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Abstract. We define and analyze measures of correlations for bipartite states
based on trace distance. For Bell diagonal states of two qubits, in addition
to the known expression for quantum correlations using this metric, we
provide analytic expressions for the classical and total correlations. The ensuing
hierarchy of correlations based on trace distance is compared to those based on
relative entropy and Hilbert–Schmidt norm. Although some common features
can be found, the trace distance measure is shown to differentiate from the
others in that the closest uncorrelated state to a given bipartite quantum state
is not given by the product of the marginals, and further, the total correlations
are strictly smaller than the sum of the quantum and classical correlations. We
compare the various correlation measures in two dynamical non-Markovian
models, locally applied phase-flip channels and random external fields. It is
shown that the freezing behavior, observed across all known valid measures of
quantum correlations for Bell diagonal states under local phase-flip channels,
occurs for a larger set of starting states for the trace distance than for the other
metrics.

3 Author to whom any correspondence should be addressed.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 15 (2013) 093022
1367-2630/13/093022+18$33.00 © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:gerardo.adesso@nottingham.ac.uk
http://www.njp.org/
http://creativecommons.org/licenses/by/3.0


2

Contents

1. Introduction 2
2. Quantum trace distance correlations and closest classical state 4

2.1. Closest classical state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3. Total and classical trace distance correlations 6

3.1. Classical correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2. Total correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4. Dynamics of trace distance quantifiers of correlations 10
4.1. First model: phase-flip channels . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. Second model: random external fields . . . . . . . . . . . . . . . . . . . . . . 12
4.3. Dynamics of total and classical correlations measured by trace distance . . . . 13
4.4. Scaling of the freezing regions of quantum correlations . . . . . . . . . . . . . 15

5. Conclusion 16
Acknowledgments 17
References 18

1. Introduction

Quantum entanglement is a central subject in the study of quantum information theory
as it is a strikingly non-classical phenomenon and a primary instance of a truly quantum
resource in communication and computation tasks [1, 2]. However, in mixed states of
composite systems, more general quantifiers of quantum correlations exist, most famously the
quantum discord [3, 4]. Discord is present in most mixed states, even among those with no
entanglement [5], and it is of ongoing interest to investigate whether states with discord can
be employed as resources for information processing scenarios [6–9], including those with
vanishing entanglement [10].

Some measures of quantum correlations, including the original discord [3] and the one-way
quantum deficit (alias relative entropy of discord) [11, 12], are based on entropic quantities.
Another method, the ‘geometric’ approach for quantifying quantum correlations, consists in
choosing a metric over the space of quantum states, and using this to find the distance to the
nearest zero-discord (classical) state. Several measures have been defined in this way, including
the Hilbert–Schmidt measure of discord [13, 14] and its modifications [15–17]. The trace
distance measure of quantum correlations [18, 19] falls into the latter category.

The trace distance between two quantum states ρ and σ is defined as

δTD(ρ, σ ) ≡
1
2‖ρ − σ‖1, (1)

where ‖Ô‖1 ≡ Tr|Ô| = Tr
√

Ô†Ô is the Schatten-1 norm, or trace norm, with Ô being an
arbitrary operator. The trace distance metric arises naturally in quantum mechanics and admits
an intuitive operational interpretation related to the probability of successfully distinguishing
between two quantum states in a hypothesis testing scenario [20]. An important feature of the
trace distance in dynamical contexts is its contractivity under trace preserving and completely
positive maps [21]. A closed expression for the trace distance discord has been obtained for Bell
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Figure 1. Schematic picture of the correlation hierarchy based on trace distance.
Given a state ρ living in a bipartite Hilbert spaceH, the trace distance between ρ

and its closest classical state χρ ∈ P defines the quantum correlations (discord)
DTD of ρ. The trace distance between χρ and its closest product state πχρ

∈ P
defines the classical correlations CTD of ρ. The trace distance between ρ and
its closest product state πρ ∈ P defines the total correlations TTD of ρ. See
equations (6), (12) and (13) in the main text for rigorous definitions.

diagonal states of two qubits [18, 19] and more generally for X -shaped states of two qubits [22].
The trace distance discord has been theoretically studied in dynamical conditions in [23, 24],
and experimentally investigated in a nuclear magnetic resonance two-qubit system under phase
and amplitude damping channels [25]. These findings naturally encourage one to exploit the
trace distance to introduce total and classical correlations as well, in order to construct a unified
view of the correlations present in a composite quantum system and investigate their hierarchies
and dynamical properties.

In this paper, we construct a unified hierarchy of quantum, classical and total correlations
in bipartite quantum states based on the trace distance (see figure 1). Unlike similar hierarchies
based on relative entropy [11] or Hilbert–Schmidt norm [26], the trace distance measures of
correlations present surprising features. For Bell diagonal states of two qubits, we complement
the study of Nakano et al [18] and Paula et al [19] by deriving closed expressions for the
classical and total correlations defined via trace distance. Counterintuitively, classical and
quantum correlations do not add up to the total ones, not even for simple Bell diagonal states.
In particular, the closest product state to a generic bipartite state, according to trace distance, is
not in general the product of its marginals, which is instead the case e.g. for relative entropy.
We further investigate the dynamical evolution of quantum, classical and total correlations in
typical non-Markovian environments by highlighting peculiar aspects and differences with the
dynamics of relative entropy-based correlations.

