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Interplay between Coulomb and Jahn-Teller effects in icosahedral systems with triplet electronic
states coupled to h-type vibrations
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We will consider the role played by electron-vibration and electron-electron interactions, through Jahn-Teller
(JT) and Coulomb interactions, respectively, in icosahedral systems in which triplet electronic states are coupled
to hg-type vibrations. Starting from the electronic terms that arise from consideration of Coulomb interactions,
we introduce JT couplings both within the terms and between nondegenerate terms. We show how the symmetry
of the JT distortion can change when extra electrons are added, and give the conditions under which JT distortions
can be suppressed entirely when the Coulomb interactions are sufficiently large. The relevance of our results to
anions of the fullerene molecule C60 are briefly discussed, and existing experimental measurements are used to
estimate values for the quadratic JT coupling constants for these anions.
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I. INTRODUCTION

When an icosahedral molecule contains partially filled
degenerate orbitals, coupling between the electrons and vi-
brations will want to cause a spontaneous distortion to a lower
symmetry through the Jahn-Teller (JT) effect. However, where
there is more than one electron present, electron-electron
interactions also need to be considered. These will suppress
potential JT distortions if they are sufficiently large or if they
result in a singlet ground state, and can potentially alter the
symmetry of the distortion in other cases. In this paper, we will
consider the interplay between the JT and electron-electron
interactions and the effect on the symmetry reduction for
multiply occupied triplet electronic states coupled to fivefold
vibrations. These are known as pn ⊗ h JT systems,1,2 where
electron-electron interactions must also be considered for n

between 2 and 4. (For n = 5, the system is equivalent to having
one hole and there is only one degenerate term, and for n = 6,
the orbital is completely filled and there are no JT effects.)

The pn ⊗ h JT system is of interest from a fundamental the-
oretical point of view. Icosahedral symmetry is the highest pos-
sible point-group symmetry, and this results in features that do
not occur in other systems. For example, the H ⊗ h JT system
was the first known example in which the dynamic JT effect
can result in a change in the symmetry of the ground state (from
a fivefold H state to a singlet).3,4 The pn ⊗ h system is also of
interest because it applies to anions of the fullerene molecule
C60, whose lowest-unoccupied molecular orbital (LUMO) is
a T1u state. The JT effect is believed to play an important
role in the mechanisms behind why the A3C60 fullerides can
be superconducting up to relatively high temperatures,5–12

whereas the A4C60 fullerides are insulators. However, the role
of the JT effect is not fully understood. It is therefore important
to have a good fundamental understanding of the JT systems
involved in general terms so that the role of the JT effect in
determining properties of the fullerides can be understood.

Basic considerations of pn ⊗ h JT effects have been given
in a number of papers. Some analytical and numerical work
on solving these systems was first undertaken in Refs. 1 and 2,
with further analytical and numerical considerations given in
Refs. 11–19. Most recently, the possible symmetries of minima
in the p3 ⊗ h system have been investigated.20

In all of the pn ⊗ h JT systems, linear coupling results in
a continuous trough of minimum-energy points in the adia-
batic potential energy surface (APES). Quadratic coupling,
which is described by two independent coupling parameters
(because the Kronecker product H ⊗ H contains H twice),1,2

warps this minimum-energy surface to produce a discrete
set of minimum-energy points with the symmetry of one
of the subgroups D5d , D3d , D2h, or C2h of the icosahedral
group.1,2,19–21 The system will move dynamically between
the equivalent distortions, typically on a femtosecond time
scale. The only exception to this is when there is a specific
relationship between the two quadratic constants, when a
trough of minimum-energy points remains.

Despite the above work, the influence of the Coulomb
interaction on the symmetry of distortion has not previously
been considered in significant detail. In this paper, we give a
comprehensive investigation of the distortional symmetry for
the different charge states, comparing results across the differ-
ent systems. We show how, for given values of the quadratic
coupling, inclusion of Coulomb interactions alters the symme-
try compared to that which would be obtained due to the JT
effect alone. We also give conditions under which the Coulomb
interaction can suppress the symmetry reduction entirely.

As the strength of the quadratic coupling increases, the
nuclear vibrations have a larger effect on the overall energy
of the molecule. There are upper limits on the magnitude
of the quadratic coupling parameters for which a JT system
is intrinsically stable.20,22 At the limit, the amplitudes of
the vibrations become infinitely large and the system can
be thought of as breaking apart, with the JT energy (i.e.,
the energy lowering compared to the value that would be
obtained in the absence of JT effects) diverging to negative
infinity. All couplings inside the limit result in a system stable
with respect to nuclear displacements and with bounded JT
energies. The limits will also be investigated as part of our
symmetry analysis.

II. THEORETICAL FORMALISM

A. Hamiltonians for pn ⊗ h systems

We wish to formulate the problem in which both inter-
electron (Coulomb) interactions and electron-vibration (JT)
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interactions are taken into account. According to the adiabatic
approximation, the electronic part of the problem should first
be solved for fixed nuclear positions and the effect of nuclear
displacements added afterwards.23,24 For the systems under
consideration here, this means first determining the electronic
terms that result from the interelectron interactions. JT effects
are then incorporated using basis states representing the terms.
This is the usual approach for combining interelectron and JT
interactions,1,2 which has been used in a number of previous
works.1,2,15–20,24 Starting from this basis, Hamiltonians can
be constructed that incorporate the interelectron interactions
by placing different terms at different energies. Additional
contributions to the Hamiltonian are then added to incorporate
JT interactions within the terms and between coupled terms. As
different terms are nondegenerate, the JT interactions coupling
different terms together can be viewed as being pseudo-JT
(PJT) interactions.

For p2 ⊗ h and p4 ⊗ h, there is a high-spin term 3P

transforming as T1, and low-spin terms 1S and 1D, which
transform as A and H , respectively. There is JT coupling within
the 3P and 1D states (but not the 1S state as it is a singlet). In
addition, the low-spin terms are coupled together by the PJT
effect. However, they are not coupled to the high-spin term
so the high- and low-spin contributions can be treated as two
independent problems.

For p3 ⊗ h, Coulomb interactions result in a high-spin term
4S, which as it is an orbital singlet has no JT coupling, and low-
spin terms 2P and 2D transforming as T1 and H , respectively.1,2

The JT couplings within both the T1 and H states are found to
be zero,1,2 as noted previously in other contexts.25,26 However,
the PJT coupling between the T and H states is nonzero.

