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ANALYTICAL AND NUMERICAL METHODS

Infinite-dimensional lattice

In an infinite-dimensional lattice, each site has, as nearest neighbors, all the remaining ones forming the many-body
system. As stated in the main text, this results in a constraint Πk

• of the form given in Eq. (5). Therefore, the dynamics
of the average quantum state can be described through the quantum master equation (1), with a Hamiltonian given
by

H ≈ Ω1

N∑
k=1

λ
(k)
1 +

Ω2

N

N∑
k,h=1

n
(h)
• λ

(k)
6 . (S1)

The approximation is just due to the fact that we have added terms with k = h in the double sum. In the limit
N → ∞, this does not constitute a problem, since these terms give rise to an intensive Hamiltonian contribution,
irrelevant for the dynamics of the system observables.

In order to investigate the stationary behavior of the model, we focus on collective operators describing “sample-
average” properties. We consider

Pα =
1

N

N∑
k=1

n(k)
α , with α = •, ∗, ◦ , (S2)

representing the density of sites in the different states, as well as

Gα =
1

N

N∑
k=1

λ(k)
α , for α = 1, 2, 4, 5, 6, 7 . (S3)

We stress here that we are using the Gell-Mann matrices λα for off-diagonal single-site observables, while we use the
projectors nα for the diagonal ones.

Average Lindblad Dynamics

The collective operators of Eqs. (S2)-(S3) behave, when considering the state |U〉 and the largeN limit, as “classical”
scalar quantities equal to their expectation value on the state [22]. This means that we have Gα → Λα = 〈λα〉 as well
as Pα → %α = 〈nα〉, where we have also exploited the translation invariance of the state. For the infinite-dimensional
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lattice, the dynamics of these operators is captured by the following non-linear differential equations [19] (∂t := d/dt)

∂tΛ1 = Ω2%•Λ5 − Ω2Λ2Λ6 −
γ

2
Λ1 ,

∂tΛ2 = −2Ω1(%• − %∗)− Ω2%•Λ4 + Ω2Λ1Λ6 −
γ

2
Λ2 ,

∂tΛ4 = −Ω1Λ7 + Ω2%•Λ2 − Ω2Λ5Λ6 ,

∂tΛ5 = Ω1Λ6 − Ω2%•Λ1 + Ω2Λ4Λ6 ,

∂tΛ6 = −Ω1Λ5 −
γ

2
Λ6 , (S4)

∂tΛ7 = Ω1Λ4 − 2Ω2%•(%∗ − %◦)−
γ

2
Λ7 ,

∂t%• = Ω1Λ2 ,

∂t%∗ = −Ω1Λ2 + Ω2%•Λ7 − γ%∗ ,
∂t%◦ = −Ω2%•Λ7 + γ%∗ .

To find the possible stationary states, we set to zero all the time-derivatives above. In this way, we find the following
three solutions:

%• = 0, %◦ = 1, Λ4 = 0;

%• = 1
2

[
1−
√

1− x2
]
, %◦ = 1

2

[
1 +
√

1− x2
]
, Λ4 = −x;

%• = 1
2

[
1 +
√

1− x2
]
, %◦ = 1

2

[
1−
√

1− x2
]
, Λ4 = −x;

with x = 2Ω1/Ω2 and all other collective quantities being zero. The last two solutions are physically meaningful only
for |x| ≤ 1. This shows the existence of a critical rate Ωc

2 = 2Ω1 below which the unique admissible solution is the first
one, which is the exact dark state |D〉. When Ω2 ≥ Ωc

2 (|x| ≤ 1), two further solutions become possible. The second
one turns out to be unstable so that it is never dynamically approached. The third, instead, corresponds to a (stable)
emergent stationary state with a finite density of sites in |•〉. This state is pure and, concerning the computation of
local observables or of collective operators such as those introduced before, can be represented as the state

|De〉 =

N⊗
k=1

(α+ |•〉 − α− |◦〉)(k)
, (S5)

with α± =
√

2
−1√

1±
√

1− x2. However, due to the all-to-all coupling in the Hamiltonian of Eq. (S1), the state
|De〉 can develop weak long-range correlations [19, 25, 26], as shown in the last subsection of this section. In order
to verify which stationary state is dynamically approached when the system is initially in |U〉, we have performed a
numerical integration of Eqs. (S4), up to large times for which the state is stationary. These results are presented in
Fig. 2(a-b) in the main text.

