validity is mainly related to the implemen-

tation of metamorphic testing, and the generation of (pseudo) ran-

dom test cases. The programming required was relatively small-

scale, and all the source code was carefully reviewed, several

times. We are confident that both the metamorphic testing and

the random test case generation have been correctly implemented

in the experiments.

The major potential threats to external validity relate to the

selection of subject programs and the identification of their asso-

ciated metamorphic relations. As mentioned in Section V-A, due

to the experimental constraints, we selected five subject programs

of the algorithmic type, and these programs could neither be

too complex, nor require much specific domain knowledge —

therefore it might be argued that the findings of this study cannot

be generalized to any type of program. Nevertheless, we believe

that our results are still very useful for providing guidelines for

the application of metamorphic testing in practice. Metamorphic

testing has been successfully used in the testing of different

types of programs, such as online ATM [39], telecommuni-

cations [8], wireless metering [25], compilers [40], and office

applications [21], [42]. In these previous studies, it has been

consistently shown that testers with adequate domain knowledge

could identify a sufficient number of metamorphic relations.

Compared with the subject programs in this study (each of

which implemented a single functionality), simpler programs may

need even fewer metamorphic relations to effectively alleviate

the oracle problem; similarly, more complicated systems, with

multiple distinct functionalities, may require more metamorphic

relations to effectively imitate a test oracle. Moreover, since

each tester identified metamorphic relations in an independent

and ad hoc manner, such a process was somewhat subjective.

Several invalid metamorphic relations were also generated, and

the number of these might vary with application domains. The

recruited testers were university students, who had neither prior

knowledge of metamorphic testing nor formal experience in

software testing. Nevertheless, if these testers could deliver such

promising results after a brief training, it is very likely that more

professional testers would be able to identify even more diverse

and effective metamorphic relations. In our study, four assessors

with experience in metamorphic testing were recruited to classify

the identified metamorphic relations into similar groups. Although

such a grouping process was subjective and dependent on the as-

sessors’ individual understanding of similarity, it did significantly

improve the effectiveness of metamorphic testing.

The main potential threat to construct validity is in the mea-

surements used in this study. Fault-detection effectiveness was

evaluated based on the number of killed or crashed mutants,

a measurement metric commonly used in experiments using

mutation analysis, which has been acknowledged as a popular

and fair method for evaluating a testing method’s effectiveness.

In addition, we introduced an oracle imitation measure to quan-

titatively examine the extent to which metamorphic testing can

imitate the fault-detection effectiveness of a test oracle. This

measure compares metamorphic testing’s fault-detection with that

of random testing with and without an oracle, giving the relative

degree to which metamorphic testing approximates the oracle.

There should be little threat to the conclusion validity in this

study: A large number of test cases were used in the testing, and

the experiments resulted in a huge amount of data, which enabled

a statistically reliable conclusion. Furthermore, formal statistical

tests were employed to verify the statistical significance of the

experimental results.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

18

TABLE X

COMPARISON OF THE AVERAGE EFFECTIVENESS OF DIVERSE AND RANDOMLY SAMPLED METAMORPHIC RELATIONS

Program Assessor1 Assessor2 Assessor3 Assessor4 All assessors

FindKNN
REJECT REJECT REJECT ACCEPT ACCEPT

(0.0086) (5.33× 10−5) (0.0381) (0.2639) (0.2256)

MinimizeDFA
REJECT REJECT REJECT REJECT REJECT

(0.0406) (0.0087) (0.0176) (4.63× 10−6) (7.18× 10−5)
Multiple REJECT REJECT ACCEPT REJECT ACCEPT

Knapsack (0.0005) (2.16× 10−7) (0.9078) (0.0411) (0.5590)
SparseMatrix ACCEPT REJECT ACCEPT REJECT REJECT

Multiply (0.4204) (0.0002) (0.8724) (0.0137) (0.0364)

SetCover
REJECT REJECT REJECT REJECT REJECT

(0.0005) (2.73× 10−6) (0.0003) (0.0002) (1.18× 10−7)

All programs
REJECT REJECT REJECT REJECT REJECT

(0.0431) (0.0353) (0.0024) (0.0061) (0.0025)

H0: m diverse metamorphic relations had similar average effectiveness to m randomly sampled metamorphic relations.