In the above bases, the total Hamiltonian in all cases can be
written in the form

Htot = Hint + Hvib + Hterm. (1)

Here, Hterm puts the different terms at different energies, as is
usual in a PJT formalism. It is diagonal in our basis constructed
from terms. For p2 ⊗ h and p4 ⊗ h, we will take the 1S state
to be at an energy δ2 relative to 1D, and for p3 ⊗ h we will take
the 2P state to be at energy δ3 relative to 2D. Hvib represents
the kinetic and potential energy terms describing the fivefold
h vibration in terms of simple harmonic oscillators. Hint

incorporates all JT and PJT interactions, and can be written in
the form

Hint = V1H1 + V2H2 + V3H3, (2)

where V1 is the linear JT coupling constant, and V2 and V3 are
two independent quadratic coupling constants that arise due
to the nonsimple irreducibility of the product H ⊗ H . H1 is
a Hamiltonian incorporating JT and PJT interactions that are
linear in the normal mode coordinates, andH2/H3 incorporate
interactions quadratic in these coordinates.

Following previous work,19,21 we will label the normal
mode coordinates as {Qθ,Qε,Q4,Q5,Q6}, where Q4, Q5,
and Q6 transform as the d-orbital functions dyz, dzx , and
dxy , respectively. In cubic systems, it is usual to take θ and
ε to transform as the d-orbital functions d3z2−r2 and dx2−y2 ,
respectively. The same choice can be made in these icosahedral
systems, and indeed this may be a sensible choice when
quadratic terms are neglected.15 However, when quadratic

coupling is included, the expressions for minima in the APES
in T ⊗ h and p2 ⊗ h are found to be simpler if we use the
Boyle and Parker convention,27 which takes Qθ and Qε to
transform as

dθ =
√

3

8
d3z2−r2 +

√
5

8
dx2−y2 ,

(3)

dε =
√

3

8
dx2−y2 −

√
5

8
d3z2−r2 .

This also allows direct use of the Clebsch-Gordon (CG) coeffi-
cients in Ref. 28 when setting up the interaction Hamiltonians.

Explicit forms for H1, H2, and H3 were constructed, using
the definitions and CG coefficients described above, for p1 ⊗ h

(T ⊗ h) in Ref. 21, for p2 ⊗ h in Ref. 19, and for p3 ⊗ h

in Ref. 20. These papers all used basis functions for the D
terms that transform in the same way as the Qs. The same
Hamiltonians will be used for the starting point in this paper.

B. Consistent definitions of JT coupling constants

As each of the previous papers on the pn ⊗ h systems
mentioned above only looked at a specific number of electrons,
no attempt was made to make the definitions of the coupling
constants Vi consistent across the different systems. As the
aim of the current paper is to see how the symmetry changes
when we change the charge state, it is appropriate to work
with consistent definitions. Although changing to consistent
definitions is not an essential step in our work, it will allow
us to predict how the symmetry of a given system will change
when we change the number of electrons, as the values of
the coupling constants themselves are not expected to change
significantly when the number of electrons changes.

One way of obtaining consistent definitions of the coupling
constants is to evaluate reduced matrix elements to link the
different cases.1 However, a simpler way is to write the
basis states that describe the terms 2P , 1D, etc., in the form
of appropriate antisymmetrized combinations of products of
single-electron T1u states. We can then determine matrix
elements using the results of operating on the single-electron
states with a Hamiltonian which is like that for T ⊗ h but where
the interaction part is summed over n electrons.24 The results
can then be compared with the Hamiltonians found previously
using the CG coefficients in Ref. 28. The Hamiltonians
only differ by a constant factor. As a result, we find that
we need to redefine V1 → −√

2/5V1, V2 → −√
2/5V3, and

V3 → −√
2/5V2 in the low-spin p2 ⊗ h system compared

to Ref. 19 to be consistent with the definitions used in the
T ⊗ h system.29 V2 and V3 are interchanged because the
columns of CG coefficients to which the couplings refer were
interchanged in Ref. 19 compared to Ref. 29 for T ⊗ h. The
same replacements should be made for p4 ⊗ h, which contains
two holes rather than two electrons. The high-spin 3P term is
a triplet coupled to h-type vibrations; the result is equivalent
to that of the single-electron T ⊗ h problem except that the
JT coupling constants are the negative of those for T ⊗ h. For
p3 ⊗ h, the definitions of the V2 and V3 used in Ref. 20 need to
be interchanged to be consistent with those used for T ⊗ h,21

although the numerical factors are consistent in this case. In all
cases, the results for the coupling constants agree with those
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TABLE I. Conditions to generate wells of a given symmetry from
Qθ , Qε , and Q6 in all pn ⊗ h systems.

Symmetry Condition

D5d Qθ = 0, Qε = ±
√

2
3 Q6

D3d Qε = 0, Qθ = ±√
2Q6

D2h Q6 = 0
C2h None

found previously for linear coupling by evaluating reduced
matrix elements, although the Hamiltonians themselves are
different because of the different basis used.1,2

For the rest of this paper, we will use dimensionless
coupling constants V ′

i = Vi/(μω2) (i = 1 to 3), where the
Vi relate to the new definitions above. We will also use
dimensionless forms of the term splittings δ′

i = μω2δi/V 2
1 ,

where μ is the mass and ω the frequency of the hg mode,
which gives the strength of the Coulomb interactions relative
to the strength of the linear JT coupling.

C. Symmetry considerations

Group theoretical calculations dictate that for all of the
pn ⊗ h systems, the symmetry is likely to reduce from Ih

to D5d , D3d , D2h, or C2h. From group theory, it is possible
for the symmetry to reduce further, e.g., to Ci , but detailed
investigations have shown that the symmetry is never lower
than C2h in any of these systems (see Ref. 21 for n = 1,
Ref. 19 for n = 2 and 4, and Ref. 20 for n = 3). Furthermore,
applying operations of the icosahedral group to the Qγ

(γ ∈ {θ,ε,4,5,6}) shows that at least one minimum of each
of D5d , D3d , D2h, and C2h can be found that involves just
Qθ , Qε , and Q6, so we can set Q4 = Q5 = 0.18 Further
conditions to generate minima of a given symmetry are given in
Table I.18 Using these conditions greatly simplifies the problem
of finding JT minima, as instead of minimizing the energy
with respect to the five Qγ , it is only necessary to carry out
a minimization in one dimension (for D5d / D3d symmetry),
two dimensions (for D2h symmetry), or three dimensions (for
C2h).

