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Abstract 

The watermaze delayed matching-to-place (DMP) task was modified to include 

probe trials, to quantify search preference for the correct place. Using a zone-analysis of 

search-preference, a gradual decay of one-trial memory in rats was observed over 24 h 

with weak memory consistently detected at a retention interval of 6 h, but unreliably at 

24 h. This forgetting function in the watermaze was similar to that found using a search-

preference measure in a food-reinforced dry-land DMP task (Bast et al. 2005). In a 

search for strong and weak encoding conditions, essential for a later behavioral tagging 

study, three encoding trials gave strong 6-h and 24-h memory when trials were 

separated by 10 min (spaced training) but not 15 s (massed training). The use of six 

encoding trials gave good 6-h memory with both spaced and massed training. With 

respect to weak encoding, placement on the escape platform, instead of the rat 

swimming to it, resulted in detectable memory at 30 min but this had faded to chance 

within 24 h. In contrast to the search-preference measure, latencies to cross the correct 

place neither revealed the gradual forgetting of place memory nor the benefit of spaced 

training. 

 

195 words 
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Introduction 

Place memory has long been studied in rodents to investigate the psychological 

processes and neurobiological substrates of declarative memory (O'Keefe 1976; Morris 

et al. 1982; Aggleton and Pearce 2001). Place memory, as a sub-component of 

declarative memory, relies on the rapid encoding of allocentric relations among multiple 

cues such that goals can be approached from different positions. A number of brain 

structures are involved in encoding, storage and consolidation of place memory, 

including the hippocampus and its interactions with parahippocampal cortices, the 

diencephalon, and various regions of the prefrontal and midline cortices (O'Keefe and 

Nadel 1978; Sutherland et al. 1983; Sutherland et al. 1988; Sutherland and Rodriguez 

1989; Squire 1992; Eichenbaum 2000; Leutgeb et al. 2005; Aggleton et al. 2010; Wang 

and Morris 2010; Euston et al. 2012). However, after the encoding of a new spatial 

memory representation or ‘engram’, what are the determinants of how long such a 

memory may last? 

The general view, from study of many different forms of learning, is that both 

the number and spacing of learning trials are important for memory persistence 

(Ebbinghaus 1885; McGaugh 1966), as are the amount and timing of reinforcement 

(Rescorla 1989). However, place memory is sometimes considered distinct with, for 

example, the cognitive-map theory asserting that learning can occur in a single-trial and, 

apparently independently of reinforcement (O'Keefe and Nadel 1978). Even if this is the 

case, place learning is likely to be subject to ‘modulation’ as are other forms of learning.  

Reinforcement of learning has long been linked to dopamine (Wise, 2004). Lisman and 

Grace (2005) have suggested that the likely sensitivity of hippocampal-dependent 

learning to modulation by unexpected novelty could be mediated by dopaminergic 

activation of the hippocampus from the ventral tegmental area (VTA). Similarly, the 

synaptic tagging and capture (STC) theory (Frey and Morris 1998; Redondo and Morris 

2011) asserts that events before and after encoding that up-regulate the availability of 

plasticity-related proteins can extend the persistence of memory traces, possibly via the 

very mechanism outlined by (Lisman et al. 2011) in a revision of their theory. The 
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present work was conducted with a view to a behavioral project looking at the 

functional impact of STC, sometimes called ‘behavioral tagging’ (Moncada et al. 2007; 

Ballarini et al. 2009; Wang et al. 2010; Moncada et al. 2011), the focus here being to 

establish baseline forgetting functions for rapidly acquired place memory against which 

manipulations that might enhance memory persistence could later be compared. 

However, the manipulations and findings also have broader relevamce to a variety of 

different ideas about memory modulation distinct from STC.   

We used the delayed-matching-to-place (DMP) task which is an unusual variant 

of the watermaze protocols in which rats (or mice) learn to escape to a hidden platform 

that is typically moved to a new location each day and performance is followed across 

many days and weeks (Morris 1983; Morris 1984; Panakhova et al. 1984; Whishaw 

1985; Steele and Morris 1999; Chen et al. 2000; Nakazawa et al. 2003; O'Carroll et al. 

2006). Escape efficiency depends on the rapid acquisition and subsequent retrieval, up 

to several hours later, of allocentric place memory that is expressed as successful 

escape to the new location from any starting point. Importantly, there is no necessity 

for long-term systems consolidation for effective performance, as new learning occurs 

each day against a backdrop of unchanging context information. A human analogy might 

be that of a rail commuter who tends to go to work a bit later than others and has 

therefore, each day, to find a spare parking slot at the station car park. The commuter 

must remember where the car was parked that day when returning from work, and   

remembering over days is not necessary (although it may occur). A key feature of such 

‘everyday’ memory (Wang et al. 2010) is the possibility to repeatedly test the formation 

and retention of new place memories in the same rat using a within-subjects design 

(Steele and Morris 1999; O'Carroll et al. 2006; Pezze and Bast 2012). The DMP task is 

very sensitive to disruption of hippocampal function (Steele and Morris 1999; 

Ferbinteanu et al. 2003; Nakazawa et al. 2003; de Hoz et al. 2005; O'Carroll et al. 2006; 

Bast et al. 2009; Pezze and Bast 2012). 