Exact diagonalization of the effective Hamiltonian

To show that the emergent dark state is approached through the dynamics of Eq. (4), we have performed exact
diagonalization of the non-Hermitean Hamiltonian Heff . The idea is that since the emergent stationary state |De〉 is
pure, it must be, in the N →∞ limit, an eigenvector of Heff associated with a second eigenvalue which converges to
zero in imaginary part. In this way, the rate of escaping from |De〉 would be zero and the dynamics in Eq. (4) would
have this state as a possible fixed point. Since we start from the fully symmetric state |U〉, and since the average
Lindblad dynamics is fully symmetric (invariant under any permutation of the three-level units), in order to detect the
emergence of the second dark state |De〉, it is sufficient to diagonalize the effective Hamiltonian in its fully symmetric
subspace. To do so, we have developed a representation of such an operator in the space of vectors which are invariant
under any permutation of two subsystems. Such a subspace can be constructed, for instance, by acting on the fully
symmetric vector |U〉 with permutation invariant operators. The procedure to obtain such a representation of the
effective Hamiltonian is presented in a following section.

Quantum correlations in the emergent dark state

Due to the collective nature of the model in the infinite-dimensional geometry, the emergent dark state reduces
to the uncorrelated state introduced in Eq. (S5) whenever local or average quantities are considered. However,
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FIG. S1. Correlations and coherence in the emergent dark state. (a) Plot of the variance of the number of contagious
sites in the emergent dark state, for the infinite-dimensional lattice. We have set Ω1 = 1 (in units of γ). The variance is
computed for the eigenvector of Heff associated with the gap of the Lindblad generator, for N = 20, 30, . . . 80 (solid lines). The
dashed lines, report, for the same system sizes, the variance of the order parameter for a translation invariant product state
with same value of the order parameter of the emergent dark state. The difference between these sets of curves demonstrates
that the emergent dark state features quantum correlations. (b) Plot of the coherence |〈λ4〉| for the one-dimensional lattice,
with Ω1 = 1 (in units of γ). Solid lines are obtained from the eigenvector of Heff associated with the gap for N = 3, 4, . . . 8.
Black circles represent the same quantity estimated from MPS algorithms for the system in the thermodynamic limit. Red
crosses represent instead the value of the coherence in the stationary state of the Lindblad dynamics L. These numerical results
demonstrate that the emergent dark state retains quantum coherence.

it is possible to show that the emergent dark state displays collective quantum correlations. In this section, we
demonstrate this by considering collective observables (see also discussion in [25, 26]), as for instance encoded in the
variance of the total number operator of the contagious sites, see Eq. (S6) below.

We focus here on the variance of the operator
∑N
k=1 n

(k)
• defined as

C• =
1

N

N∑
k,h=1

(
〈n(k)
• n

(h)
• 〉 − 〈n(k)

• 〉〈n(h)
• 〉
)

; (S6)

the quantity above can be seen as a susceptibility for the order parameter ρ•. Now, we make the following consider-

ation. If the state |De〉 was in a product state form, one would have that 〈n(k)
• n

(h)
• 〉 = 〈n(k)

• 〉〈n(h)
• 〉 for k 6= h. In this

case, the variance C• would be equal to

Cprod
• = ρ•(1− ρ•) .

In Fig. S1(a), we show that the numerically computed variance in the emergent dark state is different from the one
that one would find for a product state characterized by the same value of the order parameter. This demonstrates
that |De〉 cannot be in a product state, and since it is pure, it must be a state featuring quantum correlations. These
correlations cannot be detected by looking at local or average observables and are thus collective in nature such as
those described in [19, 25, 26] through quantum fluctuations.

