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We introduce the concept of dark space phase transition, which may occur in open many-body
quantum systems where irreversible decay, interactions and quantum interference compete. Our
study is based on a quantum many-body model, that is inspired by classical nonequilibrium pro-
cesses which feature phase transitions into an absorbing state, such as epidemic spreading. The
possibility for different dynamical paths to interfere quantum mechanically results in collective dy-
namical behavior without classical counterpart. We identify two competing dark states, a trivial one
corresponding to a classical absorbing state and an emergent one which is quantum coherent. We
establish a nonequilibrium phase transition within this dark space that features a phenomenology
which cannot be encountered in classical systems. Such emergent two-dimensional dark space may
find technological applications, e.g. for the collective encoding of a quantum information.

A dark (or absorbing) state is a non-fluctuating state
that once it is reached during the course of a time-
evolution it cannot be left. Dynamical systems that pos-
sess a dark state can display complex nonequilibrium be-
havior and universal dynamical scaling, even in low di-
mensions [1–3]. Remarkably, many real-world processes
actually feature such dark state, as, for instance, the epi-
demic spreading of a virus among a population [4, 5]: for
sufficiently low infection rate the population reaches a
dark state, where all units are healthy and the virus is
eradicated. However, when the infection rate is increased
a stationary state phase transition to a fluctuating phase
can take place. Here the virus becomes endemic and
an extensive number of units remains infected. Inter-
estingly, also dissipative quantum processes can feature
dark states and allow to explore related concepts and
phenomena in an entirely different setting. However, the
phenomenology of systems studied so far [6–13] is closely
related to that of classical processes.

In this paper, we report analytical and numerical evi-
dence for the existence of a novel type of dark state phase
transition, which has no classical counterpart as it cru-
cially relies on quantum interference. To illustrate this
new phenomenology we utilize a quantum many-body
system, composed of N units which can be found in three
different states [shown in Fig. 1(a)]. Using the analogy of
epidemic spreading, one state represents a healthy unit,
denoted as |◦〉. The second state, |∗〉, represents instead
an infected but not contagious unit, while the third, |•〉,
represents an infected unit which is also contagious and
can thus spread the virus. The dynamics of these units is
subject to a classical process — the recovery process —
consisting of transitions from state |∗〉 to the |◦〉, which
competes with two other processes that are quantum co-
herent. The first one connects the contagious and not
contagious states. The second one can be regarded as a
quantum analogue of an infection process: coherent tran-

FIG. 1. Dark state phase transition. (a) Three-level
quantum system with basis states |•〉,|∗〉 representing con-
tagious and non contagious infected units, and the healthy
state |◦〉. (b) The dynamics consists of coherent transitions
between infected states |•〉 ↔ |∗〉 (rate Ω1) and between states
|◦〉 ↔ |∗〉. This (infection) process must be facilitated by the
presence of a contagious neighbor. For each contagious neigh-
bor, the rate of the process is enhanced by a factor Ω2/z,
where z is the coordination number of the lattice. (c) Illus-
trative trajectories for a 1D quantum system with 50 sites.
Top: Approach to the dark state |D〉 for the model depicted
in (a). Middle: Fluctuating phase which typically emerges in
classical and quantum models with absorbing states. The ex-
ample shown is for the quantum contact process [9]. Bottom:
Emergence of the dark state |De〉 for the model in depicted
in (a).

sitions between the state |◦〉 and |∗〉 take place, provided
that at least one of the neighbors of the unit is in the
contagious state [see Fig. 1(b)].

According to these dynamical rules, the state with all
healthy units, |D〉, is an exact dark state for any system
size N . Indeed, such state has no contagious unit that
may activate the spreading of the infection [see Fig. 1(c)].
Typically, for both classical and quantum dark state
phase transitions [1–3, 6–10, 12], one observes, for in-
creasing infection rate, the emergence of a second steady
state with finite density %• of contagious sites. This state
exhibits dynamical fluctuations [cf. Fig. 1(c)]. However,
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the model depicted in Fig. 1(a) displays behavior which
is markedly different: the second stationary state is an
emergent dark state |De〉, which shows no fluctuations
[cf. Fig. 1(c)] and — contrary to the state |D〉 — it is
a genuine quantum state characterized by units being in
a superposition of contagious and healthy states. The
emergence of this state is connected to destructive in-
terference between coherent transition channels, similar
to electromagnetically induced transparency [14]. Here,
however, interference stems from interactions and is not
a single-body effect. Beyond the novel phase transition
phenomenology, the emergent dark manifold could poten-
tially play a role in quantum information. The two dark
states encode a qubit state |Ψ〉 = α |D〉+ β |De〉 and the
robustness of these two non-fluctuating stationary phases
could provide an efficient self-correcting mechanism.