Search preference, as measured on probe trials when the platform is 

unavailable, has long been recognized as the most reliable and sensitive measure of 
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allocentric place memory in reference-memory versions of the watermaze task, in which 

the platform location remains constant across trials and testing days (e.g. Morris 1981; 

Buresova et al. 1985; Schenk and Morris 1985; Moser et al. 1998). We recently found a 

monotonic decline of one-trial place memory, as measured using a probe test measure 

of search preference, using a dry-land food-reinforced DMP task in which rats learn to 

dig for food in a sandwell that is moved to a novel location each day in an event arena 

(Bast et al. 2005). This monotonic decline was observed with retention intervals after 

encoding ranging from a few sec to 6 hr. In contrast, no consistent decline in memory 

strength has yet been found with increasing retention intervals in the aversively-

motivated watermaze DMP task (Morris et al. 1990; Steele and Morris 1999; von 

Linstow Roloff et al. 2002; O'Carroll et al. 2006; but see Panakhova et al. 1984; de Hoz et 

al. 2005). While the difference in sensitivity to retention interval may be due to 

differential motivation (Bolhuis et al. 1985), a likely alternative is the need to use a 

sensitive probe test measure to see such a function clearly. The original versions of the 

DMP task measured rapid place learning as a reduction in escape latencies or path 

lengths across successive trials to a new platform location each day, with performance 

typically averaged across days. However, these measures display variability due to 

occasional chance findings of the hidden platform, and they may also be influenced by 

systematic search strategies and/or the use of single beacon cues (e.g. Morris 1981; 

Buresova et al. 1985; Schenk and Morris 1985; Jacobs and Schenk 2003). 

We therefore developed a modification of the watermaze DMP protocol that 

includes probe trials, during which the escape platform is sometimes withheld for a 

period of 60s, so that search preference can be measured and used as an index of 

rapidly-acquired place memory (zone analysis) (Bast et al. 2009; Jackson et al. 2011; 

Pezze and Bast 2012) (Figs. 1A and B). After 60 s, the so-called ‘Atlantis Platform’ 

(Spooner et al. 1994) rises from the bottom of the pool enabling rewarded escape even 

on probe trials. Our focus was on whether such 1-trial encoding of memory results in 

traces that display time-dependent forgetting (Expt. 1) and, if so, whether and how the 

strength of memory traces is affected by the type, number and temporal distribution of 
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multiple encoding trials (Expt. 2 to 4). Finally, we compare performance in this 

‘benchmark’ task against that observed in a separate dry-land ‘event-arena’ task 

reported earlier (Bast et al. 2005). 

 

Results 

Experiment 1: Forgetting of one-trial place memory 

In Expt.1, we investigated if a search-preference measure on occasional probe 

tests would reveal a monotonic time-dependent decay of 1-trial place memory in the 

watermaze.  

A common cohort of male Lister hooded rats (n=20) was used in each of three 

replications. The retention intervals between encoding and retrieval trials were 15 s, 15 

min, 30 min and 1h in replication 1; 15 s, 1 h, 3 h and 6 h in replication 2; and 6 h and 24 

h in replication 3. Retention intervals of 15 s, 1 h and 6 h were included across these 

replications to examine performance stability (Strijkstra and Bolhuis 1987) and so 

enable the overall analysis to include all retention intervals. 

We first trained the rats for 8 days using the standard protocol of the DMP 

watermaze task (Steele and Morris 1999), which involves 4 trials/day to a platform in 

the same location throughout the day, with a change to a novel platform location at the 

beginning of each day (Fig. 1A). Escape latency on trial 1 is generally long – as even an 

experienced rat has no way of knowing where it is located – but good performance on 

trial 2 of each day reflects retrieval of memory that has been rapidly encoded during 

trial 1. Trials 3 and 4 are scheduled only to reinforce the ‘win-stay’ rule of the task. For 

days 1-4 of training, the inter-trial interval (ITI) was about 15 s between all trials. For 

days 5-8, the ITI between trial (T) 1 and T2 was varied between 15 s, 1 h, 3 h and 6 h 

(∆RI in Fig. 1A) in order to familiarize the rats with varying retention intervals (the order 

of assignment was counterbalanced across intervals with each retention interval used 

on each day for a different quarter of the rats). On training days, the platform was 

hidden just underneath the water surface during the whole trial duration, so that rats 

could climb on the platform, as soon as they reached the correct location. The impact of 
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changing retention interval between trial 1 (encoding) and trial 2 (retrieval) on the 

strength of 1-trial place memory during retrieval was tested on selected probe days. On 

these, the Atlantis platform was held at the bottom of the pool for 60 s and then raised, 

so that search preference for the correct location on trial 2 could be measured as 

‘percentage of time in correct zone’ using the zone analysis (Moser et al. 1998). More 

specifically, to measure search preference for the vicinity of the platform location, eight 

40-cm diameter ‘virtual’ zones were defined across the pool surface, so that one zone, 

the ‘correct zone’ was concentric with the platform location (12-cm diameter), and all 

eight zones were non-overlapping, evenly spaced and symmetrically arranged  (Fig. 1B). 

The time spent in each of these eight zones during the 60-s probe trial was measured, 

and from these measures the ‘percentage of time in correct zone’ was calculated as: 

[(time in correct zone/total time in all 8 zones) x 100] (Bast et al. 2009; Jackson et al. 

2011; Pezze and Bast 2012). 

 

Training 

Latency data during the 8 initial training days is shown in Fig. 1C. Latency was 

highest on trial 1, reflecting search for the new daily platform location, with a sharp 

reduction from trial 1 to trial 2, reflecting 1-trial learning. This characteristic pattern was 

evident from the start of training, with latencies on trials 2-4 consistently less than 20 s 

from the 7
th

 day as in previous studies (Steele and Morris 1999; O'Carroll et al. 2006; 

Bast et al. 2009; Pezze and Bast 2012). Training then continued from day 9 to day 28, 

with 10 probe tests and 10 interleaved training days. Average daily performance across 

this interleaved training is shown in Fig. 1D.  

