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Rating crowdsourced annotations: evaluating contributions of variable
quality and completeness

Giles M. Foody*

School of Geography, University of Nottingham, Nottingham, UK

(Received 27 March 2013; accepted 23 August 2013)

Crowdsourcing has become a popular means to acquire data about the Earth and its
environment inexpensively, but the data-sets obtained are typically imperfect and of
unknown quality. Two common imperfections with crowdsourced data are the
contributions from cheats or spammers and missing cases. The effect of the latter
two imperfections on a method to evaluate the accuracy of crowdsourced data via a
latent class model was explored. Using simulated and real data-sets, it was shown that
the method is able to derive useful information on the accuracy of crowdsourced data
even when the degree of imperfection was very high. The practical potential of this
ability to obtain accuracy information within the geospatial sciences and the realm of
Digital Earth applications was indicated with reference to an evaluation of building
damage maps produced by multiple bodies after the 2010 earthquake in Haiti.
Critically, the method allowed data-sets to be ranked in approximately the correct order
of accuracy and this could help ensure that the most appropriate data-sets are used.

Keywords: volunteered geographic information; accuracy; error

1. Introduction

Crowdsourcing has become a popular means to acquire data on a wide range of
phenomena and has the potential to play a major role in relation to the various aspects of
the Digital Earth and its applications (Georgiadou, Lungo, and Richter in press; Mooney
and Corcoran in press). Crowdsourcing projects vary in nature (Estelles-Arolas and
Gonzalez-Ladron-de-Guevara 2012) but thrive across a vast array of disciplines from
astronomy (Raddick and Szalay 2010), through neogeography (Neis, Zielstra, and Zipf
2012; Foody and Boyd 2013) to zoology (Wiersma 2010; Newell, Pembroke, and Boyd
2012). Within the realm of the Digital Earth, crowdsourcing has considerable scope for
growth as the potential for volunteered geographic information (VGI) becomes increasing
apparent with the rise of citizen sensors (Goodchild 2007) and is a central feature of
priority topics such as grand challenges for the geographical sciences (CSDGSND 2010;
Craglia et al. 2012).

The nature of the data acquired varies, but one popular application is to use
crowdsourcing to label cases of the phenomenon of interest. For example, it is common
for crowdsourcing projects to seek annotations such as class labels from photographs, in
which cases of the phenomenon of interest are given a class label. If the photographs are
geographically referenced, this provides one basis for the acquisition of VGI (Antoniou,
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Morley, and Kaklay 2010). For example, photographs acquired at the intersection of lines
of latitude and longitude through the Degrees of Confluence project have been used to
provide crowdsourced data on land cover (Iwao et al. 2006; Foody and Boyd 2013).
Additionally, this type of activity is aided by a range of Internet-based systems such as
the Amazon Mechanical Turk online labour market (https://www.mturk.com/mturk/
welcome). With the latter, a large task can be offered out to a large group of contributors
with each, for example, undertaking a small part of the work in return for a small
payment (Snow et al. 2008; Welinder et al. 2010). Similarly, Internet-based projects such
as the geo-wiki seek volunteers to interpret satellite sensor images of selected locations of
the Earth such that land cover class labels may be applied to them (Fritz et al 2012). As
data about the Earth and digital representations become more abundant, Digital Earth
applications need to be able to effectively convert often large data volumes into
meaningful information (Li et al. in press; Ajmar et al. in press).

Key attractions of crowdsourcing are the potential to acquire large data-sets cheaply,
if not freely, and quickly (Snow et al. 2008; Raykar and Yu 2012). Moreover, the
volunteers may also contribute to important applications such as those associated with
natural disasters and their impacts (Gao, Barbier, and Goolsby 2011; van Aardt et al.
2011), which is recognised as a research frontier in the geographical sciences (Goodchild
and Glennon 2010) and an important application in the context of the Digital Earth
(Carrion et al. in press). The value of the volunteered data is, however, a function of its
quality. Although some studies have shown that the quality of the data derived can be as
good as that from expert annotators (Welinder et al. 2010), concerns about the quality of
crowdsourced data abound (Flanagin and Metzger 2008; Roman 2009; Fichman 2011;
Yaari, Baruchson-Arbib, and Bar-Ilan 2011; Fowler et al. 2013). These concerns are
significant across the spectrum of possible applications. Errors in the training data used to
classify remotely sensed data may, for example, degrade the ability to map and monitor
land cover (Townshend et al. 2012). A particular concern is when there is information
provided by a variety of sources. For example, in relation to post-disaster relief
applications, it has become evident that the large amounts of data provided by a variety
of agencies can be a source of problems due to the different and sometimes conflicting
information provided (Shan, Eguchi, and Jones 2011; Voigt et al. 2011; Carrion et al. in
press). Making full use of crowdsourced information represents a major scientific
challenge (CSDGSND 2010; Voigt et al. 2011), and one step in the process to addressing
this challenge is to provide a means to evaluate the quality of the data contributed in order
to aid its optimal use within the context of the Digital Earth (Craglia et al. 2012; Carrion
et al. in press). In some cases, the desire is not necessarily to have a rigorous assessment
of data quality but the provision of some, even qualitative, information on map quality to
assist map users (van Aardt et al. 2011; Tiede et al. 2011). The disaster response chain
would, for example, benefit greatly from such information on data quality, but it is often
not provided as a core focus is often on the rapid provision of data to inform response
activity (Carrion et al. in press). Map validation, therefore, remains a critical concern and
a challenge for the producers and users of maps. Often, the ability to undertake a
traditional accuracy assessment, based on high-quality ground reference data, is
impractical (Carrion et al. in press). The development of new tools and devices may
help to provide useful field data for map validation activities (Ajmar et al. in press), but
alternative methods may also aid the evaluation of maps, especially if derived from
different sources such as crowdsourcing projects or even different authoritative agencies.
While it is true that conventional approaches to evaluate the quality of digital map
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representations used in Digital Earth applications that are founded on design-based
inference require ground data (Carrion et al. in press), this does not mean that accuracy
assessment is impossible as model-based methods can allow evaluation without ground
data (Foody 2012).