The model.— The elementary processes of the consid-
ered many-body quantum system are shown in Fig. 1(a).
It consists of N three-level units, which are arranged in a
D-dimensional lattice and follow a stochastic Markovian
evolution [15] whose dynamical realizations (quantum
trajectories) are governed by a random process through a
stochastic Schrödinger equation [15, 16]. It is convenient
to first introduce the deterministic time-evolution of the
quantum state averaged over all trajectories. This state
is described, at any time t, by the density operator ρt
which obeys the quantum master equation [17, 18]

d

dt
ρt = L[ρt] = −i[H, ρt] +D [ρt] . (1)

The super-operator

D[ρ] = γ

L∑
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(
J
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− ρJ
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+ − 1
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− , ρ
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is the so-called dissipator. In our case, it accounts for
the classical (irreversible) transitions from the infected
state |∗〉 to the healthy one |◦〉 [cf. Fig. 1(b)], and the

jump operator J− = |◦〉〈∗| (with J+ = J†−) implements
the desired transition. The superscript k indicates the
site onto which the operator acts, while γ is the rate at
which the transition occurs.

The coherent dynamics, see also Fig. 1(b), is governed
by the Hamiltonian

H =
∑
k

[
Ω1λ

(k)
1 + Ω2Πk

•λ
(k)
6

]
, (3)

where we have defined the (Gell-Mann matrices) λ1 =
|•〉〈∗|+h.c. and λ6 = |∗〉〈◦|+h.c. The operator Πk

• imple-
ments the dynamical constraint required for the infection
process [cf. Fig. 1(b)] and its precise structure depends
on the lattice geometry.

The quantum master equation (1) governs the dynam-
ics of the average (in general mixed) state. At the level
of quantum trajectories [16], the quantum state is pure

for all times but follows a piece-wise deterministic evo-
lution: the state evolves according to the deterministic
(non-linear) equation

d

dt
|ψt〉 = [−iHeff + i 〈ψt|Heff |ψt〉] |ψt〉 , (4)

where Heff = H − iγ
2

∑
k J

(k)
+ J

(k)
− is the (non-Hermitean)

effective Hamiltonian. However, at random times, a tran-
sition |∗〉 → |◦〉 occurs at a random site k, resulting in

an abrupt jump of the quantum state |ψt〉 → J
(k)
− |ψt〉.

This means that the k-th unit has healed (it can get in-
fected again). More precisely, the transition rate for site

k is given by wkt = γ〈n(k)
∗ 〉t, with n∗ = |∗〉〈∗| and 〈·〉t

denoting the quantum expectation value with respect to
the state |ψt〉. After a jump, the dynamics under Eq. (4)
resumes until the next jump occurs.

The effective Hamiltonian has complex eigenvalues ci,
whose imaginary part ri = −Im(ci) is (half of) the es-
cape rate from the associated eigenstate. The survival
probability of a general state |ψ〉, i.e. its probability to
evolve according to Eq. (4) for a time t without jumps,

is st(|ψ〉) =
∥∥e−iHeff t |ψ〉

∥∥2
. The state with all healthy

units, |D〉 =
⊗N

k=1 |◦〉
(k)

, cannot be left once reached dy-
namically. Indeed, we have st(|D〉) = 1, meaning that
the state will experience zero jumps with probability
1. Mathematically, this is a consequence of |D〉 being
an eigenstate of Heff , associated with the eigenvalue 0.
Thus, |D〉 has escape rate rmin = 0 and is invariant un-
der the evolution in Eq. (4). It is an exact dark state for
any N . In what follows, we show that, for N → ∞ and
for sufficiently large Ω2, Heff develops a second smallest
escape rate rgap (the “gap” of Heff), such that rgap → 0.
This vanishing escape rate is related to an emergent (sec-
ond) dark state |De〉, which, has a finite density %• [see
Fig. 1(c)]. This determines a phase transition between
dark states in the steady state of the average quantum
dynamics.