This paper is organized as follows. In section 2, we recall the expression, in the case of
Bell diagonal states, for the trace distance measure of discord and we provide the explicit form
of the associated closest classical states. In section 3, we obtain expressions for the classical and
total correlations of Bell diagonal states and discuss their features. In section 4, we examine the
behavior of quantum, classical and total trace distance correlations in simple dynamical models.
We conclude in section 5.
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2. Quantum trace distance correlations and closest classical state

We consider the class of two-qubit Bell diagonal states (or states with maximally mixed
marginals [27]) expressed in the Bloch representation as

ρB =
1

4

(
IA ⊗ IB +

3∑
i=1

Ri iσi A ⊗ σi B

)
, (2)

where the coefficients Ri i are the nonzero correlation matrix elements and σi are the Pauli
matrices. In the basis of Bell states, a Bell diagonal state is instead written as

ρB =

∑
j,r

λr
j | jr〉〈 jr |, (3)

where j = 1, 2, r = ±,
∑

j,r λr
j = 1 and where we have indicated with |1±〉 ≡ (|01〉 ± |10〉)/

√
2

the one-excitation Bell states and with |2±〉 ≡ (|00〉 ± |11〉)/
√

2 the two-excitation Bell states.
The relations among the eigenvalues λr

j and the correlation matrix elements Ri i are

λ±

1 =
1 ± R11 ± R22 + R33

4
, λ±

2 =
1 ± R11 ∓ R22 + R33

4
, (4)

from which one obtains the inverse relations

R11 = − 1 + 2(λ+
1 + λ+

2),

R22 = − 1 + 2(λ+
1 + λ−

2 ), (5)

R33 = − 1 + 2(λ+
2 + λ−

2 ).

The trace distance discord quantifying quantum correlations of an arbitrary state ρAB ≡ ρ

of a bipartite system AB, as revealed on subsystem A, can be defined as [18, 19]

DTD(ρ) ≡ inf
χ∈C

δTD(ρ, χ) = δTD(ρ, χρ)

=
1

2
‖ρ − χρ‖1 =

1

2
Tr
√

(ρ − χρ)†(ρ − χρ), (6)

where C the set of classical states χ . By classical states we mean states with zero discord
on subsystem A, also known as classical quantum states, which can be written in general as
χ =

∑
i pi |i〉〈i |A ⊗ τi B , with {pi} being a probability distribution, |i〉A an orthonormal basis for

subsystem A and τi B an ensemble of arbitrary states for subsystem B. We have denoted by χρ

the classical state closest to ρ in trace distance, which achieves the infimum in equation (6). Due
to the hermiticity of the density matrices, the previous equation is equal to

DTD(ρ) =
1

2

∑
i

|λD
i |, (7)

where λD
i are the eigenvalues of the matrix (ρ − χρ).

In [18], it has been proven that when A is a qubit, the trace distance discord is equivalent
to the so-called negativity of quantumness, which quantifies the minimum negativity of
entanglement [2] created with an apparatus during a local projective measurement of subsystem
A, according to the formalism of Streltsov et al [7], Piani et al [8] and Adesso et al [28].
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The same measure also coincides with the minimum trace distance between ρ and the state
decohered after a minimally disturbing local measurement

DTD(ρ) = min
5A

‖ρ − 5A[ρ]‖1

2
, (8)

where 5A is a projective measurement on subsystem A [18].
A closed expression for the trace distance discord DTD(ρB) for arbitrary Bell diagonal

states ρB of two qubits was obtained in [18, 19]. One simply has

DTD(ρB) =
Rint

2
, (9)

where Rint represents the intermediate value among the moduli |Ri i | (i = 1, 2, 3).
In the following, for completeness, we construct the explicit form of the closest classical

state χρB to an arbitrary Bell diagonal state ρB, which attains the minimum in equation (6)
resulting in the expression given by equation (9) for the trace distance discord.

2.1. Closest classical state

It is known in the literature that the classical state closest to ρB according to both the relative
entropy distance and the Hilbert–Schmidt distance is still a Bell diagonal state and has the
form [11, 15]

χρB = [IA ⊗ IB + Rkkσk ⊗ σk] /4, (10)

where Rkk is the one among the elements R11, R22, R33 such that |Rkk| ≡ Rmax =

max{|R11|, |R22|, |R33|}. Notice that the closest classical state χρB above is symmetric under
exchange of subsystems A, B, thus it has vanishing discord when detected either on subsystem
A or on subsystem B according to any distance measure [13]. We now show that this state is
also the closest classical state to ρB in the trace distance.