The contributors submitting data to a crowdsourcing project may differ greatly in
motivation and skill and so can vary from experts to novices with possible inputs from
people who make malicious contributions as well as those from spammers (Shachaf and
Hara 2010; Brabham 2012; Hirth, Bobfeld, and Tran-Gia 2012; Kazai, Kamps, and Milic-
Frayling 2012; Naroditskiy et al. 2012; Neis, Goetz, and Zipf 2012; Raykar and Yu 2012;
Fowler et al. 2013). Thus, there is commonly a degree of disagreement between
annotators contributing data (Raykar et al. 2010). The quality of the data provided by an
individual contributor may also vary within a task as the person may find some aspects of
the task more challenging than others (Welinder et al. 2010; Foody et al. Submitted) and
may learn to label by experience. Indeed, annotators may vary greatly in how they reach
decisions, some, for example, may be relatively intolerant to false positives while others
willing to accept a proportion if it yields a high detection rate (Welinder et al. 2010). So
while crowdsourced data-sets can potentially be made up of contributions that are mainly
of a high quality, with only a small proportion from poor or sloppy contributors, and be as
good as data derived mainly from experts (Welinder et al. 2010; Brabham 2012), it is also
possible for them to be comprised predominantly of low-quality data. For example, data-
sets could be dominated by contributions from cheaters or spammers, who randomly
assign labels (Hirth, Bobfeld, and Tran-Gia 2012; Raykar and Yu 2012).

Critically, in many cases, the end-user of the derived data has little or no control over
the contributors and has no or negligible information on data quality. Additionally, there
is often no obvious way to discriminate between contributors and their data in cases of
conflict in labelling. In situations in which there are labels derived from multiple
contributors, it is possible to use, for example, the majority vote system to determine a
label, but this treats all annotators equally and is of little value if the vast majority of the
contributions are of low quality (Raykar and Yu 2012). If the identity of a contributor is
known, it may be possible to build up levels of trust in their work over time and rate by
reputation (Fichman 2011). There are still, however, concerns such as how a rated
contributor copes with cases of new, previously unseen classes. Some Internet-based
projects use editors as gatekeepers to help quality control. Again, there are concerns and
no simple link between accuracy and aspects of editorial activity (Yaari, Baruchson-
Arbib, and Bar-Ilan 2011). Alternatively, it may be possible to use other means of
checking the credibility of the data. For example, with VGI that have become an
important component of the Digital Earth, a range of approaches can be used to aid in
quality assurance including assessments of the sense of the data relative to existing and
trusted geographic contextual information (Goodchild and Li 2012). Critically, however,
the quality of the contributed data is a key issue and the tension between wisdom of the
crowd and mob rules is apparent in crowdsourcing projects (Roman 2009) making an
ability to rate and rank contributors a desirable feature (Snow et al. 2008; Welinder et al.
2010, Raykar and Yu 2012). In some applications, notably in relation to post-disaster
response, the need for even quite basic characterisation of quality is established (Carrion
et al. in press).

A variety of methods have been proposed to rate the quality of data derived from
multiple contributors (Raykar et al. 2010; Welinder et al. 2010; Raykar and Yu 2012). A
simple alternative approach is to view the crowdsourced contributions as imperfect
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indicators of the actual phenomenon under study and use a latent class analysis to reveal
information on it and on the quality of the data provided by the contributors. Although
researchers are aware of the potential of latent class modelling (Raykar et al. 2010), it
does not appear to have been used extensively in relation to crowdsourced data. In a
previous study, it was shown that a latent class analysis could provide information on the
quality of crowdsourced data and allowed contributors to be ranked in terms of the
quality of their labelling (Foody et al. 2013). This was, however, an exploratory analysis
based upon a small data-set that may be unrepresentative of typical crowdsourced data-
sets: the analysis was focused on data from a low number of volunteers, 7, and only a
small amount, <2%, of cases were missing. Volunteers vary greatly in features such as
motivation, skill level and time to contribute, and hence, it is common to find that while
many people may contribute to a project, most of the data comes from a relatively small
number of people (Mooney and Corcoran 2012). Additionally, although there are
sometimes barriers to involvement (Haklay 2013), it is generally relatively easy to
contribute data as barriers are often low and so, it is perhaps inevitable that at least some
of the people providing data will have undesirable characteristics. The latter may vary
greatly in nature, from well-meaning people who have little ability through to people who
will set out to damage a project with malicious intent. Recognising that real
crowdsourced data-sets often contains a large proportion of missing cases and may
have numerous contributors which may possibly be dominated by spammers or other
problematic sources (Raykar et al. 2010; Raykar and Yu 2012; Neis, Goetz, and Zipf
2012), the aim of this study is to explore the potential of latent class analysis to situations
in which a large proportion of data may be from poor sources (e.g. spammers) and/or be
incomplete. While the latent class analysis should be viable with some missing data
(Vermunt 1997), its sensitivity to differing degrees of incompleteness within potentially
very noisy data-sets is uncertain. This work, therefore, develops previous studies and
explores the effect of missing data on the estimates obtained from a latent class analysis
and the ability to rate contributors such that the end-user might, for example, be able to
disregard data provided by poor contributors in order to enhance data quality, identify and
remove spammers or perhaps identify training needs.