One-dimensional lattice: simulations with matrix product states

Effective Hamiltonian dynamics

For the one-dimensional lattice, to investigate the transition from the dark state |D〉 to the dark state |De〉, we use
a time-evolving-block-decimation algorithm (TEBD) which exploits the translation invariance of the model to address
the system in the infinite one-dimensional lattice limit (iTEBD), see Refs. [27–30] for details. Since we cannot perform
exact diagonalization of Heff , we analyze the fixed point obtained by running the dynamics in Eq. (4), starting from
state |U〉, for sufficiently large times.
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The formal integration of Eq. (4) gives the solution

|ψt〉 =
Wt |ψ〉
‖Wt |ψ〉 ‖

,

where the time-propagator is given by Wt = e−itHeff . In order to simulate such dynamics by means of matrix product
state (MPS) methods, we first discretize time. We take a sufficiently small time step dt and express the infinitesimal
propagator Wdt through the second-order Trotter decomposition

Wdt ≈ e−idt/2Hsse−idt/2Hoe−idtHee−idt/2Hoe−idt/2Hss ,

where Hss =
∑
k(Ω1λ

(k)
1 − iγ/2n

(k)
∗ ) is the single-site component of the effective Hamiltonian, while Ho/e contain the

nearest-neighbor interaction terms for odd and even bonds, respectively.

We perform time updates for the MPS representation of the state |ψt〉, using a standard iTEBD method [29]. After
the application of the single-site gates in e−idt/2Hss , which are not unitary operators, we perform Ncorr repetitions of a
trivial time-evolution on both even and on odd bonds. This is done by applying two-body gates equal to the identity
operator at the aim of keeping the MPS in canonical form. After each application of a two-body gate, we perform a
singular value decomposition and a truncation step. We take only the χmax largest singular values, as long as these are
larger than a truncation error εtrunc. We have observed that it is beneficial to have at least Ncorr = 1. This also relates
to the fact that, after the application of the non-unitary gates, the entanglement in the MPS can decrease and the
trivial evolution step can reduce the bond dimension while preparing the MPS for the two-body evolution. However,
we also noticed that having Ncorr > 1 does not lead to further improvements. We mainly considered Ncorr = 2.

Concerning the truncation error εtrunc, this does not seem to be relevant in the phase where the dark state |De〉
appears. Its precise value affects instead the transient dynamics in the phase related to state |D〉. However, this is not
expected to have impact on its fixed point. We explored values for the truncation error ranging from εtrunc = 10−10

to εtrunc = 10−14.

The results obtained with this iTEBD method are reported in Fig. 3(c). We furthermore mention here that the
representative trajectories appearing in Fig. 1(c) have been obtained by simulating the stochastic quantum dynamics
through MPSs and a TEBD method [28], for a finite chain with open boundary conditions.

Local coherence in the emergent dark state

In this section, we report the average value of the single-site coherence 〈λ4〉 for the one-dimensional lattice. As
shown in Fig. S1(b), coherence is present both in finite-size systems and in the thermodynamic limit, showing that
the emergent dark state retains superposition of contagious and healthy states. Finally, we note that the fact that
the approximation of the coherence (and of the order parameter) requires a non-trivial bond dimension in the whole
phase demonstrates that the state is also entangled.

Average Lindblad dynamics

We have also simulated the open quantum dynamics of the average state ρt — which obeys the quantum master
equation (1) — through MPS methods (see e.g. also Ref. [9] or Ref. [23] for an application to 2D dissipative systems).
The idea is to represent the density matrix ρt as a vector |ρt〉 in an enlarged Hilbert space. This is achieved through
the mapping

ρ =
∑
~α,~β

r~α~β |~α〉〈~β| → |ρ〉 =
∑
~α,~β

r~α~β

N⊗
k=1

(|αk〉 ⊗ |βk〉)(k)
,

where ~α = (α1, α2, . . . αN ) is a vector specifying the single-particle state of the different sites for the many-body state

|~α〉 and r~α~β = 〈~α| ρ |~β〉.
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In this representation, our Lindblad generator L becomes the following matrix

L = γ

N∑
k=1

(
J (k) − 1

2
n̂

(k)
∗,I −

1

2
n̂

(k)
∗,II

)
+

N∑
k=1

Ω1

(
−iλ

(k)
1,I + iλ

(k)
1,II

)
+

− i

N−1∑
k=1

Ω2

2

(
n

(k−1)
•,I + n

(k+1)
•,I

)
λ

(k)
6,I + i

N−1∑
k=1

Ω2

2

(
n

(k−1)
•,II + n

(k+1)
•,II

)
λ

(k)
6,II ,

(S7)

where J = J− ⊗ J−, n̂α,I = nα ⊗ 13, n̂α,II = 13 ⊗ nα, and 13 is the three-dimensional identity matrix. In addition we
have λα,I = λα ⊗ 13 and λα,II = 13 ⊗ λTα .

