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Abstract

The left-right asymmetry of snails, including the direction of shell coiling, is determined by the delayed effect of a maternal
gene on the chiral twist that takes place during early embryonic cell divisions. Yet, despite being a well-established classical
problem, the identity of the gene and the means by which left-right asymmetry is established in snails remain unknown. We
here demonstrate the power of new genomic approaches for identification of the chirality gene, ‘‘D’’. First, heterozygous
(Dd) pond snails Lymnaea stagnalis were self-fertilised or backcrossed, and the genotype of more than six thousand
offspring inferred, either dextral (DD/Dd) or sinistral (dd). Then, twenty of the offspring were used for Restriction-site-
Associated DNA Sequencing (RAD-Seq) to identify anonymous molecular markers that are linked to the chirality locus. A
local genetic map was constructed by genotyping three flanking markers in over three thousand snails. The three markers
lie either side of the chirality locus, with one very tightly linked (,0.1 cM). Finally, bacterial artificial chromosomes (BACs)
were isolated that contained the three loci. Fluorescent in situ hybridization (FISH) of pachytene cells showed that the three
BACs tightly cluster on the same bivalent chromosome. Fibre-FISH identified a region of greater that ,0.4 Mb between two
BAC clone markers that must contain D. This work therefore establishes the resources for molecular identification of the
chirality gene and the variation that underpins sinistral and dextral coiling. More generally, the results also show that
combining genomic technologies, such as RAD-Seq and high resolution FISH, is a robust approach for mapping key loci in
non-model systems.
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Introduction

Consistent left-right asymmetry is a decisive feature of

embryonic development, yet the breaking of bilateral symmetry

is still poorly understood [1]. Until recently, the most popular

model for this process was that motile cilia create a chiral

extracellular fluid flow during gastrulation. However, a body of

research points towards a symmetry-breaking event that occurs

much earlier at the intracellular level [1]. In the hypothetical view

of Brown and Wolpert [2], the general solution to the problem of

symmetry breaking is provided by a pre-existing asymmetric

molecular reference, or ‘‘F-molecule’’, which aligns with anterior-

posterior and dorsal-ventral axes and creates an asymmetric signal,

perhaps by then transporting an effector molecule towards the left

or right. Asymmetry is thus entirely dependent upon the chirality

and alignment of the F-molecule.

Pond snails of the genus Lymnaea have been used to study

asymmetry for nearly 120 years. It has been known since 1894 that

both the coil of the shell and the entire body asymmetry of a snail

are entirely predicated by the spiral twist that takes place as the 4-

cell embryo divides [3]. Later, Boycott and Diver [4] observed that

shell coiling in the pond snail L. peregra is a hereditary character,

but reported that the patterns of variation in the offspring were

difficult to understand, requiring a complicated model to fit the

data. Sturtevant [5] immediately hypothesised that these odd

patterns were because the expression of the gene is delayed by a

generation, an ‘‘inspired guess’’ [6] that proved to be correct. In

most snails that have been examined, the chromosomal locus that

determines asymmetry acts via a maternal effect [7]. In dominant

dextral-coiling L. stagnalis (genotype DD or Dd) the movement of

cells in the early embryo, and the twist of the adult animal’s shell is

clockwise, whereas in genetically sinistral (recessive, dd) snails it is

anticlockwise.

However, even though the early research on Lymnaea has an

important role in the narrative of Mendelian genetics [8], is a

staple item in text books [9], and continues to influence current
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thinking [1], pond snails have until recently been relatively

neglected. Little progress on understanding asymmetry in Lymnaea

was made in the latter twentieth century. The most revealing result

was that the maternal inheritance of the gene is apparently

determined by a factor that the mother deposits in the unfertilized

egg [10]. It is presumed that it is this factor, or an intermediate,

that then goes on to direct the dynamics of later chiral blastomere

division [11]. It has also been shown that the early development in

sinistrals is not an exact mirror image of development in dextrals

[12], with many sinistral embryos failing to develop at all [13,14].

In the last few years, the work on Lymnaea has been given added

impetus because it has been discovered that a common gene, nodal,

links deuterostome and molluscan asymmetry, although in neither

case is it the earliest symmetry breaking determinant [11,15].