2. Data

Real and simulated data-sets were used to explore the potential to rate and rank individual
annotators contributing to crowdsourced data collection activities. The simulations
allowed data with known properties to be analysed. Two of the real data-sets have been
used in other studies on the rating of crowdsourced data and so provide a comparative
context based on example applications that facilitate the comparison of ranking methods.
The final real data-set arises from the unprecedented response of the geospatial science
community to the 2010 earthquake in Haiti.

2.1. Simulated data

Building on earlier research (Foody 2010), a series of simple binary classifications were
generated. This series comprised data from what may be considered to be four genuine,
albeit imperfect, annotators supplemented here with data from a further 18 spammers.
The total data-set generated was, therefore, dominated by spammers, with a spammer
viewed here as a source that provides, essentially, a random label. As spammers may vary
in sophistication, the abundance or prevalence of the target class was also allowed to vary

4 G.M. Foody

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
tin

gh
am

] 
at

 1
0:

51
 1

7 
M

ar
ch

 2
01

4 



over a range of prevalence. Thus, each simulated spammer labelled a specified proportion
of cases in the data-set as members of the target class but aside from this feature of the
design, all allocations were made randomly.

The data on the four genuine contributors were labelled A–D. These data-sets
contained 1000 cases which were generated with known sensitivity (α, the true positive
rate or the recall rate) and specificity (β, the true negative rate or 1-false alarm rate) for a
scenario in which the prevalence was 0.2 (Table 1); in the terminology used widely in the
geographical information science community, these measures equate to producer’s
accuracy values (Liu, White, and Newell 2009). Here, the data for the 18 spammers,
labelled E-V, were derived randomly using a binomial distribution with the prevalence
ranging from 0.1 to 0.9 in 0.1 steps. At each setting of prevalence, two data-sets were
generated to ensure that data from spammers would vastly dominate the final data-set.
The quality of the labelling by each contributor can be characterised by their sensitivity
and specificity which were also combined into the true skills statistic (TSS) or Youden’s J
statistic to give a measure of overall classification accuracy (Allouche, Tsoar, and
Kadmon 2006) via

TSS ¼ aþ b� 1 ð1Þ

With this measure, a perfect classification has a TSS = 1, while random allocation would
be associated with TSS = ∼0. The properties of the data-sets used are defined in Table 1.

The data for A–D were also used to explore the effect of missing cases on the
accuracy of estimation derived from the latent class model. The latter was achieved by
randomly recoding some of the cases as missing. A series of scenarios were
investigated. First, analyses were undertaken in which the data provided by annotators
A–D were progressively degraded by randomly recoding 100 cases from contributor C
as missing until only 100 cases (10% of the initial sample size) remained. Further
scenarios were constructed in which cases from C and D were recoded as missing.
Specifically, data-sets in which 10%, 20% and 50% of cases in C and D were recoded as
missing were generated. This was done twice: once with the same cases coded as
missing in the data from C and D and then with different cases in the data provided by
C and D missing.

2.2. Real data

Three real data-sets were used. Two have been employed in other studies focused on the
quality of crowdsourced data. A key feature of each is the availability of a reference data-
set for validation purposes. The latter allows the accuracy of the data submitted by each
contributor to be assessed, enabling the relative performance of contributors to be
assessed and for contributors to be ranked in terms of the quality of their labelling.
Additionally, as two of the data-sets have been used in other studies focused in the
evaluation of the quality of crowdsourced data (e.g. Raykar and Yu 2012), their use
allows comparison to other methods of ranking contributors by the quality of their
labelling. The salient features of each data-set are outlined as follows.

The rating of annotators and identification of spammers was undertaken with the
‘bluebird’ data-set (Raykar and Yu 2012). This data-set comprises the response from 39
annotators of 108 images for a binary labelling task; annotators indicated the presence or
absence of a bird species in photographs presented to them and there were no missing
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cases. This data-set has been used previously in the rating of annotators by Raykar and
Yu (2011, 2012).

The effect of missing cases on the rating of contributed data was assessed using the
‘temp’ data-set. This presents data on a binary classification task in which 462 cases were
labelled by 76 annotators. Each case was labelled by 10 annotators with each annotator
labelling an average of 61 cases (Raykar and Yu 2012). This data-set was used by Raykar
and Yu (2012) in a study that sought to rate annotators.