 

Probe days: memory decline with increasing retention intervals 

The probe test zone-analysis data from the 3 replications was combined as 

analysis of the performance on the overlapping retention intervals (15 s, 1 h and 6 h) 

revealed no differences (F<1). Our first key finding is that percentage of time searching 

in the correct zone declined monotonically with increasing retention interval after 1-trial 
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encoding (F(6,114)=10.0; p<0.0001; Fig. 1E). Post-hoc Fisher’s LSD comparisons indicated 

that performance at the 15 s retention interval (36.0+2.3 % relative to the 12.5 % 

chance level for 8 zones) was higher than at all other intervals (p<0.005). Search 

preference for the correct zone was also found to be greater at 15 min than at both 6 h 

(p<0.05) and 24 h (p<0.0005); at 30 min relative to 6 h (p<0.005) and to 24 h (p<0.0005); 

and stronger at a retention interval of 1 h as compared to 3 h and 24 h (p<0.05 and 

p<0.01, respectively). Search preference was also above chance at all retention intervals 

up to 6 h (t(19)=5.2; p<0.0001), but no longer at 24 h (15.7±2.0 %; t(19)=1.5; p=0.14). 

We also measured T2 latencies. The first crossing latencies for T2 showed a less 

consistent and non-monotonic sensitivity to retention interval than the zone-analysis for 

search preference (Fig. 1F). An ANOVA of T2 latencies did reveal a modest but 

significant effect of retention intervals (F(6,114)=2.2; p<0.05), but the fastest escape on T2 

was at the 30 min retention interval.  Post-hoc Fisher LSD comparisons of T2 latencies 

revealed faster crossing of the correct location at 30 min compared to 3 h (p<0.05), 6 h 

(p<0.005) and 24 h (p<0.05). The T2 latencies for 15 s and 15 min were both faster than 

at 6 h (p<0.05), but not the other intervals. 

Analysis of latency savings (i.e., latency reduction from T1 to T2) did not reveal 

an effect of retention interval on performance (F(6,114)=2.0; p=0.07; data not shown). The 

primary reason for this was because of substantial variation in T1 latency from which 

the T2 latency is subtracted. This is unfortunate for it is clearly sensible to ask, using a 

latency savings measure, how much quicker a rat is to escape over training within a day. 

However, using the subtraction of two latency measures, each subject to chance factors, 

actually builds in greater variability, precluding its use as a measure.  

Collectively, these results suggest that memory of an escape location learned in 

1 trial decays monotonically from a relatively strong memory up to 30 min after 

encoding to a weak but detectable memory at 6 h, and then its loss, or near loss, by 24 

h. Our data also show that the search preference measure is particularly sensitive in 

revealing a monotonic decline of memory, with an F value of 10.0, whereas T2 latencies, 

while showing a significant effect of retention interval, nonetheless showed greater 
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variability. The savings measure did not reveal statistically significant dependence on 

the retention interval at all. These data were secured against a background of DMP task 

stability over time with high re-test reliability across replications for the common 

retention intervals as assessed by zone analysis. 

 

Experiments 2 and 3: Facilitation of long-term retention by repetition and spacing of 

encoding trials  

Additional trials and spaced training facilitate memory in a variety of species, 

including humans (Ebbinghaus 1885) and rodents (McGaugh 1966; Domjan 1980; 

Roberts and Dale 1981; Fanselow and Tighe 1988; Genoux et al. 2002; Scharf et al. 

2002). In the watermaze also, spaced training improves long-term place memory when 

reference memory training occurs over days (Morris and Doyle 1985; Kogan et al. 1997; 

Spreng et al. 2002; Bolding and Rudy 2006; Sisti et al. 2007). 

To examine the impact of number and spacing of learning trials in the DMP task, 

trial 1 (encoding) of the basic protocol used in Expt. 1 was replaced by 3 or 6 memory 

encoding trials at varying spacing. We can think of these as Trials 11, 12, 13 etc. followed 

by the trial in which the impact of this different pattern of encoding is assessed – this 

being always designated as trial 2. This terminology may seem confusing as ‘trial 2’ 

could then be the 4
th

 or 7th trial of the day, but we have found it easier to think of ‘trials 

1’ as encoding, and ‘trial 2’ as memory retrieval.  

A new cohort of male Lister hooded rats (n=18) was used for Expt.2, and another 

batch (n=16) for Expt.3. 

 

Experiment 2: Time on platform after escape and the number and spacing of memory 

encoding trials. 

Expt. 2 investigated the impact of manipulations at encoding (Fig. 2A): (a) 

variation of time on the hidden platform after escape from the water (6 s and 30 s; in 

our watermaze experiments, including the other experiments in this study, the time we 

usually allow rats to spend on the platform after escape is 30 s); (b) increasing the 
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number of encoding trials (1, 3 and 6), and (c) varying ITI during multi-trial encoding (15 

s vs. 10 min). All conditions were tested in a within-subjects design extending over 18 

days (after 10 training days). With respect to (a) variation in the time that rats spend on 

the escape platform, there is evidence that a longer escape period may enable rats to 

acquire more information about the relative position of the platform in relation to 

environmental cues (Sutherland and Linggard 1982; Keith and McVety 1988; Whishaw 

1991). It is also known that the use of multiple encoding trials and a longer time 

between trials, e.g. 10 min, facilitates the formation of long-term memory in 

conventional multi-trial long-term memory tasks (e.g. Fanselow and Tighe 1988; Kogan 

et al. 1997; Josselyn et al. 2001; Genoux et al. 2002); it is also the protocol of choice for 

the induction of long-lasting protein synthesis-dependent forms of hippocampal 

synaptic plasticity in vitro by repeated synaptic stimulation (e.g. Reymann et al. 1985; 

Frey et al. 1993; Scharf et al. 2002). We wondered if these conditions may also 

constitute a ‘strong’ encoding condition for the DMP task.  

During the initial training on the task (10 days), before comparing performance 

between the experimental conditions, we first established that a single encoding trial 

would result in comparable and reproducible levels of memory at the 6 h retention 

interval. Search preference on trial 2, run as a probe with the Atlantis Platform at 6 h 

after trial 1 on days 7 and 10 of training, confirmed that this was the case: The average 

percentages of time in the correct zone were 17.5±2.2 % on day 7 and 16.1±1.4% on day 

10 (chance = 12.5 %), which are above chance and similar to the results for the 6 h 

retention interval in Expt.1. 