Using the relations of equation (4) among the eigenvalues of a Bell diagonal state and the
coefficients Ri i , one can distinguish different cases in the ordering of the |Ri i | and one can
correspondingly obtain the expression of the trace distance discord DTD(ρB) for the class of
Bell diagonal states. Let us select indices i , j and k as an ordering of 1, 2 and 3 such that
|Ri i |6 |R j j |6 |Rkk|. In this case we postulate that the closest classical state assumes the form
as in equation (10), from which one gets

DTD(ρB) =
1
4

[
|R j j − Ri i | + |R j j + Ri i |

]
. (11)

Notice that flipping the sign of R j j or Ri i in the above expression simply swaps the two
absolute value terms, thus leaving the entire expression invariant. Therefore, no matter the signs,
we obtain for this choice DTD(ρB) =

1
2 Rint, where Rint = |R j j |, which matches the expression

announced in equation (9) and computed independently in [18, 19]. The above calculation
shows that the state χρB of equation (10) is indeed the classical state closest to an arbitrary
Bell diagonal state ρB in the trace distance. Interestingly, the state of equation (10) is thus the
closest classical state to a Bell diagonal state for all the three distances, namely relative entropy,
Hilbert–Schmidt and trace distance. In the following section, we see that this similarity among
the different metrics is not preserved when classical and total correlations are concerned.
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3. Total and classical trace distance correlations

The definition of quantifiers of total and classical correlations for a bipartite state ρ in geometric
terms [11, 26] requires finding the closest product state to ρ and to χρ , respectively, where χρ is
the classical state closest to ρ as defined in equation (6); see figure 1 for a schematic picture. We
define by P the set of product states π = γA ⊗ τB , where γA and τB are arbitrary states defined
on the marginal Hilbert spaces of subsystems A and B, respectively. Note that P ⊂ C ⊂H in
general, where H represents the Hilbert space of the composite system AB and C contains
classical states as defined earlier. Adopting trace distance in the present framework, we can
introduce quantifiers of total and classical correlations for a bipartite state ρ as follows:

TTD(ρ) ≡ inf
π∈P

δTD(ρ, π) = δTD(ρ, πρ) =
1

2
‖ρ − πρ‖1

=
1

2
Tr
√

(ρ − πρ)†(ρ − πρ) =
1

2

∑
i

|λT
i | , (12)

CTD(ρ) ≡ inf
π∈P

δTD(χρ, π) = δTD(χρ, πχρ
) =

1

2
‖χρ − πχρ

‖1

=
1

2
Tr
√

(χρ − πχρ
)†(χρ − πχρ

) =
1

2

∑
i

|λC
i |, (13)

where πρ and πχρ
indicate, respectively, the product state closest to ρ and the product state

closest to χρ in trace distance, while λT
i and λC

i are the eigenvalues of the matrices (ρ − πρ) and
(χρ − πχρ

), respectively.
In the next subsections, we derive explicit expressions for equations (12) and (13) for Bell

diagonal states.

3.1. Classical correlations

We now find a closed form for πχρB
and the analytical value of CTD for Bell diagonal ρB.

Defining two arbitrary states of single qubits A and B with corresponding Bloch vectors
a+

= (a1, a2, a3) and b+
= (b1, b2, b3) as ρ̃A =

1
2 [IA +

∑
i aiσi ] and ρ̃B =

1
2 [IB +

∑
i biσi ], their

product state is

π+
= ρ̃A ⊗ ρ̃B

=
1

4

IA ⊗ IB +
∑

i

aiσi ⊗ IB +
∑

i

biIA ⊗ σ j +
∑
i, j

ai b jσi ⊗ σ j

 .

For a given product state, we consider a corresponding state π− given by vectors a−
=

(−a1, a2, a3), b−
= (b1, b2, b3). Note that 1

2(π
+ + π−) is also a product state, π 0, with vectors

a0
= (0, a2, a3), b0

= (b1, b2, b3).
We have seen that the state of equation (10) is the closest classical state ρB to a Bell

diagonal state ρB for the trace norm. By comparison of characteristic polynomials, it can be
verified that if k 6= 1, then χρB − π+ has the same eigenvalues as χρB − π−, where as before k is
the index such that |Rkk| ≡ Rmax. This gives us

‖χρB − π+
‖1 = ‖χρB − π−

‖1. (14)
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Trace distance also satisfies the convexity property

‖A − (µB1 + (1 − µ)B2)‖1 6 µ‖A − B1‖1 + (1 − µ)‖A − B2‖1 (15)

with 06 µ6 1. Setting µ =
1
2 , A = χρB , B1 = π+, B2 = π− yields

‖χρB − π 0
‖1 6 ‖χρB − π+

‖1. (16)

Equivalent results can be found when flipping the sign of any other single vector element ai or
b j for i, j 6= k. This means that for the closest product state πχρ

, only the Bloch vector elements
ak and bk can be nonzero. Optimizing over these two remaining elements gives the form

ak =
|Rkk|

Rkk
bk,

ai = a j = bi = b j = 0, i, j 6= k
(17)

with the specific solution found at

ak = ∓1 ±

√
1 + Rmax. (18)

Finally, plugging this state in equation (13) gives

CTD(ρB) = −1 +
√

1 + Rmax . (19)

Remarkably, there is a nice division of roles between the intermediate and the maximum
correlation matrix element of an arbitrary Bell diagonal state of two qubits: the former entirely
characterizes the trace distance discord, while the latter entirely characterizes the trace distance
classical correlations.