The dynamics is implemented through the equation

d

dt
|ρt〉 = L |ρt〉 .

This can be formally integrated to obtain |ρt〉 = etL |ρ〉, and, since the matrix L contains at most two-site interactions,
this evolution can be approximated with the same iTEBD method discussed in the previous section. As initial state,
we consider the density matrix ρ = |U〉〈U|, represented through the vector

|ρ〉 =

N⊗
k=1

(|•〉|•〉)(k)
.

The main difference with the algorithm used to simulate the time-evolution under Heff , lies in the way expectation
values are computed. In this case, to compute the expectation value of a quantum observable, we first need to define
a vector representation of the identity operator in the enlarged Hilbert space. This is given by

|id〉 =

N⊗
k=1

|id1〉(k)
,

where |id1〉 = |•〉|•〉+ |∗〉|∗〉+ |◦〉|◦〉 is the vector representation of the single-site identity operator. Expectation values
are then computed as

〈O(k)〉t = 〈id|O(k)
L |ρt〉 ,

with OL = O ⊗ 13.

In the subcritical region — the one associated with the exact dark state |D〉— we have observed a good convergence
of iTEBD results when increasing the bond dimension χmax of the MPS representation of |ρt〉. On the other hand,
for large values of Ω2/Ω1, for which the system is expected to belong to the emergent dark state phase, it was not
possible to obtain convergence of the iTEBD results, as the algorithm showed instabilities.

For Ω2 � Ω1, where the system features values of %• close to one, the state of the system is close to the product
state with all sites in |•〉. In this regime, far from the critical point, augmented product-ansatz descriptions — also
known as augmented mean-field description — able to account for the weak short-ranged correlations in the state are
expected to capture the relevant properties of the state (see e.g. Ref. [24] for an application to open quantum systems).
In our numerical simulations, we have noted that the curves obtained with small bond dimensions (χmax = 4, 8) are
stable and provide a similar prediction for the steady-state value of %•. Since even with a very small bond dimension,
the MPS ansatz can account for short-ranged correlations beyond mean-field theories, we can regard such results
as obtained from an augmented product-state description. This approach essentially provides an efficient version of
standard perturbation theory. Indeed, it allows us to gradually include short-range correlations in the emergent dark
state in a way which goes beyond a perturbative approach. It does not account for correlations at different orders
in Ω1, but it rather allows, in principle, to approximate correlations at all orders in Ω1 within the correlation length
allowed by the bond dimension.

The data obtained for these small bond dimensions are plotted in Fig. 3(c). These are in agreement with the results
obtained for the effective Hamiltonian. This suggests that the steady state of the Lindblad dynamics is indeed the
emergent dark state of Heff in the supercritical region — the one associated with the emergent dark state |De〉.
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REPRESENTATION OF THE EFFECTIVE HAMILTONIAN IN THE FULLY SYMMETRIC SUBSPACE

To develop a representation of the Hamiltonian Heff for the infinite-dimensional lattice in the fully symmetric
subspace, it is convenient to use all the relevant Gell-Mann matrices λi, for i = 1, 2, . . . 8. Their algebraic structure is
encoded in the commutation relations

[λi, λj ] = 2i

8∑
`=1

εij`λ` ; (S8)

importantly, εij` is an anti-symmetric tensor. We further define the matrices fi = 1
2λi.

In order to efficiently represent the Hamiltonian, we need to derive a representation for collective operators con-
structed as

Fi =

N∑
k=1

f
(k)
i , (S9)

as acting on fully symmetric states. For these operators, the commutation relations are inherited from Eq. (S8)

[Fi, Fj ] =
N∑

k,h=1

1

4

[
λ

(k)
i , λ

(h)
j

]
=

N∑
k=1

1

4

[
λ

(k)
i , λ

(k)
j

]
= i

8∑
`=1

εij`F` . (S10)

Exploiting the anti-symmetric property of the tensor εijk, it is possible to show that the operator

C =

8∑
i=1

F 2
i ,

is the (quadratic) Casimir operator for the algebra formed by the operators Fi, as it commutes with each of them.
Indeed, one has that

[C,Fj ] =

8∑
i=1

(Fi[Fi, Fj ] + [Fi, Fj ]Fi) = i

8∑
i,`=1

εij` (FiF` + F`Fi) ,

and looking at the last relation in the above equation, one sees that the term in the round brackets is symmetric with
respect to exchange of i↔ `, while the term εij` is anti-symmetric. As such the total double sum is zero.