An ANOVA of zone-analysis scores for the series of probe tests for the Expt. 2 

revealed a highly significant difference between parametric conditions (F(5,85)=3.6; 

p<0.01; Fig. 2B). Post-hoc Fisher’s LSD tests were then used to examine the separate 

conditions. Impact of time on the platform – No significant difference was observed in 

performance after rats were allowed 6 s or 30 s on the platform in a single encoding 

trial (p=0.4). Impact of varying number of encoding trials - Six massed trials produced 

stronger memory than 3 massed trials (p<0.05), but 6 spaced trials showed only a non-
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significant trend towards stronger memory than 3 spaced trials (p=0.07). This may imply 

that performance had reached ceiling levels with 3 spaced trials. Impact of varying the 

temporal spacing of encoding trials - Three spaced trials produced stronger memory 

than 3 massed trials (p<0.005), but 6 spaced trials did not produce stronger memory 

than 6 massed trials (p=0.51). Once again, performance had likely reached ceiling levels 

after 3 spaced encoding trials. Synergistic effects between number and interval of 

encoding trials - Performance after one encoding trial (30 s on platform) was weaker 

than performance obtained after 3 (p<0.01) and 6 (p<0.05) spaced trials, but not 

statistically different from performance obtained after 3 (p=0.91) or 6 (p=0.05) massed 

trials. Finally, the zone analysis revealed above chance performance for all conditions 

(the least significant being the 3 massed trial condition: t(17)=2.4; p<0.05). 

We also analyzed retention trial (T2) latencies but not latency savings (the latter 

excluded because the choice of start positions in the watermaze prevented proper 

counterbalancing - these positions were adjusted on probe test days to ensure that the 

sequence of them between the last encoding trial (i.e. T11, T13 or T16) and the retention 

trial (T2) was always the same). An overall ANOVA of T2 latencies showed a just 

significant difference between conditions (F(5.85)=2.4; p<0.05) (Fig. 2C), but the post-hoc 

Fisher’s LSD tests revealed only an enhancing effect of the number of encoding trials on 

memory at 6h.  Neither time allowed on the platform at the end of the encoding trial 

nor the spacing of encoding trials seemed to affect latencies on retention trials. Data 

from these conditions were therefore pooled to conduct a separate ANOVA of trial 

number (F(2.34)=6.39; p<0.005), with post-hoc tests showing reduced latency at retrieval 

after 6 relative to after 1 or 3 encoding trials (p<0.005). 

 

Experiment 3: Comparison of memory at 6 h and 24 h for 1 and 3 spaced encoding trials. 

For the impending ‘behavioral tagging’ experiments, it is essential to have a 

strong encoding condition that results in good memory after a long memory interval 

and a weak encoding condition in which initially detectable memory falls to chance. 

Accordingly, it became of interest to explore memory tests after 6 h or after 24 h. A 
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separate cohort of experimentally naïve rats (n=16) was used to compare memory at 

these retention intervals after either 1-trial or 3 spaced-trial encoding, the aim being to 

see if these could serve as the weak and strong encoding conditions, respectively. In the 

process we sought also to replicate the finding of Expt. 2 that three spaced encoding 

trials produce stronger memory at a 6 h retention interval than a single encoding trial, 

and investigate if this difference could also be observed at 24 h.  

Following initial training, a series of interleaved training and probe tests was 

conducted. This study showed, using the preferred zone analysis, that three spaced 

encoding trials produce better memory at 6 h relative to 1-trial encoding (F(1,15)=8.4; 

p<0.01) (Fig. 3A), replicating the findings of Expt. 2 (Fig. 2B). Search preference for the 

correct zone was above chance in both conditions (t(15)=5.1; p<0.0005). T2 latencies did 

not differ significantly between the two conditions (F(1.15)<1) (Fig. 3B). At 24 h, a similar 

pattern of results was observed (zone-analysis: F(1.15)=6.7; p<0.05; Fig. 3C; retention trial 

latencies: F(1.15)=3.9; p>0.05; Fig. 3D). Surprisingly, search preference indicated above 

chance performance after a single encoding trial (18.3±1.5 %; t(15)=3.8; p<0.005) as well 

as after 3 spaced encoding trials as expected (23.1±1.5 %). This suggests that an 

ostensibly weak 1-trial memory can occasionally be still detected 24 h after acquisition. 

 

Experiment 4: Impact of using platform placement relative to swimming on place 

memory at 30-min and 24-h retention intervals  

Expts. 1-3 have laid the ground work for a later ‘behavioral tagging’ experiment, 

excepting that a condition in which memory is initially detectable but then falls reliably 

to chance has not been found. Memory for one single encoding trial was not observed 

after a 24 h retention interval in Expt. 1, but was seen in Expt. 3. Expt. 4 was conducted 

to investigate the impact of ‘placement’ rather than swim trials – the expectation being 

that memory would be weaker (based on pilot observations in the laboratory). The 

focus was on whether we would see successful memory at 30 min with 3 spaced 

placement trials (trials in which rats were simply placed on the platform for 30 s without 

having to swim to it) and then the loss of this memory at a 24 h retention interval (Fig. 
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4A). The study afforded a further opportunity to replicate the impact of 3 spaced swim 

trials at these retention intervals. 