The primary motivation for using L. stagnalis is that asymmetry

is established very early, and the problem is genetically tractable,

because both chiral forms exist. However, there are few genomic

resources currently available for use in this species [16,17]. We

have therefore utilised a new and transformative high-throughput

DNA sequencing technology, Restriction-site-Associated DNA

Sequencing (RAD-Seq) [18,19], to find anonymous markers that

flank the chirality locus in L. stagnalis directly. We identified 20

markers linked to the locus. Further investigations in a large

crossing panel using a subset of these markers showed that the

markers flank the chirality-determining D locus and that one is

very closely linked, both by recombination and in physical

distance. We pinpointed the location of the chirality gene with

high resolution pachytene fluorescent in situ hybridisation (FISH)

and fibre FISH, demonstrating that these are robust techniques for

high resolution physical mapping in snails. Together, these results

set in place the resources for identification of the chirality gene

itself.

To avoid confusing terminology, snail shell coiling or chirality

phenotypes are ‘‘dextral’’ or ‘‘sinistral’’, whereas equivalent

chromosomal genotypes are either DD, Dd (‘‘genetically dextral’’;

dextrality is dominant) or dd (‘‘genetically sinistral’’). Similarly, for

alleles of anonymous loci that are in linkage with the chirality

genotype, alleles originating from the dextrally-derived chromo-

some are represented in upper case and alleles from the sinistrally-

derived chromosome are lower case.

Results and Discussion

Generation of a Large Mapping Cross
L. stagnalis are simultaneous hermaphrodites but outcross in

preference. To generate snails for the mapping, we obliged virgin

Dd snails to self-fertilise (Figure 1). The genotype of 5949 offspring

was inferred, by the direction of coiling of their offspring, of which

4513 were genetically dextral (DD or Dd) and 1436 sinistral (dd).

This ratio does not deviate significantly from the 3:1 expected

(X2 = 2.355; P,0.125). A lesser number of snails were generated

by backcrossing Dd heterozygotes to dd snails, with the Dd snail

‘‘father’’ being removed after mating and the dd used as the

‘‘mother’’. The genotype of 389 offspring was inferred, of which

221 were genetically dextral (DD or Dd) and 168 sinistral (dd). This

ratio differed from the 1:1 expected (X2 = 7.221; P,0.007). As it

has previously been shown [13,14] that a high proportion of

embryos fail to develop from a mother that is genetically sinistral,

dd, then we speculate that one explanation is differential mortality

of dd individuals compared with Dd individuals from a common dd

mother.

Discovery of Twenty RAD Tags in Linkage with the Snail
Chirality Locus

We prepared a RAD-Seq library from genomic DNA of twenty

individuals, all offspring of the same self-fertilised snail, genotype

Dd, using the 8-base cutter SbfI. Ten of the snails were of genotype

DD or Dd (genetically dextral), with the other ten of genotype dd

(genetically sinistral). Assuming a haploid genome size of 1.19 Gb

[20] and a 37% GC content [21], SbfI was predicted to have in

the region of ,9467 cut sites, and thus generate ,18934 RAD

tags. After generating 18.5 million Illumina GAIIx 101 bp read

pairs from this library, RADtools [22] was used to identify 62758

candidate alleles at 52124 candidate loci, with a mean depth of 24

reads per locus (SD 6; Table S1). The excess number of RAD tags

over the expected could be for a variety of reasons e.g. sequencing

error and/or more SbfI sites than expected [23].

To identify putative chirality-linked loci, we searched for

candidate loci with an allele present in all genetically dextral

(DD or Dd) snails and absent in all sinistral individuals (putative D

alleles), with the complementary marker (putative d alleles) present

in all sinistral individuals and some dextral (presumably Dd) snails.

This analysis recovered twenty candidate loci, with all twenty

putative sinistral (d) alleles present in the same seven dextral snails

(presumed genotype Dd) and absent in the remaining three

(presumed genotype DD). The twenty markers were in complete

linkage with the chirality locus in these twenty test individuals.

Paired-end RAD reads [24] from these twenty markers were

assembled into long contigs (mean length 473 bp) to identify

polymorphisms between dextral and sinistral haplotypes that

would be suitable for development as PCR markers (Table S2).