Distortions to D5d , D3d , and D2h can be obtained by dis-
torting along fivefold, threefold, or twofold axes (respectively)
in the x-y plane with respect to an icosahedron with a twofold
z axis. These axes are shown in Fig. 1, with a circle in the
x-y plane also drawn as a guide to the eye. Distortions along
any other axis through the center of the icosahedron and in
the x-y plane generate JT wells of C2h symmetry. Equivalent
planes (i.e., those including four corners of an icosahedron and
through its center) also give minima of the above symmetries.
Some consequences of this will be discussed in the following
sections.

III. SYMMETRY REGIONS

The ranges of JT parameters for which JT distortions can
occur when there is one electron coupled to h-type vibrations
(the T ⊗ h case), and the symmetries that the distortions result
in, have been studied previously.22 We will now investigate
the combined effects of JT and Coulomb interactions when

FIG. 1. (Color online) Locations of twofold, threefold, and
fivefold distortional axes in the x-y plane of an icosahedron (marked
with a circle) with a twofold z axis. There are two axes each of each
symmetry in this plane. Distortions along these axes correspond to
JT minima of D2h, D3d , and D5d symmetry, respectively. Equivalent
axes occur in other planes, giving a total of six fivefold axes, ten
threefold axes, and 15 twofold axes. Distortions along all other axes
in the x-y plane (and equivalent planes) give wells of C2h symmetry.

there is more than one electron, determining the effect on the
symmetry reduction and the ranges of parameters for which
JT distortions occur. As p4 ⊗ h is equivalent to p2 ⊗ h, it is
only necessary to explicitly consider the p2 ⊗ h and p3 ⊗ h

systems.

A. p2 ⊗ h system

As mentioned previously, the high-spin term 3P results in
an identical JT system to that for T ⊗ h,21,22 but with the signs
of the coupling constants reversed. Therefore, the ranges of
coupling constants over which JT effects can occur, and the
symmetry of the minima obtained, will not be considered any
further here. On the other hand, the additional complications
introduced by considering Coulomb interactions in the two
low-spin terms (1D and 1S) coupled by the JT effect has
received much less attention. Investigations of the effect of
the splitting between these two terms are the main aim of this
section. However, it is first useful to consider the case of zero
term splitting, as we will find that there are strong similarities
between this case and that of T ⊗ h, although we do not expect
this situation to apply to real systems.

When Q4 = Q5 = 0, the electronic state corresponding
to the minimum-energy just involves A, Hθ , Hε , and H6,
thus reducing the dimension of the interaction matrix from
6 × 6 to 4 × 4. We can write this matrix in terms of matrix
elements Hij for a modified T ⊗ h problem with twice
the interaction contribution (i.e., Vi replaced by 2Vi), to
allow for the addition of the extra electron. Here, i and
j run from 1 to 3, corresponding to x, y, and z. Without
substituting the specific form for the Hij , we find that three
of the eigenvalues are identical to the three eigenvalues in
the modified T ⊗ h problem. The remaining eigenvalue is
equivalent to (H11 + H22).

For the T ⊗ h problem, it was possible to find analytical
expressions for the positions of minimum-energy wells in the
APES and the corresponding JT energies and electronic states
for almost all valid values of the quadratic coupling constants.
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TABLE II. Coordinates Qγ (in units of V ′
1) and the H components of the electronic states for D2h minima in the p2 ⊗ h problem when the

term splitting δ′
2 is zero. In all cases, the A component of the electronic state is −1/

√
3. ξ and κ are functions of V ′

2 and V ′
3, as given in the text.

φ is the golden ratio 1
2 (1 + √

5).

Label Normal mode coordinates {Qθ,Qε,Q4,Q5,Q6} Electronic state {Hθ,Hε,H4,H5,H6}
A {ξ,κ,0,0,0} 1