We notice that the product state πχρB
closest to the classical state χρB is not the product

of its marginals, and is not even a Bell diagonal state in general. This already reveals how
minimizing trace distances from the set P of product states is a nontrivial problem which can
have counterintuitive solutions. This marks a significant difference between the trace distance
and the relative entropy and Hilbert–Schmidt distances.

3.2. Total correlations

For most metrics, finding the distance between a given composite state and the closest product
state is an easier problem compared to, e.g. minimizing the distance from the set of separable or
classical states. Adopting the relative entropy, for instance, the distance between a bipartite state
ρ and the set of product states returns the mutual information of ρ, which is exactly computable,
while the relative entropy of entanglement and the relative entropy of discord are generally hard
to obtain. It is in this respect quite surprising that the situation is radically different using the
trace distance. Notwithstanding its privileged role in quantum statistics [20, 21], it seems that
the trace distance does not induce an intuitive characterization of total correlations in bipartite
states. In other words, if we are facing the task of distinguishing between a bipartite state ρ and
the closest product state in trace distance, the answer is not trivial. In general, the closest product
state is not the product of the marginals of ρ. This makes the optimization of the distance in
equation (12) over P already complicated for simple classes of two-qubit states. Here we focus
on ρ being an arbitrary Bell diagonal state ρB.

We base our analytical analysis on an ansatz which is verified numerically. The ansatz is
that the closest product state πρB to ρB can be found once more among the states of the form
given by equation (17), where as usual k corresponds to |Rkk| ≡ Rmax. However, while the index
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Figure 2. Plot of TTD obtained by numerically optimizing the product state
closest to a Bell diagonal state ρB against the analytic expression of the trace
distance total correlations corresponding to a product state given by equation (17)
for the same ρB. Dark blue crosses show each point (constituting a sample of 103

random states ρB), while a solid red line shows equality between the two.

of the nonzero Bloch vector element and the relative sign of ak and bk depend only on Rkk , we
anticipate that the actual optimal value of ak determining TTD depends on Ri i and R j j as well,
which means that in general πρB 6= πχρB

, as schematically depicted in figure 1. Under the ansatz
of equation (17), the total trace distance correlations of a Bell diagonal state ρB can be written
as follows:

TTD(ρB) = min
ak :|ak |61

1

8

(
|a2

k + Ri i + s(R j j − Rkk)| + |a2
k − Ri i + s(−R j j − Rkk)|

+
∣∣∣a2

k − s Rkk + s
√

4a2
k + (Ri i − R j j)2

∣∣∣+
∣∣∣− sa2

k + Rkk +
√

4a2
k + (Ri i − R j j)2

∣∣∣),

(20)

where s = Rkk/|Rkk| is the sign of Rkk and ak is the product state parameter from equation (17).
Note that this expression is invariant under interchange of Ri i and R j j . The remaining
optimization in equation (20) can be solved in closed form. It turns out that the optimum ak

is either 0 (meaning that the closest product state is the identity, i.e. the product of the marginals
of ρB), or it has to be found among those values which nullify each of the absolute value
terms in equation (20). However, the resulting explicit expression for TTD(ρB) is too long and
cumbersome to be reported here.

It is important to comment on the validity of the ansatz behind equation (20). We have
ran an extensive numerical test where we compared the conjectured expression for TTD(ρB)

obtained under the assumption of equation (17), with a numerical minimization of equation (12)
over arbitrary product states π of two qubits. The result for a sample of 103 Bell diagonal states
ρB (out of a total of 106 tested ones) is shown in figure 2: the numerically optimized trace
distance for all tested states falls on or above the straight line representing equality with the
analytical formula resulting from equation (20), which means that no product state could be
found numerically closer—in trace distance—to a generic Bell diagonal state, than the one
analytically given by equations (17) and (20).
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For the majority of states ρB, the optimal ak = sbk 6= 0, which means that the closest
product state is not the product of the marginals, in contrast to the total correlation measures
obtained by using the relative entropy or Hilbert–Schmidt norms [11, 15]. Additionally, the
triangle inequality for trace distance implies in general

TTD(ρB)6 CTD(ρB) + DTD(ρB), (21)

but unlike the other norms the inequality is typically sharp for the trace distance case. In
this respect, we wish to point out that this is not a byproduct of the ansatz used to derive
equation (20). Even though a closer product state to ρB might be found (which appears extremely
unlikely based on our numerical analysis), the expression in equation (20) would remain an
upper bound to the true trace distance total correlations, therefore not altering the sharpness of
the inequality (21).

Hereby we will confidently regard the value of TTD(ρB) given by equation (20) as the exact
value of the trace distance total correlations for arbitrary Bell diagonal states ρB.

3.3. Examples

Here we present some explicit examples where we compute quantum, classical and total
correlations in particular families of two-qubit Bell diagonal states and comment on their
properties.

One simple class of Bell diagonal states is Werner states [29], for which R11 = −R22 =

R33 = r , for 06 r 6 1. For these states, the values of the correlations are:

DTD(ρ) =
r

2
,

CTD(ρ) =
√

1 + r − 1, (22)

TTD(ρ) =

{
3
4r, 06 r 6 4

5 ,

1
2

√
r + r 2, 4

5 6 r 6 1.

