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New tools are required to address the challenge of relating plant hormone levels, hormone
responses, wall biochemistry and wall mechanical properties to organ-scale growth.
Current vertex-based models (applied in other contexts) can be unsuitable for simulating
the growth of elongated organs such as roots because of the large aspect ratio of the
cells, and these models fail to capture the mechanical properties of cell walls in sufficient
detail. We describe a vertex-element model which resolves individual cells and includes
anisotropic non-linear viscoelastic mechanical properties of cell walls and cell division
whilst still being computationally efficient. We show that detailed consideration of the
cell walls in the plane of a 2D simulation is necessary when cells have large aspect
ratio, such as those in the root elongation zone of Arabidopsis thaliana, in order to avoid
anomalous transverse swelling. We explore how differences in the mechanical properties
of cells across an organ can result in bending and how cellulose microfibril orientation
affects macroscale growth. We also demonstrate that the model can be used to simulate
growth on realistic geometries, for example that of the primary root apex, using moderate
computational resources. The model shows how macroscopic root shape can be sensitive
to fine-scale cellular geometries.
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1. INTRODUCTION
Through advances in molecular biology, much information has
been gathered about plant hormone response networks (Santner
et al., 2009) and the mathematical modeling of small regulatory
networks has led to increased understanding of their function
(Middleton et al., 2012a). New reporters for hormone levels
(Band et al., 2012b; Brunoud et al., 2012), combined with image
analysis tools (Pound et al., 2012), now permit the acquisition
of data for individual cells within a whole organ. However, a
current challenge is to understand how cell-scale processes influ-
ence behavior at organ scales; in particular, how variations in
the mechanical properties of individual plant cell walls, affected
by cell-wall-remodeling enzymes under the control of various
hormones and regulatory networks, in turn control growth on
the whole-organ scale. The complexity of this process, involving
hydraulics, turgor pressure regulation, and a large number of bio-
chemical changes in the constituents of the cell wall, necessitates
a modeling approach in which these factors can be integrated.
Multicellular models which incorporate cell mechanical proper-
ties are necessary to understand how the growth of individual
cells is organized to drive organ-scale growth and development
(Band et al., 2012a). For instance, spatially one-dimensional mod-
els which treat the root as a line of cells have been used to examine

the regulation of growth by hormones (Chavarría-Krauser and
Schurr, 2004; Chavarría-Krauser, 2006; Muraro et al., 2013).

Vertex-based models (Weliky and Oster, 1990; Nagai and
Honda, 2001) are an attractive framework for examining the
effects of cell-scale processes on behavior at the whole-organ
scale, as they explicitly treat each cell as an individual object.
Symplastic growth (Priestley, 1930), where neighboring cell walls
adhere and do not slide across each other, can be imposed auto-
matically by the sharing of vertices and walls between adjacent
cells, and many of the complications in simulations of animal
tissues (caused by cells separating and sliding over each other)
are considerably less significant for plant organs. However, stan-
dard implementations of vertex-based models can be inadequate
to represent elongating organs such as roots because of the large
aspect ratio of cells, which makes it difficult to prevent the
transverse swelling of cells (normal to the primary axis of the
organ).

Simple mass-spring-based models [e.g., vertex-vertex sys-
tems (Smith et al., 2003)] and vertex-based models (Rudge and
Haseloff, 2005; Dupuy et al., 2006; Jönsson et al., 2006; Smith
et al., 2006; Dupuy et al., 2008; Hamant et al., 2008; Merks
et al., 2011; Abera et al., 2013; Alim et al., 2012; Uyttewaal et al.,
2012) have previously been used to examine plant organ growth.
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These models represent three-dimensional (3D) plant tissues as
a collection of 2D polygons [possibly on a 3D surface, e.g., in
Smith et al. (2006) and Hamant et al. (2008)] in order to sim-
plify computation. They capture mechanical processes such as
cellulose microfibril reorientation and anisotropic viscous prop-
erties of the cell walls to only a limited extent, as they do not
explicitly consider cell walls in the plane of the 2D simulation.
None of these models has been applied to a growing primary
root, for example. More sophisticated finite-element models for
plant organs exist (Jönsson et al., 2006; Huang et al., 2012), but
implementing cell division within these models, whilst possible,
is a complex task. To address these problems, we present here a
new 2D “vertex-element” model, combining vertex-based simula-
tions with a finite-element discretization of in-plane walls, which
is computationally efficient and capable of simulating problems
on the scale of a whole organ, which in the present case is the
elongating section of the root of Arabidopis thaliana. This method
has similarities to the cell-level finite-element methods for animal
cells developed by the Brodland group (Chen and Brodland, 2000;
Brodland et al., 2007), but is tailored to the distinct mechanical
properties of plant cells.