2 {1, −
√

5
3 ,0,0,0}

B 1
4 {−√

3κ − ξ,κ − √
3ξ, − √

6κ + √
2ξ,2

√
2ξ, − √

6κ − √
2ξ} 1

4 {φ−1, − φ2√
3
,
√

2φ,2
√

2,
√

2φ−1}
C 1

4 {−√
3κ − ξ,κ − √

3ξ,
√

6κ − √
2ξ,2

√
2ξ,

√
6κ + √

2ξ} 1
4 {φ−1, − φ2√

3
, − √

2φ,2
√

2, − √
2φ−1}

D 1
4 {−√

3κ − ξ,κ − √
3ξ,

√
6κ − √

2ξ, − 2
√

2ξ, − √
6κ − √

2ξ} 1
4 {φ−1, − φ2√

3
, − √

2φ, − 2
√

2,
√

2φ−1}
E 1

4 {−√
3κ − ξ,κ − √

3ξ, − √
6κ + √

2ξ, − 2
√

2ξ,
√

6κ + √
2ξ 1

4 {φ−1, − φ2√
3
,
√

2φ, − 2
√

2, − √
2φ−1}

F 1
4 {2ξ, − 2κ, − √

6κ − √
2ξ,

√
6κ − √

2ξ, − 2
√

2ξ} 1
4 {1,

√
5
3 ,

√
2φ−1, − √

2φ, − 2
√

2}
G 1

4 {2ξ, − 2κ, − √
6κ − √

2ξ, − √
6κ + √

2ξ,2
√

2ξ} 1
4 {1,

√
5
3 ,

√
2φ−1,

√
2φ,2

√
2}

H 1
4 {2ξ, − 2κ,

√
6κ + √

2ξ, − √
6κ + √

2ξ, − 2
√

2ξ} 1
4 {1,

√
5
3 , − √

2φ−1,
√

2φ, − 2
√

2}
I 1

4 {2ξ, − 2κ,
√

6κ + √
2ξ,

√
6κ − √

2ξ,2
√

2ξ} 1
4 {1,

√
5
3 , − √

2φ−1, − √
2φ,2

√
2}

J 1
4 {√3κ − ξ,κ + √

3ξ, − 2
√

2ξ,
√

6κ + √
2ξ, − √

6κ + √
2ξ} 1

4 {−φ,
φ−2√

3
, − 2

√
2, − √

2φ−1,
√

2φ}
K 1

4 {√3κ − ξ,κ + √
3ξ,2

√
2ξ,

√
6κ + √

2ξ,
√

6κ − √
2ξ} 1

4 {−φ,
φ−2√

3
,2

√
2, − √

2φ−1, − √
2φ}

L 1
4 {√3κ − ξ,κ + √

3ξ,2
√

2ξ, − √
6κ − √

2ξ, − √
6κ + √

2ξ} 1
4 {−φ,

φ−2√
3
,2

√
2,

√
2φ−1,

√
2φ}

M 1
4 {√3κ − ξ,κ + √

3ξ, − 2
√

2ξ, − √
6κ − √

2ξ,
√

6κ − √
2ξ} 1

4 {−φ,
φ−2√

3
, − 2

√
2,

√
2φ−1, − √

2φ}
N 1

2 {√3κ − ξ, − κ − √
3ξ,0,0,0} 1

2 {−φ, − φ−2√
3
,0,0,0}

O 1
2 {−√

3κ − ξ, − κ + √
3ξ,0,0,0} 1

2 {φ−1,
φ2√

3
,0,0,0}

This gave minima of D5d , D3d , or D2h symmetry, depending
on the values of the quadratic coupling. The only exception
to this was a very small range of couplings for which C2h

minima were obtained. In this region, the results could only
be obtained numerically.21,22 Substituting explicit forms for
H11 and H22 allows us to obtain an analytical solution for the
minimum energy of the additional solution that occurs in the
low-spin p2 ⊗ h system. We find that this corresponds to a
D2h point which can never be a global minimum. Therefore,
the minimum-energy eigenvalues of p2 ⊗ h are identical to
those of the modified T ⊗ h system. This can be seen to be
true symbolically from the results in Ref. 19, after applying the
appropriate transformations of the Vi . We have also confirmed
this result numerically by minimizing the lowest eigenvalue of
the complete p2 ⊗ h Hamiltonian with respect to the Qγ for
specific values of V ′

2 and V ′
3.

Analytical expressions for the energy, vibrational coordi-
nates, and electronic states of minima of D2h symmetry, which
have not been presented previously, are given in Table II. In
this table,

ξ = −
√

3

2

(1 + √
2V ′

2 + √
2/5V ′

3)

1 − 4V ′2
2 /5 − 12V

′2
3 /5

,

(4)

κ =
√

5

2

(1 + 3
√

2/5V ′
3 − √

2V ′
2/5)

1 − 4V ′2
2 /5 − 12V

′2
3 /5

.

The 15 D2h wells have been labeled A to O in a manner that
is consistent with Ref. 30 for the (h+

u )2 ⊗ hg system, although
the values of ξ and κ are different in the two systems.

It is not possible to obtain analytical expressions for the
minima when the term splitting is included because the
equations are too complicated and it is not possible to make a

comparison with the T ⊗ h case, where there is no equivalent
to the term splitting. However, the Qγ must take the same
symbolic form as without the term splitting as this is a general
requirement in order to obtain points of the stated symmetry.
For example, the Qγ for the D2h minima take the same
symbolic form as in Table II but where ξ and κ are no longer
given by the expressions in Eq. (4).

The ranges of V ′
2 and V ′

3 which give stable JT distortions,
and the symmetries of the minima in those cases, have not
previously been investigated for p2 ⊗ h. From the analogy to
T ⊗ h, it follows that when the term splitting is zero, the shape
of the region of validity, and the dependence of the symmetries
of the minima on the quadratic coupling, must be the same as
given in the Appendix of Ref. 22 but with the V ′

i scaled by
a factor of 2 due to the different definitions of the coupling
constants. We then consider the case of nonzero term splitting.
We know that for any point on the boundary of the region of
validity for the JT Hamiltonian only, the lowest eigenvalue,
which is the JT energy EJT , must tend to −∞. From general
properties of Hermitian matrices,31 it follows that the energy
with the term splitting included must be less than or equal to
EJT + λ, where λ is the lowest eigenvalue of the term splitting
Hamiltonian (namely 0 if δ′

2 is positive or δ′
2 if δ′

2 is negative).
Therefore, this must also tend to −∞ for all points on the
boundary of the JT-only problem. Thus the same boundary
must hold both with and without the term splitting. In fact, the
same must be true for any extra interaction introduced to the
system, as long as its largest eigenvalue is bounded above as
(V ′

2,V
′

3) tends to a point on the boundary. This result has also
been checked numerically.

Once the region in which V ′
2 and V ′

3 are valid has been
established, the dependence on V ′

2 and V ′
3 of the type of

symmetry reduction can be found for any given value of
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FIG. 2. (Color online) Symmetry region plot for the low-spin
p2 ⊗ h problem with different term splittings that place the A state
above or equal to the H state (δ′

2 � 0): (a) δ′
2 = 0, (b) δ′

2 = 0.24, (c)
δ′

2 = 0.96, (d) δ′
2 = 2.4, (e) δ′

2 infinite. The unmarked region below
the rightmost D5d region in (a) to (d) (blue online) is of D2h symmetry.

the term splitting δ′
2. This was done by performing a three-

dimensional minimization (in Qθ , Qε , and Q6) over a coarse
grid of points. The boundaries between regions found to
be of D5d , D3d , and D2h symmetry were then determined
more accurately by performing much quicker one-dimensional
minimizations to obtain the energies of minima of D5d and D3d

symmetry, and a two-dimensional minimization for D2h. It is
necessary to perform longer three-dimensional minimizations
in the vicinity of borders with the C2h region to determine the
extent of this region more accurately.