Because of this, the value of the Casimir operator in the fully symmetry sector could be computed by considering
any state in the subspace, for instance also the state

|U〉 =

N⊗
k=1

|•〉(k)
, where |•〉 =

1
0
0

 .

To make progress in finding a representation for the operators in Eqs. (S9), we now introduce a new set of operators,
forming the so-called Cartan-Weyl basis, which are constructed from the Fi as follows:

I± = F1 ± iF2 , I3 = F3 , V± = F4 ± iF5 , U± = F6 ± iF7 , Y =
2√
3
F8 . (S11)

The commutation relations between these operators can be computed from the fundamental ones in Eq. (S10). We
notice that [I3, Y ] = 0, so that these two operators can be simultaneously diagonalized. We define the normalized
eigenstates of both I3 and Y to be |t, y〉. In particular, we have

I3 |t, y〉 = t |t, y〉 , Y |t, y〉 = y |t, y〉 .

Basically, we have that t = (N•−N∗)/2, where Nα denotes the total number of particles in state |α〉, with α = •, ∗, ◦,
and that y = N•/3 + N∗/3 − 2N◦/3. As such, −N/2 ≤ t ≤ N/2 and −2N/3 ≤ y ≤ N/3. This set of states forms a
complete orthonormal basis for the subspace of interest.
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For the vectors |t, y〉, the operators I±, V±, U± act as ladder operators. As a simple example of this fact, lets
consider the state |U〉 which can be written as |U〉 = |N/2, N/3〉. This is annihilated by the action of I+, which wants
to bring a particle from |∗〉 to |•〉. On the other hand, we have

I− |N/2, N/3〉 = α |N/2− 1, N/3〉 ,

where α has to be determined through the norm of I− |N/2, N/3〉. Using that I+ annihilates |U〉 we have that

〈N/2, N/3| I+I− |N/2, N/3〉 = 〈N/2, N/3| [I+, I−] |N/2, N/3〉 = N . (S12)

So in this case, α =
√
N .

In order to find the appropriate values of α for any state onto which I− is acting, i.e. the value of α for generic

I− |t, y〉 = α |t− 1, y〉 ,

we need to develop a systematic approach. Lets focus for the moment on the subalgebra formed by I± and I3. These
operators are made of the sum of 3× 3 matrices which basically represent the spin-1/2 algebra (the algebra of Pauli
matrices) embedded into a largest (3× 3) space. This can also be seen by noticing that I± and I3 have among them
the same commutation relations of spin-1/2 operators. We then compute

I+I− = F 2
1 + F 2

2 + i[F2, F1] =
[
F 2

1 + F 2
2 + F 2

3

]
− F3(F3 − 1) .

The operator in the square brackets is a “partial” Casimir operator, which we call C12 =
∑3
i=1 F

2
i , since it commutes

with the subalgebra formed by the Fi, with i = 1, 2, 3. As such, C12 also commutes with the I±. As apparent from
Eq. (S12), it is important to understand the value of this operator on different states in order to be able to compute
the norm of vectors such as I− |t, y〉.

Since C12 commutes with I± and that I± does not modify y, to find the value of this partial Casimir operator C12

in the different subspaces (labelled by the value of y), it is convenient to find a simple state to compute its expectation
value. In particular, we look for the one which has the maximum value of t allowed, for a fixed value of y (and given
that we have only N particles). We call N•∗ the number of particles which are in state |•〉 or |∗〉. We thus have
N•∗ +N◦ = N and also that, given a value of ȳ we have

ȳ =
N•∗ − 2N◦

3
,−→ N•∗ = ȳ +

2N

3
.

Then, if all the particles in the subspace formed by the states |•〉 , |∗〉 are found in the state |•〉 we have the maximum

tmax|ȳ =
N•∗

2
=
ȳ + 2N

3

2
.