Analysis of search preference during probe trials (Fig. 4B) revealed that the 

animals spent more time searching the correct zone when given swim trials than when 

given placement trials (F(1.15)=17.4; p<0.001), and memory for both types of encoding 

event was stronger at 30 min than at 24 h (F(1.15)=17.9; p<0.001). Even though no 

interaction was observed between trial type and retention interval (F(1.15)=3.4, p=0.09), 

it is noteworthy that memory was at chance 24 h after placement. Comparing the 30-

min and 24-h retention delay, the time rats spent searching in the correct zone 

decreased about 15 % after swim trials (a similar decline was observed with a single 

encoding trial – see Fig. 1E) and 10 % after placement trials. Above chance performance 

was observed for swim trials at both retention intervals (t(15)=3.2; p<0.01), but for 

placement trials memory was only detectable at 30 min (t(15)=2.3; p<0.05), but not after 

24h (t(15)<1). The Latency measure failed to reveal a main effect of retention interval on 

performance (F(1.15)=1.5; p=0.24) (data not shown). Thus, overall, Expt. 4 established 3 

spaced swim trials and 3 spaced placement trials as strong and weak encoding events, 

respectively, that could be used in future experiments to investigate tagging-like 

behavioral interactions. 
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Discussion 

These experiments, using a highly sensitive probe test measure of search 

preference within a spatial task in which new learning occurs each day, define a set of 

parametric manipulations that modulate memory persistence. These may be useful for 

future studies examining memory enhancing and impairing manipulations. The main 

findings are that (1) in the DMP task, the persistence over time of spatial memory that is 

updated daily declines monotonically as a function of retention interval; (2) even a short 

period on the escape platform (6 s) is sufficient for rapid information acquisition given 

that the rats will have spent longer in the watermaze swimming to this location; (3) 

increasing the number of encoding trials (from 1 to 3 or 6) augments the reliability of 

persistence of memory to at least 24 h, with 3 spaced trials reaching the daily 

asymptote; (4) increasing the spacing of multiple encoding trials (from a ‘massed’ 

protocol with 15–s inter-trial intervals to a ‘spaced’ protocol with 10–min inter-trial 

intervals) also enhances memory persistence; and (5) placing the rats on the platform 

rather than swimming trials enables memory encoding that can be reliably detected for 

a short time but is clearly at chance by 24 hr. Thus, for subsequent memory modulation 

studies (including behavioral tagging), a ‘weak’ memory encoding condition could be 3 

placement trials whereas a ‘strong’ encoding condition could be 3 or 6 swim trials. 

 

Persistence of place memory 

One-trial place memory strength declines monotonically with increasing 

retention intervals (up to 24 h) in both the aversively motivated watermaze and in the 

food-reinforced event arena DMP task (Bast et al. 2005; Wang et al. 2010; this study). 

This is evident here with the zone analysis (watermaze) and, in the event arena, with the 

corresponding dig-time measure of search preference (see Fig. 5). These results do not 

support the view that the nature of the motivation (appetitive vs. aversive) causes 

differential forgetting on allocentric place memory tasks (Bolhuis et al. 1985). In both 

tasks, memory was shown to decay over minutes to hours after encoding, but weak 

memory could sometimes but unreliably be seen after 24 h. 
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Insert Fig. 5 about here 

  

In a rare study to examine forgetting after very short periods of training, Bolding 

and Rudy (2006) observed that memory for 10 consecutive trials in a watermaze (with a 

2-min inter-trial interval) was detectable up to 4 h later when a quadrant measure of 

search preference was used, but only up to 30 min with a ‘difference score index of 

selective search’ (which compares the time rats spent in the target quadrant with that 

spent in the second most preferred quadrant). At first glance, these results may seem to 

contrast with the forgetting rates observed in our study. Indeed, by using the search 

preference measure of performance we have shown that even a single trial produces 

memory that is detectable up to 24h later. This may be due to the sensitivity of the 

performance measures used in our study, namely the zone analysis, and/or other 

differences in methodology. For example, rats were trained in the present task for at 

least 8 days prior to testing, whereas Bolding and Rudy’s (2006) protocol consisted of a 

total of 10 trials all completed within a single day. This is an important difference as 

training over many days gives rats the opportunity to master both the contextual and 

procedural (non-spatial) requirements of the task and allows for a reduction in stress 

responses (Aguilar-Valles et al. 2005) that may sometimes be responsible for 

impairments of memory retention (de Quervain et al. 1998; Luksys et al. 2009). 

Our focus was on finding a relatively ‘pure’ measure of the impact of new spatial 

memory encoding within a context that had over days become familiar (i.e. place in 

context encoding). Comparison of the impact of massed vs. spaced encoding trials 

revealed that spacing improves memory strength with 3 encoding trials but apparent 

saturation of spacing effects thereafter. Current accounts of the impact of spaced 

training includes the possibility of allowing for greater ‘consolidation’ between and after 

trials associated with the up-regulation of plasticity-related proteins (Kogan et al. 1997; 

Josselyn et al. 2001; Genoux et al. 2002; Scharf et al. 2002). That spatial memory in the 

watermaze is sensitive to the usual parameters that affect the encoding and 
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consolidation of other forms of memory – number and spacing of trials - indicates that 

spatial memory is not quite ‘all-or-none’ as cognitive-mapping theory once held 

(O'Keefe and Nadel 1978). 

 

Search preference as a sensitive index of rapidly encoded place memory  

We observed differential sensitivity of the three measures of performance used 

to measure spatial memory strength and persistence. While measures of search 

preference revealed rapid forgetting in the DMP task, other measures such as first 

crossing latency and latency savings showed greater statistical variability. Different 

measures also showed differential variability in the event arena (Bast et al. 2005). For all 

retention intervals, the measure of performance showing the least variability was the 

zone analysis, followed by retention trial (T2) latencies and, finally, escape latency 

savings. The higher variability in T2 latencies and escape latency savings may have been 

introduced by chance factors, e.g. when the rat unexpectedly ‘bumps’ into the platform 

(or ’correct zone’ on probe trials), with the additional variability of savings most likely 

resulting from the fact that savings also depends on the highly variable escape latencies 

during encoding trials when rats are searching for an unknown platform location. 