The symmetry regions are displayed in Figs. 2(a) to 2(e)
for δ′

2 = 0, 0.24, 0.96, 2.4, and ∞, respectively. The result
for δ′

2 = 0 is the same as in Ref. 22, but is repeated here for
comparison purposes. It should be noted that there is a small
C2h region between the lower D2h region and the limit of
validity, with −0.88 < V ′

2 < −0.30. This region, which can
only be discerned as a slight thickening of the boundary line in
Fig. 2(a), can be seen in more detail in Ref. 22. For δ′

2 = 0.24,
there is also a very small C2h region bounded by the border
of validity and the lower D2h region, between approximately
V ′

2 = −0.61 and −0.34. This has a maximum width of less
than 0.01, and can again only be discerned as a slightly
thickened line on the scale of the plots. A more detailed view
of this region is not presented here as the region is negligibly
small and on the border of validity, such that it is extremely
unlikely that any real system would have coupling constants
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FIG. 3. Dependence on the term splitting δ′
2 and the quadratic

coupling constant V = 2V ′
2 = (2

√
5/3)V ′

3 of the point where multiple
regions of different symmetries meet in the low-spin p2 ⊗ h system.

that would place it in this region. The results for δ2 → ∞ in
Fig. 2(e) is obtained by taking the Hamiltonian to be the 5 × 5
block that is obtained when the A state is omitted.

Clear trends can be seen in the plots as δ′
2 increases from

zero. Increasing δ′
2 introduces additional D5d and D3d regions

that are not present at δ′
2 = 0, with a corresponding decrease in

the sizes of the D2h regions. The D2h regions vanish completely
in the limit of infinite δ′

2. The line V ′
3 = 3√

5
V ′

2, which divides
regions of different symmetries in all cases, corresponds to a
continuous trough of minimum-energy points of accidentally
higher symmetry than any of the point groups we consider.
There is a point on this line where multiple regions of different
symmetry meet. At δ′

2 = 0, this point starts at the lower left-
hand corner of the line, and moves up the line as δ′

2 increases,
asymptotically approaching V ′

2 = V ′
3 = 0 in the limit of δ′

2 →
∞, as shown in Fig. 3.

We now consider the case of negative δ′
2. For small negative

values of δ′
2, the region plot looks very similar to that for the

corresponding positive value of δ′
2. For example, the plot for

δ′
2 = −0.24 is almost indistinguishable from that in Fig. 2(b),

with just a very small shift in the lower boundary between D3d

and D2h. Here, although the A state is lowest in energy, it is
sufficiently close to the H state for a JT effect in the combined
A-H system to operate. JT effects continue to operate for
all values of V ′

2 and V ′
3 with δ′

2 > −0.4. However, for more
negative values of δ′

2, a JT effect can only operate for larger
values of quadratic coupling. For smaller values of quadratic
coupling, the A state is sufficiently low in energy to suppress
all JT effects.

The boundaries between both the D5d and D3d regions and
the region in which no JT effect operates can both be seen to
be solutions of the equation

5(175 + 400δ′
2 + X) + 8V [

√
2(X − 10 − 100δ′

2)

− 16V (1 + 10δ′
2)] = 0, (5)

where

X =
√

25(73 + 160δ′
2) − 16V (5

√
2 + 8V )(20δ′

2 − 1), (6)

and where setting the quadratic coupling V = 2V ′
2,

(2
√

5/3)V ′
3, or −5/(4

√
2) − 2V ′

2 generates the rightmost D5d ,
the D3d , and the leftmost D5d borders, respectively. The
boundaries with D2h regions can be found numerically,
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FIG. 4. (Color online) (a) Symmetry region plot for the p2 ⊗ h

problem with a term splitting δ′
2 = −0.75. In the white region, the

A state is lowest in energy and no JT effect operates. (b) Regions
in which no JT effect operates for different negative values of the
term splitting δ′

2. The excluded regions are those inside the truncated
rectangular regions with δ′

2 = −0.41, −0.5, −0.75, −1.0, and −1.25
from the smallest region to the largest region, respectively. In each
case, the upper horizontal line (green online) is the boundary with
the D3d region, the vertical lines (red online) are the boundaries with
D5d , and the curved lines (blue online) are boundaries with D2h. The
dashed line is the line V ′

3 = (3/
√

5)V ′
2, and the dot-dashed line is

V ′
2 = −5/(8

√
2).

although the equations involved are rather more complicated.
The overall region in which no JT effect operates, and the
symmetry of the minima in regions where a JT effect is still
present, is shown in Fig. 4(a) for δ′

2 = −0.75. The dependence
on δ′

2 of the size of the central region where there is no JT effect
is shown in Fig. 4(b), with values of δ′

2 from −0.41 to −1.25.
It is found that the D5d boundaries are placed symmetrically
around the value V ′

2 = −5/(16
√

2), marked as a dot-dashed
line in Fig. 4(b). This is the value of V ′

2 at which the borders
first appear when δ′

2 = −0.4, and is the average value of V for
the two D5d borders in Eq. (5).

The increase in size of the excluded region slows as δ′
2

becomes more negative, with much larger increases in the
magnitude of δ′

2 required for a given increase in the excluded
area than for smaller values. The limit of no JT effect for any
values of quadratic coupling is only approached asymptotically
as δ′

2 → −∞. Furthermore, the boundaries all approach their
outer limits at the same rate. The variation of the value of
quadratic coupling at which JT effects cease to operate is
shown in Fig. 5. This is different from the behavior at small
negative values of δ′

2, where there is a precise value of δ′
2

(namely −0.4) at which JT effects first start to disappear, rather
than an asymptotic limit. This corresponds to V ′

2 ≈ −0.221.
The significance of the change in symmetry or suppres-
sion of symmetry reduction when an additional electron is
added will be discussed later in relation to the fullerene
molecule C60.

B. p3 ⊗ h system

Here, we need to consider PJT coupling between T1u

and Hu states.1,26 This means that to search for minima in
the lowest APES, we need to find eigenvalues of the 8 × 8
matrix formed from the combined T1u and Hu basis. However,
as before, we can set Q4 = Q5 = 0 to find at least one
minimum of each of the D5d , D3d , D2h, and C2h symmetries.
In this case, the matrix is found to be simpler if we define

10 8 6 4 2
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FIG. 5. Dependence of the value of quadratic coupling at which
the JT effect ceases to operate as a function of δ′

2 for p2 ⊗ h. Here,
V = 2V ′

2, (2
√

5/3)V ′
3, or −5/(4

√
2) − 2V ′

2. The upper dashed line is
the limit of 5/(4

√
2) that forms the outer boundary of the region of

validity, which is approached asymptotically. The rightmost dashed
line is the value δ′

2 = −0.4 at which an excluded region first appears.