The final data-set arises from the unprecedented response by the geospatial science
community to the 2010 earthquake in Haiti (Duda and Jones 2011; Voigt et al. 2011;
Ajmar et al. in press). The latter included maps of post-disaster building damage
produced by a variety of different agencies, sometimes using crowdsourced data. Here,
five building damage maps focused on Port-au-Prince were used and compared against
the results of a ground-based survey that visited 98 buildings in the city to provide a
reference data-set. A detailed description of each map is beyond the scope of this article,
but the key details and an indicative reference for each of the five maps used are: (map a)
a map derived from oblique, multi-perspective airborne imagery (Gerke and Kerle 2011;
the data used here were downloaded from http://www.istructe.org/resources-centre/
technical-topic-areas/eefit/haiti-photo-archive); (map b) a map derived through the

Table 1. The quality of the 22 contributors to the simulated data-set expressed in terms of
sensitivity (α), specificity (β) and TSS. Contributors A–D represent the genuine, albeit imperfect,
contributors (note, A D correspond to scenarios B, I, J and K defined in Foody 2010) while E–V
were spammers who made random allocations.

Annotator α β TSS

A 0.8000 0.8000 0.6000
B 0.9050 0.9000 0.8050
C 0.8250 0.8550 0.6800
D 0.6700 0.6912 0.3612
E 0.1150 0.8912 0.0062
F 0.1100 0.8737 −0.0162
G 0.1700 0.7962 −0.0337
H 0.1900 0.7662 −0.0437
I 0.2800 0.6775 −0.0425
J 0.2850 0.7100 −0.0050
K 0.3450 0.5750 −0.0800
L 0.3800 0.6187 −0.0012
M 0.5450 0.5212 0.0662
N 0.5550 0.4800 0.0350
O 0.6000 0.4362 0.0362
P 0.6000 0.3800 −0.0200
Q 0.7700 0.3087 0.0787
R 0.7150 0.3000 0.0150
S 0.8600 0.2137 0.0737
T 0.7650 0.2012 −0.0337
U 0.9000 0.0950 −0.0050
V 0.9050 0.1025 0.0075
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activities of the Global Earth Observation – Catastrophe Assessment Network which used
inputs from over 600 people in 23 countries (van Aardt et al. 2011; the specific data used
were downloaded from http://www.istructe.org/resources-centre/technical-topic-areas/
eefit/haiti-photo-archive); (map c) a map produced by the Centre for Satellite based
Crisis Information (ZKI) by a team using visual interpretation of satellite sensor images
(Voigt et al. 2011; the specific data used were downloaded from http://www.zki.dlr.de/
article/1262); (map d) a map produced through the Global Monitoring for Environment
and Security (GMES) Services for the Management of Operations, Situation Awareness
and Intelligence for Regional Crisis (Tiede et al. 2011; the specific data used were
downloaded from http://spatial.telespazio.it/gmosaic_haiti/); and (map e) a map produced
from WorldView-2 satellite and aerial survey imagery by the United Nations Institute for
Training and Research’s (UNITAR) Operational Satellite Applications Programme
(UNOSAT) (Duda and Jones 2011; the specific data used were downloaded from http://
www.unitar.org/unosat/node/44/1424). The ground reference data for 98 buildings arises
from a survey undertaken by The Earthquake Engineering Field Investigation Team
(Booth, Saito, and Madabhushi 2010). Post-disaster damage mapping from remotely
sensed data is a challenging task with maps, such as those used here, often differing in
relation to spatial detail, thematic legend or other basic issues (Kerle 2010; Voigt et al.
2011; Carrion et al. in press). Critically, the maps do not show the exact same information
but rather different representations of the same phenomenon: building damage. To
enhance the degree of comparability of the maps, attention focused on only the most
severely damaged buildings. To do this, the two most severe building damage classes in
maps a, b, d and e were aggregated into one new class, considered here to indicate
severely damaged buildings. Map c had a different legend and the class severely damaged
buildings was taken to correspond to its ‘very strong’ damage class. Each of the 98
buildings visited in the field was also re-classified to show severely damaged buildings
by aggregating the two most severely damaged classes in the original data-set. All 98
buildings in the reference data were identified in the damage maps except for map e, in
which there was no data for 17 buildings.

3. Methods

3.1. Latent class model

A standard latent class model was used. This model had been used in earlier research with
crowdsourced data (Foody et al. 2013) and its general basis is re-stated here with further
discussion provided in the literature (e.g. Rindskopf and Rindskopf 1986; Yang and
Becker 1997; Vermunt and Magidson 2003, Magidson and Vermunt 2004).