This is shown in figure 3 (left). It is notable that, while quantum and classical correlations
increase smoothly, the total correlations have a sudden change point at r =

4
5 . This point marks

the transition from the region for which the closest product state is the product of the marginals,
06 r 6 4

5 , to the region where it is instead a product state of the form as in equation (17) with
ak =

√
r .

A second simple class of states, also displayed in figure 3 (Right), are the rank-2 Bell
diagonal states, for which R11 = −R22 = c, R33 = 1, for 06 c 6 1. The values of trace distance
correlations for these are

DTD(ρ) =
c

2
,

CTD(ρ) =
√

2 − 1, (23)

TTD(ρ) =


√

2 + c2 − 1, 06 c 6 1
2 ,

1
4(1 + 2c), 1

2 6 c 6 3
4 ,

1
2

√
1 + c2, 3

4 6 c 6 1.
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Figure 3. Plot of DTD (solid blue line), CTD (dashed red line) and TTD (dotted
green line) for Werner and rank-2 Bell diagonal states. Left panel: Werner
states with R11 = −R22 = R33 = r . Right panel: rank-2 Bell diagonal states with
R11 = −R22 = c, R33 = 1.

Here we see that while again quantum correlations increase smoothly, for total correlations
there are actually three regions, with two sudden changes. In this case it is the middle region,
with 1

2 6 c 6 3
4 , for which the closest product state is the product of the marginals. In the final

region, 3
4 6 c 6 1, the closest product state is pure. We can additionally note that for both Werner

and rank-2 Bell diagonal states, it is always the case that TTD 6= DTD + CTD except for the trivial
cases where one of them vanishes. Notably, classical correlations are constant for rank-2 Bell
diagonal states.

4. Dynamics of trace distance quantifiers of correlations

In this section we analyze the dynamics of the trace distance quantifiers of correlations in
two specific models exhibiting non-Markovian evolutions and compare them to the dynamics
of the correlations measured by relative entropy S(ρ ‖ σ) ≡ −Tr(ρ log σ) − S(ρ) [11], where
S(ρ) ≡ −Tr(ρ log ρ) is the von Neumann entropy.

This analysis will serve the purpose to highlight possible peculiarities in the dynamical
behaviors of the trace distance quantifiers of correlations and to show possible qualitative
differences with the dynamics of the entropic ones. The choice of the entropic quantifiers of
correlations for the dynamical comparison is due to the fact that both relative entropy and trace
distance measures are contractive for any trace-preserving completely positive map 3, that is
S(3ρ ‖ 3σ)6 S(ρ ‖ σ), δTD(3ρ, 3σ)6 δTD(ρ, σ ): that is a required property for any bona
fide distance-based measure of correlations [24]. For instance this property is not exhibited
by the Hilbert–Schmidt distance, used to define the geometric discord [13] which was as such
revealed to be an unsuitable measure of quantum correlations [16, 30]. It is also worth to mention
that the relative entropy is adopted as a measure of distance between two states ρ, σ even if it
is asymmetric with respect to the exchange ρ ↔ σ and is thus a pseudo-distance: moreover,
S(ρ ‖ σ) diverges when σ is a pure state [31]. Differently, the trace distance is symmetric to the
exchange ρ ↔ σ and it does not present singularities when σ or ρ are pure states.
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Total correlations T , discord D and classical correlations C based on relative entropy are
defined as [11]

D(ρ) ≡ S(ρ‖χ̃ρ) = S(χ̃ρ) − S(ρ),

C(ρ) ≡ S(χ̃ρ‖π̃χ̃ρ
) = S(π̃χ̃ρ

) − S(χ̃ρ), (24)

T (ρ) ≡ S(ρ‖π̃ρ) = S(π̃ρ) − S(ρ),

where π̃ρ ∈ P and χ̃ρ ∈ C are, respectively, the product state and the classical state closest to
ρ, while π̃χ̃ρ

∈ P is the product state closest to χ̃ρ . These states are such that they minimize
the corresponding relative entropies, and do not in general coincide with the ones minimizing
the trace distance measures of correlations in equations (6), (12) and (13). It is worth to notice
here that, for the class of Bell diagonal states ρB, D(ρB) coincides with the original definition
of quantum discord [3, 4] and the relative entropy correlation quantifiers satisfy the additivity
relation: T = D + C (an analogous relation also holds when using geometric quantifiers defined
via the Hilbert–Schmidt distance [15]). The explicit expressions of the entropic correlation
quantifiers for Bell diagonal states are [27]

D(ρB) = T (ρB) − C(ρB),

C(ρB) =

2∑
i=1

1 + (−1)i Rmax

2
log[1 + (−1)i Rmax], (25)

T (ρB) = 2 +
∑

j,r

λr
j log2 λr

j ( j = 1, 2, r = ±),

where λr
j and Rmax are defined, respectively, in equation (4) and after equation (10). We shall

take into account two different models, a dynamics under local phase-flip channels and an
environment of random external fields.