We can thus find the value of the partial Casimir operator C12, at fixed ȳ, which is given by

〈tmax|ȳ, ȳ|C12 |tmax|ȳ, ȳ〉 =
N•∗

2

(
N•∗

2
+ 1

)
=

(
ȳ + 2N

3

2

)(
ȳ + 2N

3

2
+ 1

)
.

With this result, we can now find all matrix elements for the operator I−, in the fully symmetric subspace. Indeed,
we use that

I− |t, y〉 = αt,y |t− 1, y〉 , (S13)

where α2
t,y is given by

α2
t,y = 〈t, y| I+I− |t, y〉 = 〈t, y|C12 − I3(I3 − 1) |t, y〉 = tmax|y

(
tmax|y + 1

)
− t (t− 1) .

Now we use an analogous procedure to represent the ladder operator U−. The action of U− on a state consists in
taking one particle from state |∗〉 and bringing it to state |◦〉. This means that the action of U− reduces y by 1 but
also increments t by 1/2. We thus have the relation

U− |t, y〉 = βt,y |t+
1

2
, y − 1〉 ; (S14)
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Similarly to what done before, the factor β2
t,y can be written as

β2
t,y = 〈t, y|U+U− |t, y〉 = 〈t, y|

[
C23 − F̃8

(
F̃8 − 1

)]
|t, y〉 ,

where

F̃8 =

N∑
k=1

1

4

(√
3λ8 − λ3

)(k)

,

while C23 = F 2
6 + F 2

7 + F̃ 2
8 is the partial Casimir operator, now for the subspace generated by |∗〉 , |◦〉. We note that

F̃8 = 3
4Y −

1
2I3. The task is to find a way to compute the value of this partial Casimir operator on a simple reference

state. We proceed as follows. Lets consider a generic state |t, y〉, and remember that we have N particles. We thus
can find

2t = N• −N∗ y = N• +N∗ −
2N

3
. (S15)

Inverting the above relations, we can find an expression for N•, N∗ (and thus also for N◦ if necessary) as a function
of t, y. We have

N• = t+
y

2
+
N

3
, N∗ =

y

2
− t+

N

3
.

As already said, the action of the operator U− is that of taking one particle from |∗〉 and bringing it to |◦〉. As
such, without changing the value of the partial Casimir operator (since [U−, C23] = 0), this state is connected by the
repeated action of U− to the state with N• = t+ y

2 + N
3 as before, N∗ = 0 and N◦ = N −N•. Such a state is given by

|ϕ〉 = | t
2

+
y

4
+
N

6
, t+

y

2
− N

3
〉 ,

and, from this, the partial Casimir operator C23 can be computed solely as a function of t, y of the original state. In
particular, we have

〈ϕ|C23 |ϕ〉 =
N◦
2

(
N◦
2

+ 1

)
=

1

2

(
2N

3
− t− y

2

)[
1

2

(
2N

3
− t− y

2

)
+ 1

]
,

and, therefore,

β2
t,y = C23 −

[
3

4
y − t

2

] [
3

4
y − t

2
− 1

]
.

This procedure allows us to represent the effective Hamiltonian in Eq. (S1), in the fully symmetric subspace spanned
by all vectors |t, y〉. Using relations (S13) and (S14), we indeed have

I− =
∑
t,y

αt,y |t− 1, y〉 〈t, y| ,

and

U− =
∑
t,y

βt,y |t+
1

2
, y − 1〉 〈t, y| .

We can use this to represent the effective Hamiltonian noticing that

N∑
k=1

λ
(k)
1 = I− + I+ ,

and also that

N∑
k=1

λ
(k)
6 = U− + U+ .
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Furthermore, we also have

N∑
k=1

n
(k)
• = I3 +

Y

2
+
N

3
,

and

N∑
k=1

n
(k)
∗ = −I3 +

Y

2
+
N

3
.

We have used this representation of the Hamiltonian to produce numerical data for the plots presented in Fig. 2(c-d)
as well as those shown in Fig. S2.
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ADDITIONAL NUMERICAL RESULTS FOR THE INFINITE-DIMENSIONAL LATTICE

In this section, we present data showing that the gap of the Heff Hamiltonian remains finite in the region Ω2 < 2Ω1

while it tends to zero for values of Ω2 > 2Ω1. At the critical point Ω2 = 2Ω1, we have instead a power-law decay of
the gap with an exponent close to 0.31. All of this is shown in Fig. S2.