The latent class model is based on the probability of observing the patterns of class
allocation made by the set of contributors to the crowdsourcing project. The group of
contributors, C, were each presented with a set of cases to label. The set of labels
provided by the contributors represent the manifest variables of the analysis and are used
to provide information on the unobserved (latent) variable. Letting, Mc represents one of
the set of C manifest variables indexed 1 ≤ c ≤ C, and its values are class labels
represented by mv which lie in the range r (1−q). Using vector notation M and m to
represent the complete response patterns (i.e. M denotes (M1,., Mc) and m denotes (m1,.
mq)), the latent class model is that the probability of obtaining the response pattern m,
represented as P(M = m), is a weighted average of the q class-specific probabilities P(M =
m|T = t) (Magidson and Vermunt 2004). On the assumption that the labels derived from
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each contributor are conditionally independent of those from all others, the latent class
model may be written as:

P M ¼ mð Þ ¼
Xq
t¼1

P T ¼ tð Þ
YC
c¼1

P Mc ¼ mcjT ¼ tð Þ ð2Þ

where P(T = t) is the proportion of cases belonging to latent class t (Yang and Becker
1997; Vermunt 1997; Vermunt and Magidson 2003). The quality of the model is assessed
typically with regard to a computed likelihood ratio chi-squared statistic, L2, obtained
from a comparison of information on the pattern of labelling observed with that expected
from the model. The model is normally viewed as providing a good fit if the L2 value
obtained is sufficiently small to be attributable to the effect of chance (i.e. p > 0.05;
Magidson and Vermunt 2004).

The only parameters of the latent class model in equation (2) are the latent class
probabilities which provide useful information on the variable under investigation as well
as of the quality of the contributing data sources. Specifically, the model parameter P(T =
t) represents the probability of a case being a member of latent class t which, for a simple
random sample, reflects directly the proportion of that class in the data-set which can be
valuable in studies of prevalence. Of particular significance to this article, however, is
that the model parameters representing the conditional probabilities include measures
that equate the sensitivity and specificity of each contributing source of data (Yang and
Becker 1997; Foody 2010, 2012). For example, when mc = t, the expression P
(Mc=mc|T=t) represents the sensitivity for class t in the data represented by Mc. Thus,
the parameters of the fitted latent class model include values that indicate the estimated
sensitivity and specificity of each contributor. The model, therefore, provides a means to
quantify the accuracy of each contributor and this arises without the need for any
reference (truth) data. Thus, contrary to a widespread belief in the realm of the Digital
Earth that ground reference data are essential for accuracy assessment (e.g. Carrion et al.
in press; Ajmar et al. in press), it is possible to derive estimates of data quality via a
model-based method that exploits the large, but imperfect, data volumes that are
sometimes available (Foody 2012). Since even a small amount of error in a ground
reference data-set can be a large source of error in some studies (Foody 2010, 2013), the
ability to make some assessments of data quality without reference data may be an
attractive feature of the model for other studies and applications

3.2. Comparisons

Here, the sensitivity (α), specificity (β) and TSS were used to characterise the quality of
the labelling provided by individual contributors. The quality of the data from each
contributor was rated and ranked in terms of the sensitivity, specificity and associated
TSS values obtained. The ranking derived by the latent class analysis was evaluated by
comparison against reference data and the rankings derived from the application of other
methods of rating crowdsourced contributions reported in the literature.

A variety of methods have been used to rate and rank data-sets contributed to
crowdsourcing projects data-sets. Here, the latent class model-based approach was
compared against methods used in ranking, crowdsourced data including research based
on some of the data-sets used to aid comparison. Specifically, the results from the latent
class analysis were compared against the results reported by Raykar and Yu (2011, 2012).
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Comparison of the annotator rankings derived from the latent class analysis was
compared against those derived by Raykar and Yu (2012) with the bluebird and temp
data-sets that was dominated by spammers. The approach proposed by Raykar and Yu
(2012) was an empirical Bayesian method in which a spammer is defined as an annotator
for which the TSS was <0.05; full details of the method are given in Raykar and Yu
(2012). The selection of a specific score to act as a threshold to identify spammers is a
relatively arbitrary, but the TSS-based score derived allows the quality of each
contributing data source to be ranked. The rank order of the annotators was defined by
Raykar and Yu (2012), using the lowest value of the 95% confidence interval estimated
for each contributor and was compared against the rank order obtained from the results of
the latent class analysis.

In another study, Raykar and Yu (2011) propose an entropic score as a means to rate
and rank annotators. Again the details are presented in their article, but the basis of the
method is to focus on the reduction in entropy that arises from the use of an annotator’s
data. A score for each contributor may be derived and used to rank annotators. For the
j-th annotator, the score was calculated from

s j ¼ 1

N

XN
i¼1

H yið Þ � H yijyijð Þ
H yið Þ

� �
ð3Þ

in which N is the number of instances, H(yi) represents the entropy of the unknown label yi
prior to observing any annotations and H yijyijð Þ is the entropy after observing the annotation
of yi

j from the j-th annotator. The basis of the method is that a spammer would allocate labels
randomly and so does contribute any information to reduce the uncertainty in the labels and
hence H yijyijð Þ ¼ H yið Þ yielding a score of 0 while an ideal annotator would reduce the
uncertainty in the label reducing H yijyijð Þ to 0 and so produce a score of 1. Again, Raykar
and Yu (2011) calculated a score for each annotator contributing to the analysis of the
bluebird data-set and ranked them by the lower limit of the calculated 95% confidence
interval for each annotator; further details on the method are given in Raykar and Yu (2011).

4. Results and discussion

Initial analyses used the simulated data-set and focused on the ranking of annotators in
the presence of spammers before considering the effect of missing cases. A standard
latent class model was formed using the data from each of the 22 contributors in the
simulated data-set. This model appeared to fit the observed data, L2 = 10,508.4 (p >>
0.05), and so its parameters were extracted and compared against the relevant truth
known for the simulated data used.