We initially focussed our efforts on five markers, rad1, rad2, rad4,

rad5 and rad7, because dextral and sinistral chromosome-derived

alleles for these markers differed by an insertion-deletion

polymorphism, which made developing PCR assays to score large

numbers of snails simpler. Using these PCR assays, we found that

the inferred genotypes of the original twenty snails were perfectly

validated for all loci tested, confirming that the bioinformatically

inferred genotypes were correct. Using a notation where dextral

and sinistral chromosome-derived alleles are upper and lower case

respectively, we confirmed that the majority of genetically sinistral

snails are of genotype rad1/rad1 rad2/rad2 rad4/rad4 rad5/rad5

rad7/rad7. The majority of dextral snails are of genotype RAD1/

RAD1 RAD2/RAD2 RAD4/RAD4 RAD5/RAD5 RAD7/RAD7 or

RAD1/rad1 RAD2/rad2 RAD4/rad4 RAD5/rad5 RAD7/rad7, pre-

sumably corresponding to genetically DD or Dd snails, respectively.

One RAD Tag is Less than 0.1 Centimorgans (cM) from
the Chirality Locus

Three markers were scored in 3403 snails, both genetically

sinistral (dd) and dextral (DD or Dd), enabling the construction a

local genetic map for the chirality locus (Figure 2). In all, 1507

genetically sinistral snails were scored for RAD-seq markers 4, 5

and 7, yielding 65 putative recombinant-chromosome containing

individuals (Table 1). One of these three loci, rad4, was within

0.1 cM of the chirality locus D, with only three recombinants in

1507 snails discovered. The other two loci were also closely linked

to the chirality locus, rad7 being on the same side as rad4 (25

recombinants) and rad5 being on the other side (40 recombinants).

Similar numbers were found in dextral snails: 1896 genetically

dextral snails were scored, yielding 77 recombinant individuals for

the three loci, 38 between rad4 and rad7, and 39 between rad4

and rad5. In the dextral snails, it was not possible to determine the

number of recombinants between the chirality locus D and other

Fine Mapping of the Snail Chirality Locus
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loci, because of uncertainty regarding their precise genotype (DD

or Dd).

Two additional markers were scored in fewer individuals, and

then not used further. Locus rad1 was discarded because no

recombinants were discovered between it and rad7 (n = 472).

Locus rad2 was also not used further because no recombinants

were discovered between it and rad5 (n = 42). SNP and restriction

site polymorphism genotyping assays (not shown) were subse-

quently developed for the other markers. No evidence that any of

them were more closely linked to the chirality locus than rad4 or

rad5 was found, and they were not used further.

The combined genotypes allowed us to infer the precise chirality

genotype of the majority of the genetically dextral snails (excepting

those snails that show evidence of recombination in that region).

There was no evidence of segregation distortion in genetic

dextrals: 1233 DD snails were inferred versus 586 Dd snails, not

significantly different from the expected 2:1 ratio (X2 = 1.022;

P,0.312).

To give some possible clue as to the identity of the genes that

may be contained within this region, we carried out BLASTX

analyses of the anonymous RAD-Seq tags. The rad7 tag had a

strong hit (expect value (E) of 1e-21) to the probable E3 ubiquitin-

protein ligase, HERC2. We do not consider this putative

orthologue a strong candidate gene, because the rad7 locus is

1 cM away from the chirality locus, though long distance

regulation of gene expression is possible, including an example

involving HERC in humans [25,26]. The other loci did not have

any good BLAST hits.

The Physical Distance between RAD Tag Markers that
Flank the Chirality Locus is Greater than Around 0.4 to
0.6 Mb

With a view to identifying the chirality locus in the future, we

wished to estimate the physical distance between the two loci rad4

and rad5, and explore synteny with other mollusc genomes.