FIG. S2. Gap of the effective Hamiltonian for the infinite-dimensional lattice. Log-log plots of the gap rgap of Heff

as a function of N in different parameter regimes for Ω1 = 1 (in units of γ). (a) In the subcritical region, identified by values
of Ω2 < 2Ω1, the gap shows a tendency to saturate to a finite value. This is manifesting in the log-log plot via curves which
are concave up. (b) In the supercritical region, instead we have that curves are concave down which indicates an exponential
decay of the gap as a function of N . (c) At criticality, Ω2 = 2Ω1, the gap tends to vanish with a power-law behaviour, with an
exponent approximately equal to −0.31. In all panels, the dashed line, proportional to N−0.31, is shown for comparison.



11

PRACTICAL IMPLEMENTATION OF THE CONSTRAINT

In this section we provide details on the discussion about the possibility of implementing the constrained system
Hamiltonian in experiments reported in the main text.

We consider an experimental setting involving several three-level Rydberg atoms, arranged in a 1D array. We take
the following Hamiltonian

Hexp = Ω1

∑
k

λ
(k)
1 + Ω2

∑
k

λ
(k)
6 +Hdiag , (S16)

whose first two terms represent two laser drivings, while Hdiag =
∑
kH

(k)
at , where H

(k)
at contains the interaction energy

of a single atom associated with its configuration and that of its neighbors (the left one, L, and the right one, R) as
well as laser detuning terms. For a reference atom, we have

Hat = Hint +Hdet , with Hint =

3∑
α,β=•,∗,◦

Vαβ(n
(L)
β + n

(R)
β )nα , Hdet =

3∑
α=•,∗,◦

hαnα . (S17)

here, hα are the detunings while the symmetric matrix Vαβ encodes the state-dependent atomic interactions.
The main idea to obtain the desired constraint consists in “rotating” the system HamiltonianHexp into an interaction

picture obtained by subtracting to the time-evolution, the unitary operator

Ut =
∏
k

e−itH
(k)
at

In this frame, the Hamiltonian Hexp transforms into

H ′exp = U†t

(∑
k

Ω1λ
(k)
1 + Ω2λ

(k)
6

)
Ut . (S18)

To explicitly write down such an operator, we need to evaluate the action of eitHat on the different states |◦〉 , |∗〉 , |•〉.
This is indeed enough to understand how the off-diagonal matrices λ1 and λ6 transform in the rotating frame. We will
also apply a rotating wave approximation. Different choices of hα and Vαβ can thus give rise to different constraints.
The first step is thus to compute the following expression (α = •, ∗, ◦):

exp(iHatt)|α〉 = exp

it
hα +

3∑
β=•,∗,◦

Vαβ(n
(L)
β + n

(R)
β )

 |α〉 =

= exp (ithα)

1−
∑
β

n
(L)
β

[
1− eitVαβ

]1−
∑
β′

n
(R)
β′

[
1− eitVαβ′

] |α〉 . (S19)

The aim is to constrain the transition between states |◦〉 and |∗〉. To this end, we can choose h• = h∗ = 0, as well
as Vαβ with non-zero components only given by V•◦ = V◦•. In this way, by also fixing h◦ = −V◦• and neglecting
oscillating terms, we find

eiHatt |∗〉 = |∗〉 eiHatt |◦〉 ≈ |◦〉
[
n

(L)
• + n

(R)
• − 2n

(L)
• n

(R)
•

]
,

and

eiHatt |•〉 ≈ |•〉
[(

1− n(L)
◦

)
+
(

1− n(R)
◦

)]
,

Using these results for the Hamiltonian in Eq. (S18) leads to the many-body operator

H ′exp ≈
∑
k

[
Ω1

(
1− n(k−1)

◦

)(
1− n(k+1)

◦

)
λ

(k)
1 + Ω2

(
n

(k−1)
• + n

(k+1)
• − 2n

(k−1)
• n

(k+1)
•

)
λ

(k)
6

]
, (S20)

which is the one reported in the main text.
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