Another issue concerning escape latencies and path lengths is that they may be 

efficiently reduced through systematic search strategies and the use of beacon cues 

(e.g. Morris 1981; Buresova et al. 1985; Schenk and Morris 1985; Jacobs and Schenk 

2003). In the event arena task, the higher variability of first choices and errors may 

explain their lower sensitivity to variations in memory strength. Chance factors 

contribute to such variability, such as when the rat runs into the sandwells that are 

closer to the start box. 

Overall, these results suggest that the use of different behavioral measures may 

explain the varied results reported with respect to the persistence of 1-trial place 

memory in the watermaze (Panakhova et al. 1984; Morris et al. 1990; Steele and Morris 

1999; von Linstow Roloff et al. 2002; de Hoz et al. 2005). While the results of a 

parametric study such as this may not seem exciting or novel, the essence of science is 
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quantification, and the identification of search preference as an apparently optimum 

measure of performance in the watermaze DMP task is essential groundwork for 

subsequent studies of memory modulation. 

 

Characterisation of encoding events and behavioral tagging 

A ‘behavioral tagging’ study is a major undertaking as it could involve measuring 

gene activation, local pharmacological treatments, or even rapid reversible genetically 

induced changes in the hippocampus and/or other brain structures as interventions 

using a within-subjects protocol that also combines weak and strong encoding events. 

Further, the synaptic tagging and capture theory makes differential predictions about 

the impact of treatments at the time of spatial memory encoding (tag-setting) and later 

neuromodulation (modulation of plasticity-related protein (PRP) synthesis). The overall 

aim would be to couple weak memory encoding (as the tag-setting event) with strong 

memory encoding (as the upregulator of PRPs), but under circumstances that minimize 

informational overlap of the two daily learning events. This in turn requires the use of 

two watermazes with different cues, and thus a new protocol that will build from the 

data presented here on behavioral procedures that reliably produce weak decaying 

spatial memory and strong persistent memory. 

For now, it is important to recognize that it is the modulation of the memory of 

the weakly encoded event that would be the aim of such a protocol. Placement of the 

rat on the platform is ordinarily insufficient for learning in a watermaze; however, we 

have seen that when done in the context of a daily protocol that usually involves 

swimming to the platform, it seems that the rats do process information about location 

whilst on the escape platform even though they have not swum there on that trial 

(Devan et al. 2002). Such a memory is detectable 30 min later in a standard swimming 

probe test, but is weak in the sense that it decays to chance within 24 h. The intended 

modulation event would be 3 spaced swim trials, in a separate watermaze, the 

supposition being that as this protocol reliably produces 24 h memory, such trials must 

upregulate PRPs that stabilize synaptic change. A further paper in this series will present 
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these data, together with the impact of our behavioral protocols on the upregulation of 

immediate early genes. 

   

Conclusions 

The key results of this series of experiments are that an ‘everyday’ spatial memory 

paradigm with repeated memory encoding and a search preference measure is possible 

in the watermaze, and that this produces a quantitatively reliable and monotonic 

forgetting over a 24 hr period. This protocol shows sensitivity to standard parameters, 

such as number and spacing of encoding trials, and we have separately shown that it is 

also more sensitive to hippocampal lesion and pharmacological manipulations than the 

original paradigm relying exclusively on latency and path-length measures (Bast et al. 

2009; Pezze and Bast 2012). Due to this sensitivity, this new DMP paradigm involving a 

search preference measure could also be of translational value in studies of the impact 

of neuromodulatory and cognitive enhancing drugs on memory. 
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Figure Legends 

Figure 1. The watermaze delayed-matching-to-place (DMP) task with search preference 

measure and forgetting of 1-trial place memory with increasing retention delay (Expt. 1, 

n=20): A) DMP protocol: On standard training days, there are 4 trials (T1-T4), with the 

escape platform moving location between days (N, N+1); on probe days, the retention 

trial is run as a probe trial on trial 2 (note absence of platform). ΔRI = varying Retention 

Interval. B) Zone analysis of search preference during probe trials: Eight zones (stippled 

small circles, 40-cm diameter) were defined within the 2-m diameter surface of the 

watermaze, including a ‘correct’ zone concentric with the location of the platform (12-

cm diameter) used on T1, T3 and T4 of that day. Platform locations and zones centered 

on an inner ring (0.8-diameter) and outer ring (1.4-m diameter) that were concentric 

with the center of the pool. Two different sets of eight non-overlapping platforms and 

zones were used (only one set shown; the second set was obtained by shifting the first 

set by 45 degrees). C) Acquisition of the DMP task to different platform locations across 

days plotted in terms of latency (s) D) Performance within a day (T1-T4) averaged across 

inter-probe days and plotted in terms of latency (s). E) Percentage of time spent in the 

correct zone on probe trials as a function of RI. Stippled horizontal line indicates chance 

value for % time in correct zone. F) Probe day latencies for Ts 1-4 with filled circles 

representing probe trial crossing latencies (T2). Means±1SEM. 

 

Figure 2. Variation in long-term place memory (6 h) as a function of time on platform, 

spacing, and repetition of acquisition trials (Expt. 2, n = 18). A) Variation in conditions 1-

6 reflect time on the platform (1T-6s or 1T-30s); massed or spaced encoding trials (T11-

T13) separated by 15s or 10min ITI (3T-M or 3T-S); and additional repetition of encoding 

trials (T11-T16) separated by 15s or 10min ITI (6T-M or 6T-S). B) Percentage of time in 

correct zone during T2 probe trials. Note striking effect of trial spacing when 3 encoding 

trials are given. Stippled horizontal line indicates chance value for % swim time in 

correct zone. C) Latencies. Black circles represent retention trial (T2) latencies. 