Existing genomic resources are not just poor for L. stagnalis, but for

molluscs in general. While there are two published molluscan

Figure 1. Schematic of crossing strategy used to generate snails that segregate for chirality genotype. Genotypes of snails are labelled
as DD, Dd and dd, with the phenotypes labelled as sin and dex. The phenotype of offspring is determined by the maternal genotype (see main text).
doi:10.1371/journal.pone.0071067.g001
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genomes (Lottia gigantea, and Crassostrea gigas [27,28]), and two

others are publicly available (Biomphalaria glabrata and Aplysia

californica (http://biology.unm.edu/biomphalaria-genome/;

http://smithlabdb.usc.edu/cgi-bin/hgGateway) their long-range

assembly has proved problematic. The recent comparative analysis

of three spiralian genomes showed that regions of macro and

microsynteny do exist [28], but the HERC gene does not seem to

be in a region of conserved synteny. Analysis of the other RAD-

Seq tags did not show any pattern consistent with synteny between

L. stagnalis and the closest sequenced relative, the heterobranch

gastropod B. glabrata. This does not mean that synteny does not

exist in the chirality region, just that we have not yet discovered

evidence for it.

In theory, cytogenetic approaches can anchor accumulating

genomic data, but in molluscs the most useful technique,

fluorescent in situ hybridisation (FISH), has been limited to use

on cell lines of B. glabrata [29,30]. We therefore developed FISH

methods to visualise individual loci on the chromosomes of L.

stagnalis, using non-cultured live cells. First, separate clones

containing the loci rad4, rad5 and rad7 were retrieved from a

bacterial artificial chromosome (BAC) library. Pachytene FISH

was used to confirm that BACs containing rad4, rad5 and rad7 co-

localise to the same bivalent chromosome (Figure 3). Fibre-FISH

was then used to try to determine the physical distance between

the two markers that bound the chirality locus (rad4, rad5).

Unfortunately, few intact fibre-FISH images were obtained (n = 4).

This is most likely because the majority of fibres had been broken,

because of the relatively great distance between the BACs,

meaning that the syntenic relationship between the two BACs

could only be visualised in relatively unstretched chromatin fibres

and interphase nuclei. The latter were rare in our preparation.

These reasons, together with inconsistencies in the stretching level

of extended chromatin fibres, mean that it is not possible to define

a precise upper bound for the chirality region. Nonetheless, using

the estimated size of the BACs (from gel electrophoresis) as a scale,

we assessed that the distance between the extreme ends of the

BACs is approximately 0.4 to 0.6 Mb (Figure 4). This puts a lower

bound of the size of the gap between the markers. As we detected

82 crossovers in this region (Table 1), we will in the future be able

to precisely define the non-recombined haplotype, and thus the

segment of the genome that contains the dd allele, and thus the

chirality locus.

We expected to be able to sample the genome at each SbfI

restriction site, or about every 250 kb of the genome, yielding

,9.46103 tags marking ,18.96103 anonymous loci. While we

recovered many RAD tag sites from the experiment, only a few of

these were in linkage with the chirality locus D, and mapping of

BAC clones containing the most closely mapped markers yielded

an interval of at least ,0.4–0.6 Mb. We speculate that other SbfI

sites within this region might not be detectable independently

because they are invariable, or lie in repeat regions in the repeat-

rich genome [23]. The FISH data both affirm the correctness of

the RAD-Seq genetic mapping, and also provide a framework for

the isolation of the complete sequence of the recombination

interval through additional mapping and BAC clone walking.

Conclusions
We have shown how RAD-Seq is a transforming technology in

that a single library derived from 20 snails has enabled us to go

from resource poor non-model organism to developing thousands

of polymorphic markers. The markers were then used to isolate

tags linked to an important maternal effect gene, from which

custom markers were used to create a genetic recombination map

and also correlate recombination to physical distance. High-

resolution pachytene-FISH together with fibre-FISH are robust

techniques for high resolution physical mapping. After a century of

speculation, we can now rapidly home in on the long-sought snail

chirality gene.

Materials and Methods

Ethics Statement
All animal work was conducted according to relevant national

and international guidelines. No specific permissions are required

to work with invertebrates in the UK. Similarly, no specific

permissions were required for the collection of snails from sample

sites because they were not collected from protected areas of land.

The pond snail, L. stagnalis, is not an endangered or protected

species.