Infinite dimension.— To establish the existence of the
nonequilibrium dark space phase transition, we first focus
on the limit of an infinite-dimensional lattice. Here, each
site has all the others as neighbors and the constraint can
be written as

Πk
• =

1

N − 1

N∑
h,h6=k

n
(h)
• ≈

1

N

N∑
h=1

n
(h)
• , (5)

with n• = |•〉〈•|. The constraint thus requires a finite
density of contagious sites. The resulting open quantum
dynamics in Eq. (1) can be exactly solved in the thermo-
dynamic limit N →∞ [19, 20]. We can thus investigate
both dynamical and stationary values for the density of
sites, as well as the coherence measured by the opera-
tor λ4 = |•〉〈◦| + h.c. (see Supplemental Material [21]).
Throughout, we consider the state in which all units are
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FIG. 2. Infinite-dimensional lattice. (a) Stationary behavior of the density of contagious sites %•, which is an order
parameter for the dark space phase transition. One phase is dominated by the classical jumps |∗〉 → |◦〉, bringing the system
towards the state |D〉. The other is dominated by the “no jump” dynamics under Heff , which drives the system towards the
dark state |De〉. (b) Finite expectation values of λ4 demonstrate that |De〉 features coherence between states |•〉 and |◦〉. (c)
Log-log plot of the gap (rgap) of Heff for Ω1 = γ as a function of Ω2/γ. This quantity is half the escape rate from the dark
state |De〉 and rapidly vanishes for increasing N , when Ω2 > 2Ω1. In the inset we show the behavior of rgap as a function of N
for the critical rate Ω2 = 2. The curve N−0.3 (dashed line) is shown for comparison. (d) Average density %• for the eigenvector
of Heff associated with the gap. This shows a phase transition, from a region where the density is zero to a region where the
density is finite. For increasing N , the numerical results approach the analytic prediction. Highlighted in red, the region where
the average dynamics starting from |U〉 approaches the dark state |De〉. The finite N curves are for N = 20, 30, 40, . . . 120.

contagious, |U〉 =
⊗N

k=1 |•〉
(k)

, as initial state. For weak
infection rate Ω2, the dynamics features a unique steady
state — the dark state |D〉. As Ω2 increases, two further
stationary states emerge which contain a finite density
of contagious sites. To understand whether these are
dynamically relevant we have numerically integrated the
equations of motion and found that only one of them can
be approached dynamically [as shown in Fig. 2(a)]. This
is indeed the emergent pure dark state |De〉.

It is interesting to investigate how the two dark states,
|D〉 and |De〉, which constitute nonequilibrium phases are
approached from the initial state. Approaching state |D〉,
the dynamics is dominated by quantum jumps, which
take the system towards this classical dark state. The
approach to state |De〉 is instead dominated by the no-
jump evolution under the effective Hamiltonian Heff . In
this regime, even if quantum jumps occur, the deter-
ministic dynamics in Eq. (4) prevails and eventually
brings the system towards the emergent dark state |De〉,
which features quantum superposition of contagious and
healthy states, see Fig. 2(b). The emergence of the sec-
ond dark state implies that Heff |De〉 = c2 |De〉, with
r2 = rgap = −Im c2 → 0 in the thermodynamic limit.
This indeed means that the dynamics in Eq. (4) has also
the state |De〉 as a fixed point, and that st(|De〉) = 1, so
that this state is protected against quantum jumps.

To verify this picture, we have diagonalized Heff and
studied its spectrum in the sector of fully symmetric
many-body states (see Ref. [21]). In Fig. 2(c), we see
that there is a range of Ω2-values where the gap, rgap, re-
mains finite. Here the system has |D〉 as the sole steady
state. For larger Ω2, the gap decreases with system size
with a trend that indicates a rapid convergence to zero
for N →∞ [21]. At the critical point the gap decays with
a power-law behavior rgap ∝ N−0.3, see inset in Fig. 2(c).