TABLE XI

COMPARING THE EFFECTIVENESS RELIABILITY OF DIVERSE AND RANDOMLY SAMPLED METAMORPHIC RELATIONS

Program Assessor1 Assessor2 Assessor3 Assessor4 All assessors

FindKNN
REJECT REJECT ACCEPT REJECT REJECT

(0.0022) (0.0061) (0.2429) (0.0084) (0.0035)

MinimizeDFA
REJECT REJECT ACCEPT REJECT REJECT

(0.0271) (0.0050) (0.5845) (0.0022) (8.98× 10−5)
Multiple REJECT REJECT REJECT REJECT REJECT

Knapsack (0.0018) (0.0311) (5.90× 10−6) (0.0002) (0.0081)
SparseMatrix ACCEPT REJECT REJECT REJECT REJECT

Multiply (0.5212) (2.73× 10−5) (0.0080) (0.0017) (0.0001)

SetCover
REJECT REJECT REJECT REJECT REJECT

(0.0097) (0.0002) (4.51× 10−5) (0.0039) (1.23× 10−7)

All programs
REJECT REJECT REJECT REJECT REJECT

(0.0252) (0.0020) (2.70× 10−7) (8.14× 10−7) (2.99× 10−10)

H0: m diverse metamorphic relations had similar effectiveness reliability to m randomly sampled metamorphic relations.

VIII. DISCUSSION AND CONCLUSION

Metamorphic testing is an approach to software testing which

can alleviate the oracle problem. It makes use of some necessary

properties (metamorphic relations) of the software under test to

provide a test result verification mechanism which can imitate a

test oracle. This paper has presented empirical evidence to support

this approach, including providing answers to the following

questions: to what extent can metamorphic testing alleviate the

oracle problem; how easily and successfully can testers detect

faults using metamorphic testing; and what are the key factors

that influence the effectiveness of metamorphic testing?

In the presented study, several groups of undergraduate and

postgraduate students were recruited to identify metamorphic

relations in five subject programs of algorithmic type. Even

though the metamorphic relations were identified in an individual,

independent, and ad hoc manner, by students who had neither

formal testing experience nor prior knowledge of metamorphic

testing, the identified metamorphic relations had very high fault-

detection effectiveness. The fault-detection effectiveness and the

average number of metamorphic relations identified by an indi-

vidual tester are consistent with results observed in independent

studies involving subject programs from different application do-

mains [21], [42]. In the experiments, almost every identified meta-

morphic relation (except MR13 for SparseMatrixMultiply
and MR10 for FindKNN) was able to detect more faults than the

commonly adopted approach of crashing. It was observed that

for each program, the aggregate of all its identified metamorphic

relations could reveal a similar number of faults to a test oracle,

which is the base program in this study. Further investigation

revealed that the cost-effectiveness of the approach could be

improved by reducing the number of metamorphic relations used:

It was found that an average of three to six diverse metamorphic

relations were sufficient to achieve comparable fault-detection

effectiveness to a test oracle.

Although it was initially surprising that a small number of

diverse metamorphic relations were sufficient to match the fault-

detection effectiveness of a test oracle, a reflection shows that

it is in fact intuitively appealing. Consider the following simple

example, which explains the underlying rationale for why several

metamorphic relations may be able to imitate a test oracle. Sup-

pose a program P accepts a real number x, and outputs the value

of a polynomial of degree n, f(x) =
n∑

i=0
aix

i. According to the

competent programmer hypothesis, a faulty program should not be

very different from the correct implementation [12]. Technically

speaking, even if P is faulty, it would most likely output the value

of a similar function, for example, another polynomial of degree

m, g(x) =
m∑
i=0

bix
i. Define h(x) = f(x) − g(x) =

max(m,n)∑
i=0

cix
i,

where ci =

⎧⎪⎨
⎪⎩
ai − bi if i ≤ min(m,n),

ai if m < i ≤ n,

−bi if n < i ≤ m.