The first set of parameters in equation (2) yields an estimate of the prevalence. The
value suggested by the latent class model was 21.2%, close to the actual value of 20.0%.
The second set of parameters in equation (2) is the conditional probabilities which include
estimates of the accuracy of each contributor; the set of conditional probabilities
generated include values that represent the sensitivity and specificity of each contributor.
The estimates derived from the latent class model were very similar to the actual values
(Figure 1); the estimated and actual values of the sensitivity, specificity and TSS were
all very highly correlated with r > 0.99. Additionally, the regression line fitted to
each relationship was close to a 1:1 line that passes through the origin. Furthermore, in
Figure 1c, the four genuine, but imperfect, annotators are easily identifiable as the cases
lying furthest from the origin. All the remaining contributors lie in the zone defined by an
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estimated and actual TSS < 0.1. Only two of the latter cases had a TSS > 0.05 in the
output of the latent class model, the threshold value used by Raykar and Yu (2012) to
define a spammer. However, for these contributors, the highest TSS was 0.09 which
would indicate a very low accuracy.

The results showed that the latent class model was able to provide accurate estimates
of both the prevalence and the quality of each contributor in terms of the accuracy of their
labelling even when the data-set was vastly dominated by spammers. The model
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Figure 1. Relationship between estimated and actual accuracy values derived from analyses of the
simulated data. (a) Sensitivity, (b) specificity and (c) TSS.
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estimates were very highly correlated with the actual values and could form a basis for
activities such as spammer identification. Critically, however, accurate estimates could be
derived from data dominated by spammers.

Attention turned to the real data-set on bluebird annotations. Again a standard latent
class model was generated using the data provided by all 39 annotators. As with the
analyses of the simulated data, the parameters of the model that indicated the sensitivity
and specificity of each contributor were extracted from the model. The sensitivity and
specificity values were used to calculate the TSS for each contributor, enabling
contributors to be ranked in terms of quality estimated from the latent class model-based
approach. These rankings were then compared to the rank order generated for the data-set
by Raykar and Yu (2011, 2012) using the entropic score and empirical Bayesian-based
methods, respectively.

The three sets of contributor rankings obtained were very similar (Figure 2). The
degree of correspondence between the rankings was generally very high but degraded at
the higher ranks (lower quality) where very small differences in magnitude could alter
rank position substantially. In particular, it was evident that all three methods of ranking
the contributors identified the same nine contributors as being of highest accuracy, albeit
with slightly different order. Although the degree of correspondence between ranks
declined at high ranks, there was still a large degree of correspondence at the low-quality
end of the rankings. Indeed, the least accurate set of nine contributors defined by each
approach to ranking had six contributors in common across the three approaches to
ranking contributors.

Perhaps more important than the comparison between the different ranking methods,
the TSS estimated from the latent class model approach was very highly correlated with
the actual TSS, r > 0.95 (Figure 2c). The regression line between the estimated and actual
TSS of the contributors was again close to a 1:1 line passing through the origin,
highlighting that the model-based estimates were strongly related to the actual vales and
of magnitude directly comparable to the actual values.

The latent class model-based approach appeared to perform comparably well to other
methods of ranking contributors in terms of the quality of their labelling in the presence
of spammers. As such, it provides a means to enhance analyses that use crowdsourced
data. For example, the information on contributor quality may be used to enhance the
accuracy with which a data-set is classified. As a guide to this, if the data from all 39
contributors to the bluebird identification task were used in a basic ensemble approach to
classification, with each case allocated to the class with the dominant label, the resulting
classification has TSS = 0.479. If, however, only the top five contributors identified by
the latent class model-based approach were used, the accuracy of the resulting
classification was markedly higher, TSS = 0.808. Critically, the focus on only high-
quality annotators enables a more accurate classification to be derived and these high-
quality annotators may be identified in the output of the latent class analysis without any
reference (truth) data.

Thus far, the analyses had used complete data-sets, but many crowdsourced data-sets
will contain missing cases. The effect of missing cases was explored with initial attention
focused on the simulated data for the 4 genuine annotators (A-D) defined in Table 1.
Incremental removal of cases from contributor C had only a relatively minor effect on the
estimates of the sensitivity, specificity and TSS, which were shown above to be close to
the actual values (Figure 3).
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The effect of missing cases, while small, differed between the contributors. For
contributor A, the estimated sensitivity and specificity remained close, within 0.01 of
actual, until more than 50% of the cases from contributor C were missing. When most
cases from contributor C were missing, the sensitivity, specificity and TSS all declined

(a)

(b)

(c)

0

10

20

30

40

0 10 20 30 40

R
an

k 
fr

o
m

 la
te

n
t 

cl
as

s 
m

o
d

el

Rank from Raykar and Yu (2011)

0

10

20

30

40

0 10 20 30 40

R
an

k 
fr

o
m

 la
te

n
t 

cl
as

s 
m

o
d

el

Rank from Raykar and Yu (2012)