Organisms and Crosses
Sinistral snails were a generous gift from Joris Koene and derive

from the same source as others have used [11,31]. A genetically

distinct population of dextral snails was sourced from a pond

within the University Park, University of Nottingham. Both

populations were maintained as previously described [32]. To

create the snails for RAD-Seq (see Figure 1), a virgin sinistral Dd

individual was self-fertilised, then 6338 dextral offspring raised to

adulthood. The chirality genotype of these snails was then

determined, by scoring the phenotype of their offspring. The

expectation was for snails of genotype DD or Dd (yielding dextral

babies) or dd (sinistral babies) in a ratio of 3:1. The advantage of

using a self-fertilisation crossing strategy is that only two alleles per

locus may be present in the entire segregating generation,

potentially of benefit to the bioinformatic analysis of the RAD-

Seq data. In addition, in scoring dd offspring snails from a self-

fertilisation, both chromosomes are potentially recombinant, so

there is greater efficiency in scoring molecular markers in the

downstream analyses.

RADSeq Library Construction, Sequencing and
Bioinformatics

The paired-end RAD-Seq library was constructed using the

SbfI restriction enzyme, following standard procedure [33],

Figure 2. Genetic map of the region containing the chirality
locus, D, with numbers of recombinants recovered from
genetically sinistral (dd) and dextral snails (DD or Dd). It was
not possible to determine the precise number of recombinants in the
interval between marker rad4 and chirality locus D in DD or Dd snails,
because of uncertainty as to the chirality genotype of recombinants.
doi:10.1371/journal.pone.0071067.g002
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including ten dextral individuals (genotype DD or Dd) and ten

sinistral individuals (genotype dd). The library was sequenced at

the GenePool Genomics Facility, University of Edinburgh (http://

genepool.bio.ed.ac.uk), with sequences available at the European

Nucleotide Archive, with accession ERP002339.

Briefly, raw reads were separated by individual using the

RADpools tool in RADtools v1.2.1 [22], candidate loci were

inferred for each individual using RADtags with a cluster distance

of 8, and loci were merged across all 20 individuals with

RADmarkers, only merging clusters containing identical alleles

across individuals and allowing no mismatches. Alleles absent in all

sinistral snails and present in all dextral snails were identified,

allowing one dextral snail to be absent due to the low read counts

for some dextral snails. Twenty four candidate alleles fitted this

pattern, 20 of which had a matching allele present in all sinistral

snails and seven dextral snails. RADtools clustered 18 of these

allele pairs as candidate loci, but two allele pairs were left

unclustered by RADtools and were manually paired by sequence

similarity. No matching allele could be found for the remaining

four candidate alleles and so these were discarded. It may be that

there is variation in the Sbf1 recognition site at these loci, and so

an alternative allele is absent. Paired end reads for each allele were

assembled using VelvetOptimiser v2.1.0 [34] in parallel on the

Edinburgh Compute and Data Facility compute cluster (ECDF,

http://www.ecdf.ed.ac.uk/, which is partially supported by the

eDIKT Initiative http://www.edikt.org.uk).

Validation of RAD-Seq Markers and Linkage Map
Standard PCR was carried out using Amplitaq Gold polymer-

ase (Invitrogen), 1.5 mM MgCl2, and the following cycling

conditions: 95uC for 10 min, followed by 35 cycles of 95uC for

30 s, 58uC for 30 s, and 72uC for 1 min. Primers were designed

for each locus using Primer 3v.0.4 [35], specifically : rad1 59-

TGCTGAAACAGGAATGGACA-39 and 59-

TGTCTCTGCCACAGAACAGG-39; rad2 59-CACAAAACA-

GAAAATGTTCTACTTGAC-39 and 59-TTTCTTCTTATCA-

GAATTATTGCATGT-39; rad4 59-GAGGAGAGGTTT-

GATTTCATTGAT-39 and CATTCCGCAAACTCTCCATT-

39; rad7 59-TCGTCACAGGTTGGTAAACAAG-39 and AC-

CTGGTCAACAGCATCTTTGT-39; rad5 59-TCACAA-

CAGCGTATGGTTGG-39 and 59-CGAACATTAGAACT-

GAGGAACTCG-39. Dextral and sinistral chromosome-derived

alleles for these five PCR products differ by an insertion-deletion

polymorphism. Genotypes were therefore inferred by scoring

Table 1. Summary of genotypes of all individuals.

Number of snails rad7 rad4
Chirality
genotype rad5 Recombinant between?