Since h is a polynomial

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

19

of, at most, degree max(m,n), there are at most max(m,n) roots

for the equation h(x) = 0. In other words, if P is faulty, there

are at most max(m,n) values of x for which f(x) and g(x) give

the same value (that is, f(x) = g(x)). Consequently, any set of

(max(m,n) + 1) (x, f(x)) pairs is sufficient to verify whether

P is implementing f or g. Suppose that there are a total of N

possible inputs for P (that is, possible values of x). Normally,

N � max(m,n); in theory, N may be infinite. If P implements

g instead of f , then the probability of selecting a value of x such

that g(x) = f(x) is very small, that is, Prob (g(x) = f(x)) ≤
max(m,n)

N � 1. Given k (k < max(m,n)) arbitrarily se-

lected values for x, Prob (g(x) �= f(x) for at least one x) ≥(
1−

k−1∏
j=0

max(m,n)−j
N−j

)
. Since

max(m,n)−j
N−j is very small, a small

k is already enough to bring

(
1−

k−1∏
j=0

max(m,n)−j
N−j

)
close to 1.

In other words, even if testing involves a small number of values

for x, it is very likely to reveal that the implementation is actually

for g instead of the intended f . In this example, (max(m,n)+1)

(x, f(x)) pairs collectively serve as a test oracle to distinguish f

and g; and each individual (x, f(x)) pair is a necessary condition

for the correct implementation of f instead of g, and hence can be

considered analogous to a metamorphic relation, which is also a

necessary property of the program. Considering such an analogy

— that the comparison of k and (max(m,n) + 1) (x, f(x)) pairs

is similar to the comparison of a few metamorphic relations to a

test oracle — we can say that if a number of diverse metamorphic

relations hold, it is very likely that the specifications have been

correctly implemented. Therefore, it is intuitively appealing that

a few diverse metamorphic relations should be able to perform

as well as a test oracle in terms of revealing faults in a program.

As found previously [21], [42], this study demonstrated that

metamorphic testing is simple in concept and thus easy to under-

stand and use. The potential ease with which testers could apply

metamorphic testing was also investigated. Although the recruited

testers were students inexperienced in testing, and were given only

a small amount of training, most of them could easily identify a

sufficient number of metamorphic relations to achieve a fault-

detection effectiveness at least half way between that of using a

test oracle and that from only crashing; and over half of them

could identify metamorphic relations that collectively revealed a

similar number of faults to a test oracle. However, in general,

an individual tester applying metamorphic testing could not be

guaranteed to identify sufficient metamorphic relations to imitate

a test oracle. On the other hand, every testing team, consisting of

four to seven testers, was able to identify enough metamorphic

relations to have a similar fault-detection effectiveness to a test

oracle. The experimental results also showed that a testing team

could be composed of as few as three testers and still yield a

sufficient number of metamorphic relations to achieve comparable

fault-detection effectiveness to a test oracle.

Further investigation of the experimental results determined

that a critical factor affecting the cost-effectiveness of metamor-

phic testing was the diversity of the metamorphic relations used. It

was found that when the metamorphic relations exhibited a certain

degree of diversity, they tended to cover different types of faults,

and thus had a high fault-detection effectiveness. As long as they

were diverse, a small number of metamorphic relations were as

effective as a test oracle in revealing faults. Using this notion of

diversity, the cost-effectiveness of metamorphic testing could be

significantly improved. This is consistent with observations made

in investigations for the second research question (Section VI-C),

namely that a testing team composed of several testers was more

likely than an individual tester to identify sufficient metamorphic

relations to deliver comparable fault-detection effectiveness to a

test oracle.

Additionally, the results of the empirical studies also provide

important insights into how to best conduct metamorphic testing.

First and foremost, the diversity of metamorphic relations has

been identified as more important than their quantity. In this

study, a small number of diverse metamorphic relations were

sufficient to detect most faults. Consequently, a smaller team of

testers with diverse backgrounds may be better than a larger team

of testers with similar backgrounds, because the former is more

likely to identify more diverse metamorphic relations. Moreover,

it is strongly recommended that a tester should take diversity into

account when selecting metamorphic relations for testing.