the θ and ε components of the Hu basis to transform as
d3z2−r2 and dx2−y2 , respectively. This reduces the problem to
independent 4 × 4 and 3 × 3 matrices and a diagonal element
(Q2

θ + Q2
ε + Q2

6)/2. Analytical expressions can be found for
the eigenvalues as functions of the Qγ , which was not possible
in p2 ⊗ h despite the lower dimension of the matrix. The
result is two possible minimum-energy eigenvalues of the
form

Ei = l − 1

2

√
mi + δ′2

3 , (7)

where l = 1
2

(
Q2

θ + Q2
ε + Q2

6 + δ′
3

)
, m1 = 24

5 Q′2, and m2 =
6
5 (Q′ + √

3|Q′
θd |)2, with Q′ =

√
Q′2

6 + Q′2
εd , where Q′

θd =√
3
8Q′

θ −
√

5
8Q′

ε and Q′
εd =

√
5
8Q′

θ +
√

3
8Q′

ε are combina-
tions that relate to the d-orbital definitions of θ and ε, and
where

Q′
6 = Q6

(
1 −

√
2V ′

2Qε +
√

2

3
V ′

3Qθ

)
,

Q′
θ = Qθ + V ′

2√
2
QθQε + V ′

3

2
√

6

(
3
(
Q2

θ − Q2
ε

) + 2Q2
6

)
, (8)

Q′
ε = Qε + V ′

2

2
√

2

((
Q2

θ − Q2
ε

) − 2Q2
6

) −
√

3

2
V ′

3QθQε

(in units of V ′
1). Note that although the forms for E1 and E2

are simplest when written using the d-orbital definitions of θ

and ε, Q′
θd and Q′

εd themselves are simplest when written in
terms of Qθ and Qε [as in Eq. (8)] rather than their d-orbital
equivalents. For the solution E2, the magnitude of the ratio of
the contributions of states T1ux and T1uy to the eigenstate is the
same as that for the ratio of H4 and H5, which is not altogether
surprising as the pairs of states have similar transformation
properties. More explicitly, the eigenstate can be written as

ψ = {cos β cos α, ± cos β sin α, ∓ sin β cos α, sin β sin α}
(9)
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with respect to the basis {T1ux,T1uy,H4,H5}, where α is a
parameter relating to the ratio of the contributions from the
pairs of state of a given transformation property and β relates
the mixing between the T and H states. When δ′

3 = 0, both
states contribute equally and so β = π/4.

Linear coupling results in a trough in the lowest APES,
with quadratic coupling introducing minima, as for the other
pn ⊗ h systems.1,17 However, the minima are of C2h symmetry
for most values of quadratic coupling, with some small regions
of quadratic coupling giving D2h symmetry. This is different to
the predominantly D5d and D3d symmetries seen in the other
systems.20

It is not possible to write down analytical expressions for
the minimum energies, but solutions can be easily found by
numerically minimizing E1 and E2 with respect to the Qγ .
First, it is useful to note that the minima for couplings (V ′

2,V
′

3)
are the same as those for (−V ′

2, − V ′
3). This is because it

can be shown mathematically that E1 and E2 are invariant
under the simultaneous transformations {V ′

2 → −V ′
2,V

′
3 →

−V ′
3,Qθ → −Qθ,Qε → −Qε}. Therefore the minimum en-

ergies for points (V ′
2,V

′
3) and (−V ′

2, − V ′
3) will be the same

(just corresponding to vibrational coordinates Qθ and Qε of
the opposite signs). The energy expressions are also invariant
under the transformation δ′

3 → −δ′
3, apart from a constant

term involving δ′
3 only. Hence identical types of minima will

be obtained for equivalent positive and negative values of δ′
3.

Both of these features reduce the number of situations that
need to be considered numerically.

Another difference between p3 ⊗ h and the p2 ⊗ h and
p4 ⊗ h systems is that there are no JT effects for large ranges
of JT coupling parameters when the term splitting is either
a large positive or a large negative number. This is because
there are no “diagonal” JT couplings within either the T1u or
the Hu states, so that when either the T1u or the Hu state is
significantly lower in energy than the other state, the coupling
between the states becomes very small. While this has been
noted before,20 no attempt has been made to determine the size
or shape of the JT-excluded region for different values of δ′

3,
so this is what we will look at now.

Figure 6 shows the values of coupling constants for which
JT effects are possible at different values of δ′

3. The outer
boundary shows the limits beyond which no JT effects
are possible, whatever the value of δ′

3. Some inner regions
are also excluded when |δ′

3| ≈ 2.4 and above. The solid
inner curves show the bounds of JT-excluded regions for
δ′

3 = ±2.5 (innermost curves), δ′
3 = ±3 (middle curves), and

δ′
3 = ±4 (outer curves). Inside these regions, the term splitting

dominates over the JT effect such that no JT distortions
are possible. Also shown in the figure are the areas of D2h

symmetry for δ′
3 = 0 (the shaded areas touching the diagonal

line) and for δ′
3 = ±3 (the remaining shaded areas). The most

notable feature here is that, where JT minima exist, the term
splitting has very little effect on the symmetry of the minima.
This is different from p2 ⊗ h and p4 ⊗ h, where the symmetry
at given coupling constants showed a much greater dependence
on the term splitting. This is because the symmetry in p3 ⊗ h

is predominantly C2h, which can be achieved with distortions
along a much greater range of axes than for distortions to the
higher subgroups (as discussed in Sec. II C). Therefore the
precise nature of the distortion can change with δ′

3 without
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FIG. 6. (Color online) Symmetry region plot for p3 ⊗ h. The
region inside the innermost solid lines (red online) has no JT effects
for δ′

3 = ±2.5. The region inside the next-outermost solid lines (blue
online) is excluded for δ′

3 = ±3, and the region inside the next solid
lines (green online) is excluded for δ′

3 = ±4. The outermost solid lines
(black online) shows the outer border of validity for any JT effects.
The shaded areas abutting the diagonal line (pink online) show the
D2h region for δ′

3 = 0, with the remaining shaded areas (blue online)
showing the D2h regions for δ′

3 = ±3. The remaining areas are of
C2h symmetry. The dashed line is the line V ′

3 = (3/
√

5)V ′
2, and the

dashed circle is Vtot = 0.35.

the resulting symmetry changing. Classification of the type of
C2h distortion when δ′

3 = 0 in terms of the axes of distortion
was discussed in Ref. 20.