Dextrals

1233 RAD7/rad7 RAD4/rad4 Dd RAD5/rad5 Not recombinant

586 RAD7/RAD7 RAD4/RAD4 DD RAD5/RAD5 Not recombinant

15 RAD7/RAD7 RAD4/rad4 DD/Dd RAD5/rad5 rad4 and rad7

10 RAD7/rad7 RAD4/RAD4 DD/Dd RAD5/RAD5 rad4 and rad7

13 rad7/rad7 RAD4/rad4 DD/Dd RAD5/rad5 rad4 and rad7

0 rad7/rad7 rad4/rad4 Dd RAD5/rad5 rad4 and D

14 RAD7/rad7 RAD4/rad4 Dd rad5/rad5 D and rad5

12 RAD7/rad7 RAD4/rad4 DD/Dd RAD5/RAD5 rad4 and rad5

13 RAD7/RAD7 RAD4/RAD4 DD/Dd RAD5/rad5 rad4 and rad5

Sinistrals

1442 rad7/rad7 rad4/rad4 dd rad5/rad5 Not recombinant

22 RAD7/rad7 rad4/rad4 dd rad5/rad5 rad4 and rad7

3 RAD7/rad7 RAD4/rad4 dd rad5/rad5 rad4 and D

40 rad7/rad7 rad4/rad4 dd RAD5/rad5 D and rad5

Total = 3403

doi:10.1371/journal.pone.0071067.t001

Figure 3. Pachytene-FISH mapping of the chirality locus.
Pachytene-FISH was performed using BACs containing RAD-Seq locus
rad7 (white; BAC clone G1A, 137 kb), rad4 (red; R6F, 129 kb) and rad5
(green; B2D, 97 kb). All three BACs show hybridisation to the same
bivalent chromosome. Chromosomes are counterstained with 49,6-
diamidino-2-phenylindole (DAPI; blue).
doi:10.1371/journal.pone.0071067.g003
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variation in the length of PCR products, following electrophoresis

in 2–3% agarose gels. Genotype scores were imported into

JoinMap v4.1 (Kyazma) and the linkage map viewed using

MapChart 2.2 [36].

BAC Library
A 10-fold coverage BAC library was constructed commercially

in the vector pIndigoBAC-5 by Bio S&T Inc. (Montreal, Canada),

using as starting material a mixture of DD, Dd and dd snails. BACs

containing RAD tag loci were identified by bulk PCR. DNA

prepared from isolated BACs was digested with NotI and the

inserts sized using pulse field gel electrophoresis.

Fluorescent in situ Hybridisation
Adult snail ovotestis, liver tissue and albumen gland was used as

a source of chromosomes. Cells from tissues were released by

repeated pipetting until a cell suspension was obtained. The cell

suspension was then centrifuged at 1200 rpm for 5 min in a

Heraeus Labofuge 400R, supernatant was removed and the pellet

resuspended in 10 ml of 0.56% KCl for 12 min. A few drops of

freshly made Carnoy’s fixative (three volumes methanol, one

volume glacial acetic acid) were added to the suspension before

spinning down cells again at 1200 rpm for 5 min. The supernatant

was discarded and the pellet resuspended in freshly made fixative.

Cells were spun down at 1200 rpm for 5 min. After two further

washes in fixative, cells were resuspended in an appropriate

amount of fixative. Meiotic and mitotic cells were together

dropped onto sonicated, ethanol washed, air dried slides.

Preparation of target DNA and three BAC probes for meiotic

(pachytene) chromosomes, followed by hybridisation, was carried

out following the standard FISH protocol with modifications

[34,35] using tissue sourced from both dextral and sinistral snails.