Means±1SEM. 
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Figure 3. Enhancement of long-term place memory (6 h and 24 h) by repetition and 

spacing of acquisition trials (Expt. 3, n=16). Memory on T2 after a single or 3 spaced (10 

min ITI) encoding trials (1T or 3T-S) at 6h (A, B) or 24h (C, D) after encoding. A,C) 

Percentage of time in correct zone during probe trials. Stippled horizontal line indicates 

chance value for % swim time in correct zone. B,D) Latencies (s). Black circles represent 

retention trial latencies. Means±1SEM. 

 

Figure 4. Optimum encoding conditions for the formation of short- or long-term place 

memory in the DMP watermaze protocol (Expt. 4; n=16). A) There were 3 placement or 

3 swim encoding trials separated by 10min ITI (T11-3). During each placement trial, the 

rats were placed on the platform for 30s without swimming to it. B) Retention (T2) 

measured short-term and long-term memory (30 min and 24 h) after encoding as 

percentage of time spent searching the correct zone. Stippled horizontal line indicates 

chance level. Means±1SEM. 

 

Figure 5. Comparable monotonic rates of forgetting of one-trial place memory in the 

watermaze and the event arena DMP tasks. Normalization of the watermaze data to 

chance was calculated as the percentage of time swimming in the correct zone divided 

by the chance level (12.5 %, 8 zones). Normalization of the event arena data was 

calculated as the percentage of time digging in the correct sandwell divided by the 

chance level (20%, 5 sandwells; based on data of Bast et al. (2005)). Stippled horizontal 

line indicates chance value of normalized performance measures. Means±1SEM. 
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Materials and methods 

Subjects 

A total of 54 adult male Lister Hooded rats (Charles River, Margate, UK) were used as 

subjects (Expt. 1 = 20; Expt. 2 = 18; Expt. 3-4 = 16). They weighed 220-250 g at the start 

of the experiments, and were housed 2 per cage in a temperature (20-23 ºC) and 

humidity (40-55 %)-controlled room with an artificial light/dark cycle (lights on 7:00 

A.M. to 7:00 P.M.) and maintained on ad libitum food and water. The rats were 

transported to, and kept in, the watermaze room in separate cages (two rats at a time). 

All rats were habituated to handling by the experimenter before the start of the 

experiments (5 days; approximately 2 min per rat each day). All experimental 

procedures were conducted during the light phase of the cycle. The work was 

conducted under the auspices of a UK Home Office Licence for animal experimentation 

held by RGMM. 

 

Apparatus 

Training was conducted using a watermaze (circular pool, 2 m diameter, 60 cm 

height) containing water at 25±1 ºC made opaque by the addition of 200 ml of latex 

liquid (Cementone-Beaver Ltd, Buckingham, UK). The water was changed daily using an 

automatic filling and draining system. The watermaze was located in a well-lit room 

containing prominent extra-pool visual cues (e.g. white curtains collected together at 

one point of the pool (SE), metal racks, and posters on the wall). No cues were located 

within the pool. To start a trial, rats were released from one of four start positions (N, E, 

S, W) around the pool. The rats’ only escape route from the water was via a single 

escape platform of 12-cm diameter. The platform was hidden 1-2 cm below the water 

surface. We used a so-called Atlantis platform (Spooner et al. 1994), which can be 

withheld at >30 cm below the water surface by a computer-controlled electromagnet 

for a predetermined time, making it inaccessible to the rats, before rising to its normal 

position. This allowed us to run probe trials during which the animals’ search preference 

for the zone containing the platform location was monitored during the first 60 s, before 
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the platform was made available for escape and so reinforce spatially focussed 

searching. The rats’ swimming behavior was monitored via a system of a video cameras 

connected to a computer in a control room adjacent to the watermaze room. The 

computer ran custom-written Watermaze software (Actimetrics, Wilmette, IL and 

Watermaze Software, UK) that digitizes the path taken by the rats and computes various 

behavioral measures.  

 

Training 

Trials began at N, W, S or E in a pseudorandom sequence, with the rats facing 

the side-walls. A notional inner and outer ‘ring’ were defined for distribution of the 

escape platforms (40 and 70 cm away from the centre of the pool, respectively) with a 

total of 8 locations (compare Fig. 1B). Rats were given different sequences of platform 

locations (that were counterbalanced across the different conditions), equally 

distributed across sequences and days, and never repeated within the same batch of 

rats (see specifications below). Rats were allowed a maximum of 2 min to find the 

platform and 30 s on the platform after escape (except for one condition in Expt. 2 were 

the time on the platform was reduced to 6 s in order to examine the effect this may 

have on place learning). If a rat failed to escape within 2 min, it was guided to the 

platform by the experimenter. 

 

DMP task with search preference measure 

In this new version of the DMP task, the retention trial (probe trial) is altered so 

that the Atlantis platform is only made available after 60 s (Fig. 1A). This allows 

analyzing the proportion of time the rats spend searching the zone where the platform 

was located on the previous trial(s). The zone analysis compared the time rats spent 

swimming in the correct platform zone (area defined by a 20-cm radius from the center 

of the platform) to the time spent in 7 other equally sized zones (Fig. 1B). The correct 

platform zone and the 7 additional zones were distributed symmetrically over the pool 

and were non-overlapping. The specific set of 8 platform positions analyzed on a given 
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probe was defined by the location of the platform at encoding. The zone analysis was 

calculated as follows: [(time in correct zone/total time in all 8 zones) x 100]. Probe trial 

latencies corresponded to the time rats took to intersect the area where the platform 

was located (crossing latencies). Latency savings were calculated as the difference in 

latencies obtained in the first encoding trial of the day and in the retention trial.  