Equation (7) showed that mathematically there are two
possible forms for the energy eigenvalue that can be lowest
in energy. It can be seen that for the D2h regions (where
Q′

6 = 0), both expressions give the same minimum energy.
Numerical investigations show that E2 gives a lower energy
for the majority of the remaining ranges of quadratic coupling.
There are four small regions of quadratic coupling where the
minimum energy comes from E1, which all correspond to large
values of quadratic coupling near to the outer limit of validity.
Figure 7 shows the results for δ′

3 = 0. Results for other values
of δ′

3 are identical to this to within calculational error, which
is not surprising as δ′

3 appears in E1 and E2 in the same way.
It is therefore most likely that the expression E2 will be most
relevant for any real system. However, the minimum energies
from the two solutions are relatively close, so that the presence
of additional interactions could alter the ordering.

To further investigate the symmetry of possible JT dis-
tortions and the effect of the term splitting, it is useful to
consider the variation in the JT energy assuming D2h and
C2h distortions for a fixed magnitude of quadratic coupling by
setting V ′

2 = Vtot cos β and V ′
3 = Vtot sin β. β is a mixing angle

that determines the contributions of the V ′
2 and V ′

3 couplings
to the total quadratic coupling. The results for four different
values of δ′

3 when Vtot = 0.35 are shown in Fig. 8. It is only
necessary to consider β between −π/2 and +π/2 (which
is equivalent to V ′

2 � 0), rather than a full range of 2π , as
remaining values can be obtained by symmetry from these
values.

The plots in Figs. 8(a) to 8(c) show that there are ranges of β

where D2h solutions are lowest in energy, and other ranges of
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FIG. 7. (Color online) Comparison of the energies E1 and E2

when δ′
3 = 0. The shaded regions near the outer boundary (blue

online) are where E1 < E2. For the D2h regions (red online), both
energies are equal. For all other regions, E1 > E2.

β for which C2h solutions are lowest. For negative values of β,
the D2h and C2h curves merge smoothly into each other. The
Qγ also smoothly merge, indicating that the JT distortional
axes smoothly move from the C2 axes such as in Fig. 1. The
point at positive β in (a) and (b) where the D2h and C2h curves
meet corresponds to a point on the line V ′

3 = (3/
√

5)V ′
2. The

values of the Qγ show distinct jumps for β either side of this
point, indicating a corresponding jump in the orientation of the
axis of distortion. Plots (c) and (d) show that there are ranges
of β for which no JT solution exists for these values of δ′

3. In
plot (d), where the magnitude of the term splitting is relatively
large, there are no D2h solutions, and C2h solutions only exist
over a small range of β.

From Fig. 8, it can be seen that the results for δ′
3 = ±2

are very similar to those for δ′
3 = 0, with just a slight rise
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FIG. 8. (Color online) Variation of the JT energy as a function of
the mixing angle β for the p3 ⊗ h problem, assuming either D2h or
C2h distortions. All plots are for Vtot = 0.35. The four plots are for (a)
δ′

3 = 0, (b) δ′
3 = ±2, (c) δ′

3 = ±2.5, and (d) δ′
3 = ±3. The horizontal

lines at zero energy in (c) and (d) show ranges of β in which there
are no JT effects.

in the energy values. In fact, results for all values of δ′
3

between these limits are very similar, showing that the term
splitting has negligible effect on the results in this range.
The situation is different for δ′

3 = ±2.5, where JT effects
have become excluded for some values of quadratic coupling.
The results here can be related to Fig. 6, where the dashed
circle shows Vtot = 0.35. It can be seen that the circle crosses
the inner boundary of validity for δ′

3 = ±2.5 at {V ′
2,V

′
3} ≈

{±0.10, ± 0.34} and {±0.28, ± 0.21}, which corresponds to
β ≈ 1.3 and 0.67 (in the range −π/2 < β < π/2), which
is consistent with Fig. 8(c). For δ′

3 = ±3, the dashed circle
in Fig. 6 shows that JT effects are excluded for almost all
quadratic couplings. This is also consistent with Fig. 8(d). For
magnitudes of δ′

3 larger than this, all JT effects disappear for
this value of Vtot.

IV. DISCUSSION

The results of the last section, taken all together, let us make
some general conclusions about the JT effects that are to be
expected in icosahedral systems with one or more electrons in
an electronic T state and coupled to h-type vibrations. The JT
coupling constants can be expected to have roughly the same
values in all charge states, as they are fundamentally related to
derivatives of the nuclear potential which are not related to the
number of electrons. This lets us predict how the symmetry will
change when the number of electrons changes. For example,
a system with one electron would have JT distortions of D3d

symmetry if V ′
2 = V ′

3 = −0.6, as shown in Fig. 2(a). However,
Figs. 2(c) to 2(e) show that if an extra electron is added to the
same system, it would exhibit D5d distortions if the low-spin
states are sufficiently low in energy compared to the high-spin
states and the term splitting between the (low-spin) A and
H states is a sufficiently large positive value. On the other
hand, if the high-spin states are sufficiently low in energy, the
system would show D3d distortions, as the mathematics of
the JT problem would be the same as for a single electron.
If the low-spin states are lowest in energy but the Coulomb
interactions place the A state below the H states, there would
be no JT interaction at all if the A–H energy gap is sufficiently
large, as shown by Fig. 4.

For a system with three electrons, the JT effect is absent for
a much wider range of coupling constants than for the other
charge states, because the ranges of parameters over which
a JT effect can occur are much less, as shown in Fig. 6. For
example, if a third electron is added to a system with the same
JT parameters as in the example above, there will be no JT
distortion whatever the values of the Coulomb interactions
between the A, T , and H states. This is because there can
never be a JT distortion if the A state is lowest in energy,
and if it is higher in energy such that the low-spin T and
H states are relevant, there will be no JT distortion either as
V ′

2 = V ′
3 = −0.6 lies beyond the outer bounds of validity.