4.1. First model: phase-flip channels

We take two noninteracting qubits under local identical phase-flip channels [15]. Phase-flip
noise, i.e. pure dephasing, is an emblematic type of nondissipative decoherence [1] which arises
naturally in typical solid state implementations, such as the case of superconducting qubits
interacting with impurities under random telegraph noise [32]. In our setting, each qubit is
subject to a time-dependent phenomenological Hamiltonian [33] H(t) = h̄0(t)σz, where σz is
a Pauli operator and 0(t) = αn(t) where α is a coin-flip random variable taking the values
±|α| while n(t) is a random variable having a Poisson distribution with mean value equal to
the dimensionless time ν = t/2τ . This two-qubit system is characterized by a non-Markovian
dynamics that maintains the system inside the class of Bell-diagonal states with the three
coefficients Ri i(t) of equation (2) evolving as

Ri ′i ′(t) = Ri ′i ′(0) f 2(ν), R33(t) = R33(0), (26)

where i ′
= 1, 2 and f (ν) = e−ν[cos(µν) + sin(µν)/µ] with µ =

√
(4ατ)2 − 1. Using

equations (26) and (25) the quantum correlations can be analytically computed. We no-
tice that the closest classical state χρB(t) of equation (10) is frozen during the time intervals
when |R33(t)| > Rmax, being Rkk(t) = R33(t) = R33(0).

In figure 4 entropic discord D and trace distance discord DTD are plotted as a function of
the dimensionless time ν for two different initial Bell diagonal states. It is displayed that the
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Figure 4. Dynamics of discord DTD (blue solid line) and D (orange dashed line)
under local phase-flip channels versus ν = t/2τ , with τ = 5 s and |α| = 1 s−1.
Left panel: the initial coefficients of the Bell diagonal state are R11(0) = 1,
R22(0) = −0.6 and R33(0) = 0.6 (λ+

1(0) = 0.2, λ−

1 (0) = λ−

2 (0) = 0, λ+
2(0) = 0.8).

Right panel: the initial coefficients are R11(0) = 0.6, R22(0) = 0 and R33(0) =

0.4 (λ+
1(0) = 0.3, λ−

1 (0) = 0, λ+
2(0) = 0.5, λ−

2 (0) = 0.2).

entropic discord D assumes different behaviors when the initial conditions are changed (see
the orange dashed lines of the two panels), while the trace-norm discord DTD maintains the
time regions when it is constant. It is straightforward to see that the initial coefficients Ri i(0)

of the Bell diagonal state in the left panel, where the two discord quantifiers are constant in the
same time regions, satisfy the condition of freezing for all the bona fide quantifiers of quantum
correlations under nondissipative evolutions, as introduced in [24] generalizing the seminal
analysis of Mazzola et al [34]. Notice also that the two discords display different qualitative
behaviors in the Right panel of figure 4: while DTD is constant, D has sudden changes but
no freezing regions. This demonstrates that the freezing property occurs for a wider range of
initial conditions for trace distance discord than for entropic discord. This phenomenon has also
been pointed out in [23], where a richer phenomenology of trace distance discord compared to
other measures of discord was uncovered, including the possibility of double sudden changes
when phase-flip is combined with amplitude damping. In general, our recent geometric analysis
in [24] shows that, within the space of Bell diagonal states, the trace distance discord DTD

has broader subregions in which it remains constant compared to any other bona fide measure
of discord. This clearly results in the possibility of larger freezing intervals under various
dynamical trajectories compared to other measures. We will now investigate whether this is
the case for the second dynamical model studied in this work.

4.2. Second model: random external fields

We consider a pair of noninteracting qubits each locally coupled to a random external field,
whose characteristics are unaffected by the qubit it is coupled to. This implies that back-action
on the dynamics of the qubits is absent [35, 36]. Each environment is a classical field mode with
amplitude fixed and equal for both qubits. The phase of each mode is not determined, and is
equal either to zero or to π with probability p = 1/2. This model describes a special case of
two qubits each subject to a phase noisy laser [37] but where the phase can take only two values
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and with the diffusion coefficient in the master equation equal to zero. It has been considered to
study revivals of entanglement without back-action [6, 35, 36].

In this model, the dynamical map for the single qubit S = A, B is of the random external
fields type [38] and can be written as

3S
t ρS(0) =

1

2

2∑
i=1

U S
i (t)ρS(0)U S†

i (t), (27)

where U S
i (t) = e−iHi t/h̄ is the time evolution operator, with Hi = ih̄g(σ+e−iφi − σ−eiφi ), and

the factor 1/2 arises from the equal field phase probabilities (there is a probability pS
i = 1/2

associated to each U S
i ). Each Hamiltonian Hi is expressed in the rotating frame at the qubit-

field resonant frequency ω. In the basis {|1〉, |0〉}, the time evolution operator U S
i (t) has the

matrix form

U S
i (t) =

(
cos(gt) e−iφi sin(gt)

−eiφi sin(gt) cos(gt)

)
, (28)

where i = 1, 2 with φ1 = 0 and φ2 = π . The single-qubit map 3S
t generates a nondissipative

non-Markovian evolution described by a master equation in a generalized Lindblad form [39].
The overall dynamical map 3t applied to an initial state ρ(0) of the two-qubit system, ρ(t) ≡

3tρ(0), is composed by the two local maps 3S
t and reads

ρ(t) =
1

4

2∑
i, j=1

U A
i (t)U B

j (t)ρ(0)U A†
i (t)U B†

j (t). (29)

This map moves inside the class of Bell diagonal states [36]. The three coefficients Ri i(t) of
equation (2) evolve as

R j j(t) = R j j(0) cos2(2gt), R22(t) = R22(0), (30)

where j = 1, 3.
In figure 5 we plot entropic discord and trace distance discord for two different initial

conditions. Even in this case, as occurred in the above phase-flip channels, the entropic discord
changes its qualitative time behavior for the two different initial conditions (time regions of
freezing in the left panel, increase and decrease in the right panel), while the trace distance
discord maintains the same qualitative dynamics. This is a further confirmation of the fact that
the freezing property for trace distance discord occurs for a wider range of initial conditions
than for entropic discord.