R² = 0.9475

–0.5

–0.3

–0.1

0.1

0.3

0.5

0.7

0.9

–0.4 –0.2 0.0 0.2 0.4 0.6 0.8 1.0

E
st

im
at

ed
 T

S
S

Actual TSS

y = 0.9981x – 0.0701 

Figure 2. Evaluation of the latent class model-based outputs and other ranking methods and actual
TSS. (a) Comparison of the annotator ranks from the latent class model with those from Raykar and
Yu (2011). (b) comparison of the annotator ranks from the latent class model with those from
Raykar and Yu (2012) and (c) comparison of estimated and actual TSS.
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slightly. For example, with 90% of the cases of contributor C missing, the TSS declined
to 0.521 from its starting value of 0.572 when no cases were missing. For contributor B,
the general trend for sensitivity, specificity and TSS was that the estimated values
increased with an increase in the number of missing cases from contributor C. The TSS

(a)

(b)

(c) 

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

S
en

si
ti

vi
ty

Cases missing from C (%)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

S
p

ec
if

ic
it

y

Cases missing from C (%)

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100

T
S

S

Cases missing from C (%)

Figure 3. Effects of missing cases on accuracy characterisation for sources A (crosses), B (squares),
C (circles) and D (triangles). (a) Sensitivity, (b) specificity and (c) TSS.
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rose from 0.832 with no cases missing to 0.934 with 90% of the cases from contributor C
missing. With contributor D, the general effect of increasing the number of missing cases
from contributor C was to decrease the values of sensitivity, specificity and TSS. The
TSS declined from 0.335 to 0.307 as the percentage of missing cases from contributor C
rose from 0 to 90%. Finally, the estimated values of the sensitivity, specificity and TSS
for contributor C, whose data was subject to recoding as missing, there was a relatively
high degree of variation as cases were progressively re-labelled as missing. For example,
while the TSS with 0 and 90% of cases missing were relatively similar, at 0.657 and
0.652, respectively, they did vary over a range of 0.640–0.718 as the percentage of
missing cases varied (Figure 3). Overall, it was apparent that missing data did impact
upon the estimation of the quality of the contributed data. The variation was relatively
small and, for the data considered, did not change the rank order of the contributors.
Thus, the latent class approach seems able to derive useful information on the accuracy of
the contributors that allows their accurate ranking even in the presence of missing cases.

Further assessments were undertaken with the data from two contributors, C and D,
missing. Again the effect of increasing missing cases varied on the values derived for the
sensitivity, specificity and TSS of each contributor. Additionally, there were differences
between the scenarios in which the same or different cases were labelled as missing in the
data from contributors C and D (Table 2). Many of the trends noted when just cases from
contributor C were missing appeared for the situations in which cases were missing from
contributors C and D. Note, for example that the magnitude of variation in the estimated
values with increasing number of missing cases was small. Also some specific trends
were similar, with, for example, the sensitivity and TSS of contributor B generally
increasing with more missing cases. Perhaps more important are some trends between the
scenarios involving the same or different missing cases. Note for example that the
estimated sensitivity values for all four contributors were higher when different rather
than the same cases are labelled as missing in the data from contributors C and D.
Additionally, the specificity values for all contributors except those for contributor D
when 20 and 50% of cases are missing were always lower when different rather than
similar cases were missing in the data from contributors C and D. The difference between
the scenarios with the same and different cases missing was greatest for contributor D
(Table 2). These results highlight that the nature of the missing data, especially in whether
there is similarity in the cases missing, has an impact on the values output from the latent
class model approach. For the limited range of scenarios investigated, this did not impact
on the ranking of the contributors derived from the latent class analysis.

With the real, temp, data-set a latent class model was derived and the sensitivity and
specificity for each of the 76 contributors was obtained from the model parameters to
calculate the TSS for each. The obtained estimates of the TSS were strongly correlated
with the actual values derived from the available reference data; r > 0.90. Indeed, the
latent class model seemed particularly able to characterise well the poorer contributions,
those that were associated with low TSS values (Figure 4). This information could be
valuable to future studies by enabling, for example, the data from weak contributors to be
removed which was shown above to be helpful in increasing the accuracy of analyses
based upon the contributed data.

Finally, using the data relating to the Haiti earthquake, a latent class model was fitted
using the class labels depicted in the five classifications for the 98 buildings for which a
ground-based classification was also available. The model generated appeared to fit the
data well; L2= 29.98 (p = 0.70). The prevalence or amount of severely damaged buildings
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Table 2. Effect of missing cases in data provided by sources C and D on estimates of accuracy.

C and D missing (%)
Sensitivity Specificity TSS

A B C D A B C D A B C D

0 0.7681 0.9133 0.7963 0.6437 0.8039 0.9193 0.8615 0.6916 0.5720 0.8326 0.6578 0.3353
Same cases
10 0.7676 0.9087 0.7837 0.6291 0.8049 0.9198 0.8616 0.6938 0.5725 0.8285 0.6453 0.3229
20 0.7667 0.9123 0.7854 0.6142 0.8041 0.9199 0.8616 0.6889 0.5708 0.8322 0.647 0.3031
50 0.7703 0.9904 0.8302 0.5427 0.7909 0.9186 0.8576 0.6982 0.5612 0.9090 0.6878 0.2409
Different cases
10 0.7704 0.9242 0.7869 0.6291 0.8020 0.9187 0.8584 0.6894 0.5724 0.8429 0.6453 0.3185
20 0.7751 0.9404 0.7948 0.6218 0.7988 0.9163 0.8554 0.6981 0.5739 0.8567 0.6502 0.3199
50 0.7890 1.0000 0.8518 0.7490 0.7889 0.9106 0.8554 0.6647 0.5779 0.9106 0.7072 0.4137
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was indicated to be 21.8%. This value is less than the 30.6% reflected in analysis of the
reference data. However, damage is often greatly underestimated by remote sensing
(Yamazaki, Yano, and Matsuoka 2005; Kerle 2010) and the value derived from the latent
class model is closer to the actual value than all but one of the five classifications used;
map e suggests a value of 30.8% while the others vary from 4.1% to 20.4%. Thus, while
the amount of building damage was underestimated by the value derived from the latent
class model, the value was the second closest to the actual value and it must be noted that
there is no information available to guide the user to identify the most accurate map from
the set used.