The results we have presented can also be used to
determine information on the values of the quadratic coupling
constants for given systems based on known experimental
observations. As an example, we will consider the fullerene
anions Cn−

60 . For the monoanion (n = 1), interpretation of both
the electronic spectra in solution32 and gas phase spectra
in a storage ring33 require a D3d distortion. Also, scanning
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tunneling microscopy images of C60 molecules on an alkylthiol
self-assembled monolayer34 have been interpreted in terms
of JT parameters that would cause a D3d distortion (with an
additional perturbation to further lower the symmetry due to
interactions with the surface substrate).35 Early semiempirical
molecular orbital calculations also predicted D3d symmetry,36

as did density functional theory (DFT) calculations.37 All of
these results suggest that the quadratic coupling parameters in
this problem must lie within the range of the green triangle
in Fig. 2(a). Furthermore, ab initio Hartree-Fock calculations
suggest that the energies of D5d , D3d , and D2h structures are
very similar,38 as do recent DFT calculations.39 In our model,
all three symmetries are found to have the same energy along
the line V ′

3 = (3/
√

5)V ′
2. This is actually a continuous trough

of equivalent-energy points, including points of C2h symmetry,
although this might not be detected in numerical methods
that only search for distortions of specific symmetries. Taken
together, the experimental evidence and the results of these
calculations suggest that the quadratic coupling parameters
must be close to but slightly above the V ′

3 = (3/
√

5)V ′
2 line.

Recent calculations using DFT suggest that D2h distortions
are the most energetically favorable in the C−

60 ion, although
as with the Hartree-Fock calculations, the energies of all three
symmetry distortions were found to be fairly similar.40 In our
model, the only way the distortions could be of D2h symmetry
but with both the D5d and D3d distortions also having similar
energies would be if the quadratic couplings are close to the
lower-left corner in Fig. 2(a) [with V ′

2 = −5/(8
√

2) ≈ −0.44
and V ′

3 = −3
√

5/(8
√

2) ≈ −0.59] which, although possible,
seems unlikely given all the other evidence for a D3d distortion.

High-temperature spectroscopic data on K4C60 and Rb4C60

suggest that these materials contain C4−
60 ions that are de-

coupled from the lattice and act as isolated ions subject to
dynamic JT distortions of D5d or D3d symmetry.41 These
results can both be explained by taking the same ranges of
quadratic coupling constants that we have deduced hold for the
monoanion if the Coulomb interactions result in a high-spin
ground state, where the JT effect results in a T ⊗ h problem
with distortional symmetries as in Fig. 2(a). They also hold
for a low-spin ground state, where the results of Figs. 2(b)
to 2(e) or Fig. 4 hold, as long as the A state is either above
the H state or at least not so far below the H state that JT
effects are suppressed. We note that calculations indicate that,
when JT effects are neglected, the high-spin state is lower than
the low-spin states and the A state is above the H state.42

Estimates in Ref. 32 of the JT energy in T ⊗ h of around
58 meV lead to estimates of V 2

1 /(μω2) ≈ 0.29 eV, which from
the values of the term splitting in Ref. 42 leads to an estimate
of δ′

3 ≈ 0.98, meaning that the results in Fig. 2(c) will apply.
The JT effect itself could alter the ordering of the high- and
low-spin states,1,2 but in either case the results are consistent
with our requirements.

An alternative explanation of the results for C4−
60 would be

for the low-spin states to dominate and the quadratic coupling
constants to lie close to the regions where all three symmetries
have similar energies, such as the top-left to bottom-right
regions in Figs. 2(b) to 2(d). However, this would not be
consistent with the results for C−

60 unless the results are
also close to the line V ′

3 = (3/
√

5)V ′
2. Note that the overall

symmetry of C4−
60 ions in a K4C60 monolayer were assumed to

be of D2h symmetry from an analysis of STM images,39 but
the ions in the STM images are perturbed by interactions with
the surface substrate and neighboring ions, so the experimental
data cannot be used to deduce anything about the symmetry of
isolated C4−

60 ions.
There is also evidence for a strong JT effect in C3−

60 ions
in Cs3C60,10 but as these are not isolated from their neighbors
it is not possible to make any further predictions about the
quadratic coupling constants from this data. Calculations of
the energies of the high- and low-spin states suggest that,
in the absence of JT couplings, the high-spin singlet state
would be lowest in energy,42 which cannot be subject to a JT
distortion. Using the same estimates of the linear JT coupling
as above leads to an estimate of δ′

3 ≈ 0.66 in this case. It is
therefore possible that the JT effect could result in a change in
the energy-level ordering so that a JT distortion can occur, but
again no quantitative conclusions can be made.

V. CONCLUSIONS

We have considered the interplay between JT effects
and Coulomb interactions in triplet orbital levels coupled
to fivefold vibrations. In the cases of two or four electrons,
we find that JT distortions are suppressed when the 1S term
is sufficiently lower in energy than the 1D term, but that
distortions will always occur when the 1D term is lowest
in energy. In contrast, when there are three electrons, PJT
distortions will not occur if the Coulomb interaction is
sufficiently strong that the splitting it induces is sufficiently
large to prohibit significant mixing between the nondegenerate
levels. This is true irrespective of whether the 2P or the 2D term
is lowest in energy, and occurs because there is no JT coupling
within either the 2P or 2D term. This suppression of a distortion
when PJT coupling is insufficiently strong to overcome the
barrier due to the separation of coupled nondegenerate levels is
an expected feature of the PJT effect.24 In this case, the effect of
the PJT coupling is to alter the curvature of the lowest APES,24

as indeed can also occur with regular JT effects.43 However,
this is a relatively subtle effect so has not been considered in
this paper. Instead, we have concentrated on determining the
conditions under which a distortion will occur.

Another difference between the different charge states is on
the symmetry of possible JT distortions. For the three-electron
case, the Coulomb interactions have very little effect on the
symmetry, whereas for the two- and four-electron cases the
symmetry depends on the strength of the Coulomb interaction
for a wide range of quadratic JT coupling parameters. This
means that adding charge to a system is more likely to alter
the symmetry of distortion.

The results in this paper are expected to have relevance for
ions of the fullerene molecule C60, as well as other icosahedral
molecules. As there is plenty of evidence that these ions are
distorted, the results presented here are expected to apply.
While the anion C−

60 is generally believed to be distorted to D3d

symmetry,32,33,37 we have used estimates of the JT coupling
constants from experimental evidence to show that this does
not necessarily mean that higher charge states will also be
distorted to D3d symmetry.
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