All the experimental results consistently showed that metamor-

phic testing was a simple yet effective approach to alleviating the

oracle problem. It is therefore worthwhile to continue research

into metamorphic testing. As a first attempt to evaluate how

effectively metamorphic relations may be able to approach the

fault-finding efficiency of a test oracle, this study used some

algorithmic programs as the subjects in our experiments. As

shown in previous studies, as long as testers had adequate

domain knowledge, it was not difficult to identify sufficient

metamorphic relations for various application domains, such as

online ATM [39], telecommunications [8], wireless metering [25],

compilers [40], and office applications [21], [42]. Large-scale

studies in these domains would further demonstrate the general

applicability of metamorphic testing in practice. There exist a

few other techniques for tackling the oracle problem, such as

those mentioned in Section III. It will be interesting to continue

our research through comparing metamorphic testing with these

techniques. In addition, although metamorphic relations identified

in an ad hoc manner may already have a good performance,

it is still essential to develop more systematic approaches for

their identification: Only when metamorphic relations can be

systematically identified, can the performance of metamorphic

testing become more predictable and controllable. With a sys-

tematic approach, it should also become possible to provide

testers with better training, and thus achieve better testing results.

Another important research direction relates to the concept and

interpretation of diversity for metamorphic relations. Although

diversity has been widely used in test case selection [9], [19], its

application to metamorphic relations, as investigated in this paper,

is relatively abstract and subjective, and strongly dependent on the

experience and background of the testers. It will be interesting

to develop a more concrete concept of diversity for metamorphic

testing, as has already been done in the area of test case selection,

and apply it to the identification or selection of metamorphic

relations. We are strongly confident that such investigations will

further enhance the cost-effectiveness of metamorphic testing and

software testing.

ACKNOWLEDGMENTS

We are grateful to Kai-Yuan Cai of Beihang University, Chang-

ai Sun of University of Science and Technology Beijing, Zhenyu

Chen of Nanjing University, and Jianjun Zhao of Shanghai Jiao

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

20

Tong University for their help in facilitating the experiments.

We are also thankful to the students from these universities who

participated in the experiments.

REFERENCES

[1] P. E. Ammann and J. C. Knight. Data diversity: An approach to software
fault tolerance. IEEE Transactions on Computers, 37(4):418–425, 1988.

[2] A. Avizienis. The N-version approach to fault-tolerant software. IEEE
Transactions on Software Engineering, 11(12):1491–1501, 1985.

[3] A. C. Barus, T. Y. Chen, D. Grant, F.-C. Kuo, and M.-F. Lau. Testing
of heuristic methods: A case study of greedy algorithm. In Proceedings
of the 3rd IFIP TC 2 Central and Eastern European Conference on
Software Engineering Techniques (CEE-SET 2008), volume 4980 of
Lecture Notes in Computer Science, pages 246–260, 2011.

[4] S. Beydeda. Self-metamorphic-testing components. In Proceedings
of the 30th Annual International Computer Software and Applications
Conference (COMPSAC 2006), pages 265–272, 2006.

[5] T. Y. Chen, S. C. Cheung, and S. M. Yiu. Metamorphic testing: A
new approach for generating next test cases. Technical Report HKUST-
CS98-01, Department of Computer Science, Hong Kong University of
Science and Technology, 1998.

[6] T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie. An innovative approach
for testing bioinformatics programs using metamorphic testing. BMC
Bioinformatics, 10:24:1–24:12, 2009.

[7] T. Y. Chen, D. H. Huang, T. H. Tse, and Z. Q. Zhou. Case studies on
the selection of useful relations in metamorphic testing. In Proceedings
of the 4th Ibero-American Symposium on Software Engineering and
Knowledge Engineering (JIISIC 2004), pages 569–583, 2004.

[8] T. Y. Chen, F.-C. Kuo, H. Liu, and S. Wang. Conformance testing
of network simulators based on metamorphic testing technique. In
Proceedings of the 29th IFIP International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE 2009),
volume 5522 of Lecture Notes in Computer Science, pages 243–248,
2009.

[9] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. H. Tse. Adaptive random
testing: The ART of test case diversity. Journal of Systems and Software,
83(1):60–66, 2010.