Platform positions were counterbalanced such that they were equally 

distributed across sequences, days and retention intervals tested. Two different 

sequences of platform positions were used in each experiment (including training and 

probe days). Each sequence comprised inner (I) and outer (O) ring positions. Sequences 

were designed so that all transitions I-O, O-I, I-I and O-O were equally present and that 

no learning rule could be established on the basis of the inner or outer location of the 

platform. Probe trials started with a pseudorandom sequence of start positions. Daily 

start positions were adjusted between conditions with 1, 3 or 6 encoding trials so that: i) 

positions were always the same for the retention trial and its preceding trial and; ii) the 

starting position for the retention trial was not used during the encoding trials [e.g. 1 

trial conditions (N-SEW), 3 trial conditions (EWN-S), 6 trial conditions (EWNEWN-S)]. 

 

Within-subject experimental designs 

Expt.1: Replication 1 (16 days) – The rats were allocated to 4 sequence groups 

(throughout replications 1-3) and given an initial block of 8 training days to 8 

symmetrically distributed platform positions, counterbalanced across groups and days. 

In the first 4 training days, the rats were trained with a 15 s interval between trials 1 and 

2. Thereafter, the interval was varied to familiarize rats the different retention intervals 

used in replication 1:  15 s, 1 h, 3 h and 6 h. Each group of rats was tested at a different 

retention interval each day. The daily order of testing was counterbalanced with respect 

to retention intervals between days, with each cohort of rats moved from the rat room 

to the watermaze room for testing accordingly, one at a time. Rats were kept in the 

watermaze room during the retention interval, including at intervals of >15 s during 

which they were placed under the watermaze (which was on a raised platform). 



 24

After the initial training, the rats were given a sequence of 4 probe days, each 

one of them preceded by a training day with the same retention interval. Each probe 

day tested the same group of rats for a different retention interval. The four groups of 

rats were tested at different retention intervals within a probe day. Eight new 

symmetrically distributed platform positions were used, which were counterbalanced 

across groups, days and ITIs between probe days and between training days. As in 

training days 5-8, the rats were moved from day 9 onwards into the watermaze room 

and kept there throughout the duration of daily testing. 

Replication 2 (8 days) - This replication was conducted as on days 9 to 16 of 

replication 1, the difference being: retention intervals tested; sequence of start 

positions; and platform positions.  

Replication 3 (6 days): Testing was at retention intervals of 6 h and 24 h. The use 

of a 24 h interval required the use of two days per probe. Over 6 days, there were 2 

probes, each preceded by a training day. On training days, a retention interval of 15 s 

was used. On the first day of a probe, half of the rats were tested for a retention interval 

of 6h and the other half was given a single encoding trial. Memory for the location of 

the platform for that single trial was tested 24 h later. Four sequences of 4 different 

platform positions were used in this series. Platform positions were counterbalanced 

between training days for sequence groups and days, and between probes for sequence 

groups, days and retention intervals. Unlike series 1 and 2, the rats were not kept in the 

watermaze room during the retention interval, as it was impossible to retain rats in the 

watermaze room overnight. Rats were moved back to the vivarium after the encoding 

trials. 

Expt. 2 (28 days): As there are six conditions in the study (see Fig. 2A), the rats 

were allocated to 6 sequences of platform positions (so that all conditions could be 

tested on each probe day). During an initial block of 4 training days the ITI between 

trials 1 and 2 was 15 s. This ITI was increased to 6 h on the remaining 6 training days to 

familiarize the rats with the retention interval assessed on probe days. In addition, days 

7 and 10 included probe trials to establish that performance at 6 h had reached 
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asymptotic levels before testing (data not shown). This was followed by a block of 6 

probe days with interspersed training days. Each probe day was preceded by 2 training 

days with a T1-T2 ITI of 6h. The main purpose of the training days was to prevent carry 

over effects between probe days and to assess the stability of performance throughout 

the experiment. Since memory strength at 6 h did not vary between replication 1 (in 

which rats were kept in the watermaze during the retention interval) and 3 (in which 

rats were moved back to the vivarium; see Results) of Expt. 1, we returned the rats to 

the vivarium after encoding during Expts 2 to 4. 

Expt. 3: Series 1 (16 days) – The animals were given an initial block of 4 training 

days with a retention interval of 15 s. This was followed by 2 replications of 2 probe 

days, each probe day preceded by 2 training days (6h retention interval). Two 

sequences of 16 platform positions were used that were counterbalanced for groups, 

days and conditions in probe days. Series 2 (6 days) - Rats were given a single block of 2 

probe days, each probe day preceded by 2 training days (15-s retention interval), with 

training conditions otherwise identical to series 1. 

Expt. 4 (20 days): This experiment used the same rats as tested in Expt. 3. The 

rats had not been trained for several weeks so they were given 4 ‘reminder’ training 

days (4 trials/day; 15s ITI) to re-establish levels of performance prior to testing (data not 

shown). After this, performance for the different experimental conditions was assessed 

in a series of 4 probe tests (swim vs. placement; 30 min vs. 24 h). Each probe comprised 

two days (because of the 24 h retention interval) and was preceded by 2 training days (4 

trials/day; 15-s ITI). 

 

Statistical analysis  

Repeated-measures analysis of variance (ANOVA) was used to examine the 

impact of within-subjects variables on behavioral measures. Fisher’s least significant 

difference (LSD) test was used to further examine main effects of the ANOVA. Two-

tailed one-sample t tests were used to compare search preference measures to the 

value expected by chance (12.5 %). The percent relative variability of the different 
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measures of performance was calculated as the standard error of the mean divided by 

the absolute value of the mean and multiplied by 100 %. Differences in the relative 

variability of the performance measures were analyzed with a factorial ANOVA. For 

comparison of the watermaze and event arena data, normalization of the watermaze 

data to chance was calculated as the percentage of time swimming in the correct zone 

divided by chance level (12.5 %). Normalization of the event arena data to chance was 

calculated as the percentage of time digging in the correct sandwell divided by chance 

level (20 %). The level of significance was set p<0.05. Data are presented as 

mean±1SEM. 
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