Once again, it is possible to show that the freezing for both D and DTD (left panel of
figure 5) occurs when the initial coefficients Ri i(0) of the Bell diagonal state satisfy the general
condition of freezing for quantum correlations under nondissipative evolutions [24]. Notice that
the sudden changes in the slope of the two discords occur at the same times; these times can be
analytically found for given initial conditions [24, 34].

4.3. Dynamics of total and classical correlations measured by trace distance

We can now analyze the time behavior of the total and classical trace distance correlations
described in section 3, for the two models studied above. Figures 6 and 7 show the dynamics
of total TTD, classical CTD and quantum DTD correlations quantified by the trace distance for
the local phase-flip channels and for the random external fields, respectively. There are several
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Figure 5. Left panel: dynamics of discord DTD (blue solid line) and D (orange
dashed line) for an initial Bell diagonal state with λ+

1(0) = 0.9, λ−

1 (0) = 0.1 and
λ±

2 (0) = 0 (i.e. R11(0) = R22(0) = 0.8, R33(0) = −1). Right panel: dynamics of
discord DTD (blue solid line) and D (orange dashed line) for an initial Bell
diagonal state with λ+

1(0) = 0.1, λ−

1 (0) = 0.8 and λ±

2 (0) = 0.05 (i.e. R11(0) =

R22(0) = −0.7, R33(0) = −0.8).

Figure 6. Plot of DTD (solid blue line), CTD (dashed red line) and TTD (dotted
green line) for the model of local phase-flip channels, with τ = 5 s and |α| =

1 s−1. Left panel: same conditions as in the left panel of figure 4. Right panel:
same conditions as in the right panel of figure 4.

features of note, both in commonality and contrast with the relative entropy distance measure
of discord.

Similarly to the case of relative entropy distance, the trace distance classical correlations
switch between being frozen and varying at exactly the same points in time as the trace
distance discord. This behavior, known as sudden transition between classical and quantum
decoherence [34], can be understood from the analytic expressions of equations (9) and (19),
from which we can see that, for trace distance, quantum correlations depend only on Rint for
Bell diagonal states, whereas classical correlations depend only on Rmax. While this is not true
in general for the relative entropy distance (see equations (24)), this turns out to be the case
for trajectories which experience frozen entropic discord [32]. Similarly, for both measures,
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Figure 7. Plot of DTD (solid blue line), CTD (dashed red line) and TTD (dotted
green line) for the model of random external fields with initial conditions
λ+

1(0) = 0.9, λ−

1 (0) = 0.1 and λ±

2 (0) = 0.

the total correlations do not appear to experience freezing or sudden change, indicating their
dependence on more than one Ri i value.

In contrast to the relative entropy distance, however, where C(t?) = D(t?) at any threshold
time t? at which there is a sudden change, for trace distance CTD(t?) < DTD(t?). This too can
be understood by reference to the analytic expressions, which show that CTD < DTD whenever
Rmax = Rint.

4.4. Scaling of the freezing regions of quantum correlations

We now show a general scaling property of the freezing region for quantifiers of quantum
correlations as a function of the initial conditions. This property, which is found for local
Markovian nondissipative channels [24], can be generalized to any local channel maintaining
the Bell diagonal structure of the two-qubit density matrix with Ri i(t) = Ri i(0) f 2(t), R j j(t) =

R j j(0) f 2(t) and Rkk(t) = Rkk(0) (i, j, k = 1, 2, 3, i, j 6= k), where f (t) is a characteristic time-
dependent function of the channel with the properties f (0) = 1 and | f (t)|6 1. In fact, the
initial conditions for general freezing are Ri i(0) = ±1, R j j(0) = ±Rkk(0) [24]. Assuming that
|Ri i(t)|, |Rkk(t)|> |R j j(t)| for any t , the freezing occurs when |Ri i(t)|> |Rkk(t)| = |Rkk(0),
that is when f 2(t)> |Rkk(0)|. If the function f (t) is analytically invertible, the threshold times
t? when there is a sudden change can be explicitly determined from the equation f 2(t?) =

|Rkk(0)|. Due to the properties of f (t), the general result under these conditions is thus that
the smaller is |Rkk(0)|, the longer is the freezing region of quantum correlations whose amount
however correspondingly decreases.

For example, in the case of local random external fields considered above we find that the
general freezing of quantum correlations occurs when cos2(2gt)> |R22(0)| and the first sudden
change time is at gt?