Estimates of the sensitivity of each classification or map, which represent the
producer’s accuracy for the severely damaged building class, were also obtained from the
latent class model’s parameters. The obtained estimates of map accuracy varied greatly,
from 0% to 91.2%. Damage maps are often very inaccurate (e.g. Kerle 2010; Ajmar et al.
in press) and the ground reference data suggested that the actual range in accuracy was
from 3.3% to 58%. The estimates from the latent class model were not always close to the
actual values of accuracy, determined by comparing the classifications against the
available ground reference data. Although the accuracy values sometimes differed greatly
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Figure 4. Results of analyses of the temp data-set. (a) Comparison of ranks from the latent class
method with those by Raykar and Yu (2012) and (b) comparison of the estimated and actual TSS.

16 G.M. Foody

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

ot
tin

gh
am

] 
at

 1
0:

51
 1

7 
M

ar
ch

 2
01

4 



from the actual in absolute terms, the relative order of maps by accuracy was close
(Figure 5). For example, the spearman rank correlation between the estimated and actual
accuracy values was r = 0.8; but the small size of the sample should be noted. Critically,
as with the analyses of the temp data-set above, the analysis was very effective in
allowing the relatively inaccurate maps to be identified. As such, the method may be able
to provide useful accuracy information for key Digital Earth applications such as building
damage mapping to inform post-disaster response activities. It must be stressed that no
criticism of the different maps or their producer’s is intended, the maps have value
beyond the issue considered here and may well be of different quality in other parts of the
affected area (Hisada, Shibaya, and Ghayamghamian 2004; Tiede et al. 2011). The key
concern is that on the one specific issue considered, the detection of severely damaged
buildings, there was a marked difference in the accuracy with which the maps represented
the sample of cases. While the latent class analyses were not able to provide an accurate
absolute estimate of the accuracy of the maps, it did provide a very good relative
assessment and other work has shown that the quality with which the accuracy of a data
source is characterised can increase with the inclusion of additional sources (Foody et al.
Submitted); so, there is scope for further enhancement in the estimation of map accuracy.

The results from the analyses of both the simulated and real data-sets indicate the
potential of latent class modelling for the characterisation of key aspects of the quality of
crowdsourced data. In particular, it was shown that for data-sets comprising cases labelled
by multiple annotators, it was possible to derive quantitative estimates of the quality of
each data source. In the examples shown, the quality of the characterisation of source
accuracy was often very high. However, there were also instances in which the quality of
the estimates of source accuracy obtained was inaccurate in an absolute sense. In these
latter cases, however, the estimates obtained typically provided an excellent characterisa-
tion of relative quality. Moreover, this ability to rate data sources in terms of quality was
found to apply in situations in which the data-sets used were highly imperfect, including
situations in which data were contributed primarily by spammers and/or had many
missing observations. The latent class modelling approach also offers other valuable
features not explored here, including the ability to combine all the observations for a case
and derive a predicted label in a manner similar to an ensemble classification. One key
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Figure 5. Relationship between the estimated and actual accuracy for the analyses of building
damage in Haiti.
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feature of the latent class modelling analysis is also that it can be undertaken without
reference data, which, given the difficulties of acquiring gold standard data and the
substantial problems that may arise if a non-gold standard is used, is a major attraction for
the use of the method. The method is also widely applicable. The focus in this paper has
been on data of the type that are often spatially referenced, as is common in Digital Earth
applications. The method may, however, be applied to aspatial data-sets derived from
multiple annotators contributing perhaps to popular crowdsourcing or other projects.

5. Conclusions

Crowdsourcing through Internet-based projects has grown in popularity to become a
major part of Digital Earth applications and offers the potential to acquire large data-sets
inexpensively. To address the concerns with the quality of crowdsourced data, it is
important to obtain information on the accuracy of data contributed. This requires ideally
a method that requires no ancillary information and can cope with common problems
such as the presence of data from spammers and missing cases. Here, the potential of
latent class modelling as a means to characterise the quality of data from contributors to
crowdsourced projects was confirmed. Moreover, it was shown that the latent class model
could characterise the accuracy of contributors, in terms of the accuracy of their labelling,
when the overall data-set was dominated by spammers and contained many incomplete
cases. The practical value of the method was illustrated with regard to data on post-
earthquake building damage arising from multiple sources. The latent class model was
able to rank the different building damage maps by accuracy, enabling, for example, post-
disaster aid work to focus on the most accurate information sources.
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