As shown in Fig. 2(d), the first “excited” state of Heff

develops, in the supercritical region, a finite density of
contagious sites %• which tends to the steady state pre-
diction obtained for the Lindblad dynamics. This eigen-
vector is the emergent dark state |De〉. As demonstrated
in [21], this state does not only feature single-site coher-
ence [cf. Fig. 2(b)] but also quantum correlations.

One-dimensional lattice.— We now focus on a 1D
lattice, where a given site k has only two neighbors and
the constraint Πk

• reads as

Πk
• =

n
(k−1)
• + n

(k+1)
•

2
. (6)

For this setting, no analytical solution is possible. We
therefore rely on extensive numerical investigations to
show the emergence of the dark state |De〉 [21].

In Fig. 3(a-b) we show results obtained from sampling
quantum trajectories for a few-body system up to a finite
time t. The “phase diagram” displays a behavior similar
to what we observed for the infinite-dimensional lattice.
However, in this case, the appearance of the dark state
|De〉 is only possible for a transient period of time, given
that, for finite N , the unique steady state is the exact
dark state |D〉. Representative trajectories for larger sys-
tem sizes [see top and bottom trajectories in Fig. 1(c)]
show clearly how one phase is reached when quantum
jumps are dominating the dynamics, while the other one
is approached when the system state is driven towards
the emergent dark state by the effective Hamiltonian.

To talk about a proper nonequilibrium phase transition
in the quantum system, we need to address the thermo-
dynamic limit of an infinitely long chain. We do this
by exploiting methods based on matrix product states
(MPSs) [27–30]. In order to show the emergence of the
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FIG. 3. One-dimensional lattice. (a-b) Simulations of
quantum jump trajectories, for a 1D system with N = 6.
Each data point is obtained by averaging over 100 trajectories.
The panels show the behavior of the density of contagious
sites %• and of the coherence | 〈λ4〉 |, for t = 20/γ. Two
different phases emerge: one is the dark state |D〉, while, in
the other the system approaches the emergent dark state |De〉.
(c) Order parameter %• as a function of Ω2, for Ω1 = γ in the
emergent dark state. For finite systems, this is estimated
by looking at properties of the state associated with the gap
of the effective Hamiltonian (solid lines for N = 3, 4, . . . 9).
For infinite systems, we exploit matrix product state methods
to target the fixed point of the dynamics in Eq.(4) (black
circles). This shows a transition from |D〉 to |De〉. We have
further obtained values of the density %• in the steady state
of the Lindblad dynamics Eq.(1) (red crosses), which are in
agreement with the prediction made for Heff . In the shaded
region, our MPS algorithms did not converge.

second dark state |De〉 in the effective Hamiltonian, we
simulate the dynamics in Eq. (4) for an infinite system,
starting from the state |U〉, until a fixed point is reached.
In the regime associated with the exact dark state this
dynamics always ends up in the state |D〉. For sufficiently
large values of Ω2, instead, the effective time-evolution
converges towards the emergent dark state |De〉, featur-
ing a finite density of contagious sites %• and finite co-
herence 〈λ4〉 [21]. Close to the critical regime [shaded
region in Fig. 3(c)] the bond dimension χ of the MPS
needed for approximating the order parameter increases,
indicating that the state acquires longer-ranged correla-
tions. For instance, for Ω2/γ = 3, we used χ = 64 while
far from the critical regime, where the emergent dark
state tends to become uncorrelated, we achieved good
convergence with χ ≈ 4, 8. Through a similar MPS algo-
rithm, we have also studied the Lindblad dynamics (1)
for an infinite system. For the model considered, this

method showed instabilities for large dimensions of the
MPS. We have thus exploited a low-rank approximation
of ρt, which may be regarded as a “perturbative” ap-
proach [21] beyond a product-state ansatz which can ac-
count for very short-range correlations, and is expected
to be valid for large enough Ω2. Our results show that the
emergent dark state |De〉 approached by the dynamics in
Eq. (4), is also the steady state of the average quantum
dynamics [see Fig. 3(c)].