[10] T. Y. Chen, T. H. Tse, and Z. Zhou. Semi-proving: An integrated method
for program proving, testing, and debugging. IEEE Transactions on
Software Engineering, 37(1):109–125, 2011.

[11] T. Y. Chen and Y. T. Yu. On the relationship between partition
and random testing. IEEE Transactions on Software Engineering,
20(12):977–980, 1994.

[12] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. IEEE Computer,
11(4):34–41, 1978.

[13] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact.
Empirical Software Engineering, 10(4):405–435, 2005.

[14] X. Feng, D. L. Parnas, T. H. Tse, and T. O’Callaghan. A comparison
of tabular expression-based testing strategies. IEEE Transactions on
Software Engineering, 37(5):616–634, 2011.

[15] J. E. Forrester and B. P. Miller. An empirical study of the robustness of
Windows NT applications using random testing. In Proceedings of the
4th USENIX Windows Systems Symposium (USENIX-WIN 2000), pages
59–68, 2000.

[16] G. Fraser and A. Zeller. Mutation-driven generation of unit tests and
oracles. In Proceedings of the 19th International Symposium on Software
Testing and Analysis (ISSTA 2010), pages 147–158, 2010.

[17] A. Gotlieb and B. Botella. Automated metamorphic testing. In
Proceedings of the 27th Annual International Computer Software and
Applications Conference (COMPSAC 2003), pages 34–40, 2003.

[18] B. Hailpern and P. Santhanam. Software debugging, testing, and
verification. IBM Systems Journal, 41(1):4–12, 2002.

[19] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable model-
based testing through test case diversity. ACM Transactions on Software
Engineering and Methodology, 22(1):6:1–6:42, 2013.

[20] R. M. Hierons. Oracles for distributed testing. IEEE Transactions on
Software Engineering, 38(3):629–641, 2012.

[21] P. Hu, Z. Zhang, W. K. Chan, and T. H. Tse. An empirical comparison
between direct and indirect test result checking approaches. In Proceed-
ings of the 3rd International Workshop on Software Quality Assurance
(SOQUA 2006), pages 6–13, 2006.

[22] Y. F. Hu, R. J. Allan, and K. C. F. Maguire. Comparing the
performance of JAVA with Fortran and C for numerical com-
puting. Technical report, Daresbury Laboratory, CCLRC, 2000.
http://www.dl.ac.uk/TCSC/UKHEC/JASPA/bench.pdf.

[23] JFlex. The fast scanner generator for java. http://jflex.de/, 2009.
[24] J. C. Knight and N. G. Leveson. An experimental evaluation of

the assumption of independence in multi-version programming. IEEE
Transactions on Software Engineering, 12(1):96–109, 1986.

[25] F.-C. Kuo, T. Y. Chen, and W. K. Tam. Testing embedded software
by metamorphic testing: A wireless metering system case study. In
Proceedings of the 36th IEEE Conference on Local Computer Networks
(LCN 2011), pages 295–298, 2011.

[26] H. T. Lau. A Java Library of Graph Algorithms and Optimisation. Taylor
& Francis Group, Boca Raton, 2007.

[27] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava : An automated class muta-
tion system. Software Testing, Verification and Reliability, 15(2):97–133,
2005.

[28] L. I. Manolache and D. G. Kourie. Software testing using model
programs. Software: Practice and Experience, 31(13):1211–1236, 2001.

[29] J. Mayer and R. Guderlei. An empirical study on the selection of good
metamorphic relations. In Proceedings of the 30th Annual International
Computer Software and Applications Conference (COMPSAC 2006),
pages 475–484, 2006.

[30] B. P. Miller, G. Cooksey, and F. Moore. An empirical study of the
robustness of MacOS applications using random testing. ACM SIGOPS
Operating Systems Review, 41(1):78–86, 2007.

[31] B. P. Miller, L. Fredriksen, and B. So. An empirical study of the
reliability of UNIX utilities. Communications of the ACM, 33(12):32–44,
1990.