=
1
2 arccos

√
|R22(0)|. In figure 8 we display the scaling of freezing by

plotting the trace distance discord as a function of the dimensionless time gt for different values
of the initial coefficients, fixing λ±

2 (0) = 0 (i.e. R33 = −1). We notice that by decreasing the
value of λ+

1 (therefore of |R22(0)|), the regions of freezing become longer and the amount of
preserved quantum correlations smaller. This phenomenon is universal among all bona fide
measures of quantum correlations as a consequence of the analysis in [24]. For trace distance
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Figure 8. Dynamics of trace distance discord DTD for an initial Bell diagonal
state with λ±

2 (0) = 0 (R33(0) = −1) and different values of λ+
1(0) = 1 − λ−

1 (0)

given by: λ+
1(0) = 1, that is R11(0) = R22(0) = 1 (blue solid line); λ+

1(0) = 0.9,
that is R11(0) = R22(0) = 0.8 (red dashed line); λ+

1(0) = 0.8, that is R11(0) =

R22(0) = 0.6 (green dotted line); and λ+
1(0) = 0.7, that is R11(0) = R22(0) = 0.4

(orange dot-dashed line).

discord this scaling of the freezing regions can furthermore occur also with initial conditions
outside those for general freezing (for instance, for |R33| 6= 1, see right panel of figure 5).

5. Conclusion

Bell diagonal states of two qubits are often the simplest yet highly relevant class of states for
which one is able to analytically calculate measures of correlations. Investigations of different
types of correlations in Bell diagonal states can reveal insights into remarkable dynamical
features such as frozen quantum correlations [24, 34], and can lead to a deep understanding
of the structure and interplay of different forms of (non)classical correlations.

In this paper, we adopted the trace distance as a metric to define correlations in bipartite
quantum states. Extending the analysis of Nakano et al [18] and Paula et al [19] in which
a discord measure based on trace distance was defined, we completed a unified approach to
bipartite correlations by defining classical and total correlations based on the trace distance
metric. For Bell diagonal states, we obtained analytical expressions for classical and total
trace distance correlations, in addition to the known one for quantum correlations [18, 19].
Interestingly, trace distance discord is entirely specified by the intermediate Bloch correlation
element of Bell diagonal states, while trace distance classical correlations only depend on the
maximum Bloch correlation element for the same states. The total correlations have a nontrivial
expression which depends on all the Bloch elements, and are obtained for a state ρ by taking the
trace distance from a product state which is not, in general, equal to the product of the marginals
of ρ.

This is an interesting fact in its own right, which did not seem to be noticed before: the
product state π minimizing the trace distance, i.e. the probability of error in discriminating π

from the correlated state ρ, is not the product of the marginals of ρ in general. We presented
explicit examples including Werner states and rank-2 Bell diagonal states, where this fact
became manifest. Unlike relative entropy-based approaches to correlations [11], for trace
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distance the total correlations are almost never equal to the sum of classical and quantum ones,
but stay strictly smaller than that.

We have examined the behavior of quantum, classical and total trace distance correlations
in two simple non-Markovian dynamical models: qubits under local phase-flip channels, and
under the action of a random external field. The sudden transition between classical and quantum
decoherence, first demonstrated for entropic quantifiers of correlations [34], occurs as well
for trace distance correlations. However, the trace distance measures exhibit unique qualitative
features, including the presence of frozen discord [24] under a greater range of starting states
compared to other measures of quantum correlations.

The simple expressions obtained in this paper for trace distance correlations of Bell
diagonal states make them amenable to precise experimental verification in highly controllable
dynamical implementations realized either with photons [28, 40] or with nuclear magnetic
resonance techniques [25]. It might be intriguing to investigate in the future whether the gap
between the trace distance total correlations and the sum of trace distance classical correlations
plus discord can be of any operational significance in some information processing task. To our
knowledge, one operational interpretation for a trace distance based quantifier of correlations
was reported for the trace distance discord in the context of remote state preparation fidelity for
noisy one-way quantum computations [41]. More generally, we reiterate that the trace distance
discord also quantifies operationally the minimum entanglement (negativity) activated between
a two-qubit system and an apparatus during a local premeasurement [7, 8], as very recently
observed experimentally [28].

Another interesting direction for future investigation would be to add one more layer to
the hierarchy of trace distance correlations by computing the minimum distance from the set
of separable states, which would define a measure of entanglement [2] based on trace distance.
Finally, we can expect that some of the results presented here can be extended to more general
classes of two-qubit states such as the X -shaped density matrices, adopting the methods of
Ciccarello et al [22].
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Note added. After completion of this work we became aware of similar results obtained
independently by Paula et al [42]. However, there the authors define trace distance quantifiers
of classical and total correlations for a bipartite state ρAB without including a minimization over
the closest product state, but considering distances from a fixed reference product state given by
the product of the marginals of ρAB . As a result, their quantities exceed ours and their definitions
might overestimate the content of correlations in quantum states, especially in the case of the
total trace distance correlations. Interestingly, the classical trace distance correlations according
to both their definition and our optimized one, turn out to be monotonic functions of each other
for Bell diagonal states, being both dependent only on the maximum correlation element Rmax.
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