Pachytene slides were prepared the night before setting up the

hybridisation and aged in a sealed box with a dessicant at room

temperature. Next day, the aged slides were treated with 0.010 M

pepsin to remove cytoplasmic proteins, and then washed in

26SSC (3 times) before baking at 65uC for 1 h. Probes were

prepared by amplification of 10–100 ng of purified BAC DNA

using GenomePlex Complete WGA Kit (Sigma) and subsequently

‘indirectly’ labelled with dinitrophenyl (DNP)-, digoxigenin- and

biotin-dUTPs, respectively using the GenomePlex Reamplification

kit (Sigma) with home-made 106dNTP mixture, containing

2 mM each of dATP, dCTP and dGTP, together with 1.4 mM

dTTP and 0.6 mM digoxigenin- or biotin-dUTP for digoxigenin-

and biotin-dUTP labelling, or 1.6 mM dTTP and 0.4 mM DNP-

dUTP for DNP labelling. For each three-colour FISH, approx-

imately 100 ng each of DNP-, digoxigenin- and biotin-dUTP

labelled DNA and approx 2 mg of snail genomic DNA (as repeat

blocking agent) were precipitated using ethanol and then

resuspended in 12 ml of hybridisation buffer containing 50%

formamide, 10% dextran sulphate, 26SSC, pH 7.0). Probe

mixture was denatured prior to target DNA denaturation at

65uC for 10 min and allowed to re-anneal at 37uC for 20–30 min.

Slides were denatured at 63uC in 70% formamide/30% 26SSC

for 90 s and then quenched in ice-cold 70% ethanol and

subsequently dehydrated through a 70%, 90% and 100% ethanol

series. Slides were air-dried before adding probes to the target

areas, coverslips were applied and the edges of coverslips were

sealed with Fixogum. The slides were left to hybridise in a

humidity chamber at 37uC overnight. The following day, slides

were detected using the appropriate antibodies after stringency

washes in 50% formamide/50% 26SSC at 42uC. The following

reagents were used for detection. DNP was detected with (layer 1)

rabbit anti-DNP- KLH IgG fraction (Invitrogen) and (layer 2)

Alexa Fluor 488 conjugated donkey anti-rabbit IgG (Invitrogen).

Digoxigenin was detected with (layer 1) Monoclonal ant-digoxin

produced in mouse (Sigma) and (layer 2) Texas Red –6conjugated

goat anti-mouse IgG (Invitrogen,). Biotin was detected directly

with streptavidin-Cy3. After adding each layer of reagents, the

slides were incubated for 15 min at 37uC incubator and then

washed in 46SSC containing 0.05% Tween-20 at 42uC, 3 times

for 3 minutes each. After detection, slides were mounted with

Slowfade GoldH antifade solution with 49,6-Diamidino-2-Pheny-

lindole (DAPI, Invitrogen).

To prepare extended chromatin fibres, tissues of snail ovotestis

and liver were collected in PBS and a cell suspension made by

dispersion with pipetting. The cell suspension was centrifuged for

5 min at 1200 rpm. The pellet was washed twice in PBS and a cell

count was carried out. A suspension was made at a final

concentration of approximately 2–36106 cells per ml. Chromatin

fibres were made from live cells following previously published

method [37] with modifications. Fibre slides were aged overnight

in a sealed box with a desiccant and hybridisation was set up the

following day. FISH onto fibre slides was carried out as described

above for meiotic (pachytene) chromosomes.

FISH images were captured and processed using the Smart-

CaptureH (Digital Scientific, UK) digital imaging system that

consists of a Zeiss microscope (Axioplan 2 Imaging or AxioImager.

D1) equipped with narrow bandpass filters for Cy3, Cy3.5, FITC

(fluorescein isothiocyanate) and DAPI fluorescence, a cooled CCD

camera (Hamamatsu) and an iMAC computer (Apple).

Figure 4. Fibre FISH using BACs that bound the chirality locus. The gap between the hybridisation signal from BAC clones containing loci
rad4 (red, R6F, 129 kb) and rad5 (green, B2D, 97 kb) is at least 4 to 5 times the length of a BAC clone. The preparation is counterstained with 49,6-
diamidino-2-phenylindole (DAPI; blue). In this example from a genetically dextral snail, an interphase, meiotic cell is also visible, showing signal from
hybridisation to both BACs.
doi:10.1371/journal.pone.0071067.g004
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Supporting Information

Table S1 Summary statistics for RAD Sequencing
library. Raw Illumina read pair counts, candidate alleles and

loci generated by RADtools, and mean coverage per allele for

each of 10 dextral and 10 sinistral snails in the sequenced RAD-

Seq library.

(XLSX)

Table S2 Polymorphism in 20 putatively linked RAD-
Seq loci.
(XLSX)
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