Towards an experimental implementation.— For
the purpose of this work Hamiltonian (3) should be re-
garded as an idealized model. However, as we briefly
sketch in the following, one may indeed realize ver-
sions of it on current quantum simulator platforms based
on Rydberg atoms [31–37]. Here, the three states
are represented by atomic Rydberg states which inter-
act with a nearest-neighbor density-density interaction,
parametrized by the matrix Vαβ (α, β = •, ∗, ◦). The in-
teraction Hamiltonian of a single atom with its left (L)
and right (R) neighbor is then given by

Hint =

3∑
α,β=•,∗,◦

Vαβ(n
(L)
β + n

(R)
β )nα.

The atoms are also driven by two lasers which couple the
transitions |•〉 ↔ |∗〉 (Rabi frequency Ω1) and |∗〉 ↔ |◦〉
(Rabi frequency Ω2). By appropriately choosing the laser
detunings and the coefficients of the interaction matrix
Vαβ , and moving into a suitable interaction picture [21],
one obtains (in 1D) the constrained Hamiltonian [38–49]

Hexp ≈
∑
k

[
Ω1

(
1− n(k−1)

◦

)(
1− n(k+1)

◦

)
λ

(k)
1 +

+ Ω2

(
n

(k−1)
• + n

(k+1)
• − 2n

(k−1)
• n

(k+1)
•

)
λ

(k)
6

]
.

This is similar to the Hamiltonian (3), with two differ-
ences: a constraint on the transition |•〉 ↔ |∗〉 and a term

proportional to n
(k−1)
• n

(k+1)
• λ

(k)
6 . The former is not prob-

lematic, since the transition would be anyway switched
off when the dark state |D〉 is reached. The latter term,
instead, changes the behaviour of the model, as we have
tested with numerical simulations. However, this can be
eliminated by generating the same term with opposite
sign through the application of a further laser field with
a detuning 2V•◦ and Rabi frequency 2Ω2, on the |∗〉 ↔ |◦〉
transition. The computation demonstrating how this can
be achieved, has been presented in Refs. [13, 50].

Discussion.— We have investigated a novel type of
nonequilibrium phase transition between two dark states,
a trivial (classical) one and an emergent one. As we have
shown, the detection of such an emergent state is possi-
ble by analyzing the spectral properties of the effective
Hamiltonian. It is important to comment on why such a
phenomenology cannot be observed in classical models.
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Here, a non-fluctuating state can only be a configuration
state, as for example |D〉, and thus can only be dark if it
is an exact dark state for any system size. Furthermore,
in classical settings, there is no effective coherent dynam-
ics between jumps that could drive the system toward an
emergent dark state. The dark state observed here is
further rather different in nature to the usual dark states
that have been explored in several quantum systems [51–
55], since it is not a frustration-free exact dark state for
any system size (see, however, Ref. [56] for another ex-
ample beyond this paradigm). Our results further show
that the emergent dark state is a (pure) many-body state
featuring correlations and entanglement. In one dimen-
sion and far from criticality, correlations are short-ranged
(as witnessed by the low bond dimension needed for its
approximation) but become increasingly longer ranged
approaching the phase transition point. In infinite di-
mensions, correlations are of collective type with diverg-
ing susceptibility at the critical point [21].

Degenerate dark state manifolds may also emerge in
finite-size dissipative noninteracting topological systems,
and are usually associated with the existence of local-
ized (edge) zero modes [57, 58]. However, we note that
the mere existence of a dark subspace is not sufficient to
observe the dark space phase transition discussed here.
For the noninteracting physics described in Refs. [57],
the dark subspace plays more the role of a decoherence-
free subspace where the initial “occupation” of the zero
modes is protected and fully determines whether the
asymptotic state is mixed or pure. Instead, the dark
state |De〉 emerges in the thermodynamic limit as a col-
lective property of the system. In addition, the dynamics
always drives the system into one of the two possible dark
states [see, e.g., our analysis for the infinite-dimensional
lattice] and not into a mixture, that depends on the ini-
tial conditions. This mechanism is a necessary ingredient
to observe a dark space phase transition.
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