[32] C. Murphy, K. Shen, and G. E. Kaiser. Automatic system testing of
programs without test oracles. In Proceedings of the 18th International
Symposium on Software Testing and Analysis (ISSTA 2009), pages 189–
200, 2009.

[33] G. J. Myers. The Art of Software Testing. John Wiley and Sons, second
edition, 2004. Revised and updated by T. Badgett and T. M. Thomas
with C. Sandler.

[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
University Press, 1992.

[35] P. Rao, Z. Zheng, T. Y. Chen, N. Wang, and K. Cai. Impacts of test suites
class imbalance on spectrum-based fault localization techniques. In The
Symposium on Engineering Test Harness (TSE-TH 2013), in press.

[36] D. S. Rosenblum. A practical approach to programming with assertions.
IEEE Transactions on Software Engineering, 21(1):19–31, 1995.

[37] S. Segura, R. M. Hierons, D. Benavides, and A. Ruiz-Cortés. Automated
metamorphic testing on the analyses of feature models. Information and
Software Technology, 53(3):245–258, 2011.

[38] M. Staats, G. Gay, and M. P. E. Heimdahl. Automated oracle creation
support, or: How I learned to stop worrying about fault propagation
and love mutation testing. In Proceedings of the 34th International
Conference on Software Engineering (ICSE 2012), pages 870–880, 2012.

[39] C. Sun, G. Wang, B. Mu, H. Liu, Z. Wang, and T. Y. Chen. Metamorphic
testing for web services: Framework and a case study. In Proceedings of
the 9th International Conference on Web Services (ICWS 2010), pages
283–290, 2011.

[40] Q. Tao, W. Wu, C. Zhao, and W. Shen. An automatic testing approach
for compiler based on metamorphic testing technique. In Proceedings of
the 17th Asia Pacific Software Engineering Conference (APSEC 2010),
pages 270–279, 2010.

[41] X. Xie, W. E. Wong, T. Y. Chen, and B. Xu. Metamorphic slice:
An application in spectrum-based fault localization. Information and
Software Technology, 55(5):866–879, 2013.

[42] Z. Zhang, W. K. Chan, T. H. Tse, and P. Hu. Experimental study to
compare the use of metamorphic testing and assertion checking. Journal
of Software, 20(10):2637–2654, 2009.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

21

Huai Liu is a Research Fellow at the

Australia-India Centre for Automation

Software Engineering, RMIT University,

Australia. He received his B.Eng. in

physioelectronic technology and M.Eng. in

communications and information systems,

both from Nankai University, China; and

PhD degree in software engineering from

Swinburne University of Technology,

Australia. His current research interests

include software testing, cloud computing,

and end-user software engineering.

Fei-Ching Kuo is a Senior Lecturer

at the Faculty of Information and

Communication Technologies, Swinburne

University of Technology, Australia.

She received her Bachelor of Science

Honours in Computer Science and PhD

in Software Engineering, both from

Swinburne University of Technology,

Australia. She was a lecturer at University

of Wollongong, Australia. She is also the Program Committee

Chair for the 10th International Conference on Quality Software

2010 (QSIC’10) and Guest Editor of a Special Issue for the

Journal of Systems and Software, special issue for Software

Practice and Experience, and special issue for International

Journal of Software Engineering and Knowledge Engineering.

Her current research interests include software analysis, testing

and debugging.

Dave Towey is an assistant professor

in the Division of Computer Science, The

University Nottingham Ningbo China,

prior to which he was with Beijing Normal

University–Hong Kong Baptist University:

United International College, China.

His background includes an education in

computer science, linguistics and languages

(BA/MA from the University of Dublin,

Trinity College), and PhD in computer

science from the University of Hong Kong.

His research interests include software

testing, software design, and technology-enhanced education. He

is a member of both the IEEE and the ACM.

Tsong Yueh Chen is a Professor of

Software Engineering at the Faculty of In-

formation and Communication Technolo-

gies, Swinburne University of Technology,

Australia. He received his BSc. and MPhil.

from The University of Hong Kong; MSc

and DIC from Imperial College of Science

and Technology; and PhD degree from The

University of Melbourne. His current re-

search interests include software testing, debugging, software

maintenance, and software design.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