The composite structure of the primary plant cell wall endows
it with complex properties that can be independently regulated by
a variety of enzymatic and metabolic processes (Geitmann, 2010).
Oriented cellulose microfibrils promote anisotropic elongation
in the direction orthogonal to the fibrils (Baskin, 2005). The
microfibrils are embedded in a pectin matrix and are crosslinked
by xyloglucan polymers (Cosgrove and Jarvis, 2012). A variety
of constitutive models have been proposed for the different wall
components at different levels of organization. At the level of
a whole cell or tissue, elongation is commonly modeled as a
viscoplastic process, parameterized by a yield stress and an exten-
sibility (Lockhart, 1965). Continuum models at the level of the
wall have demonstrated how fiber reorientation (in addition to
matrix stiffening) can suppress cell elongation (Dyson and Jensen,
2010) and have shown how crosslinks and matrix properties
might independently contribute to yield and extensibility proper-
ties (Dyson et al., 2012). Macromolecular simulations (Kha et al.,
2010; Yi and Puri, 2012) give insights into how detailed aspects of
chemical structure influence mechanical properties. This hierar-
chy of complementary modeling approaches must be integrated
in order to understand plant tissue growth fully. Here, we lay out
a computational framework for connecting properties of individ-
ual cell walls to a multicellular tissue (i.e., spanning scales from
cell walls to the organ level), using the Arabidopsis root as a
template.

To illustrate the potential of our approach, to understand basic
properties of the multicellular simulation tool (particularly its
capacity to characterize the biomechanics of a growing tissue)
and to discuss some of the potential pitfalls in its computational
implementation, we show how differences in mechanical prop-
erties between cell files in an elongated organ can affect growth
at the organ level. In particular, we increase the extensibility of a
single cell file in a simple organ geometry, causing the growing
organ to bend. We also explore the retardation of cell elongation
though reorientation of microfibrils. Then, to show how mechan-
ical properties can be readily controlled by hormone levels in

such a framework, we consider a simple model in which cell
mechanical properties (specifically, yield stress) are regulated by a
substance (a growth inhibitor) which is produced in the root apex
and undergoes passive diffusion between cell compartments. Cell
division is also included in this simulation. The geometry used to
initialize the simulation is based upon confocal imaging. We use
the model to illustrate the impact of detailed cellular geometries
on organ-scale morphology.

2. MATERIALS AND METHODS
2.1. VERTEX-ELEMENT MODEL
Simulations are performed in a 2D plane; for the current prob-
lem this is a 2D longitudinal section through the midline of the
root, as illustrated in Figure 1. The 2D model captures aspects
of the 3D structure by distinguishing three classes of wall: those
in the plane of the simulation; those perpendicular to the plane
of the simulation and aligned with the direction of elonga-
tion (“axial” walls); and those perpendicular to the plane of
the simulation and orthogonal to the direction of elongation
(“cross” walls). Cross walls represent the approximately circular
end plates of elongating cells, whilst the remaining wall types
represent the curved walls parallel to the direction of elonga-
tion. In the 2D representation, cells occupy polygonal regions,
the boundaries of which are described by a list of edges, each
edge being a line joining two vertices. Adjacent cells share edges.
Whilst the common edge is treated as a single entity for the
representation of the organ geometry, for mechanical purposes
we consider the physical cell walls associated with each of the
two cells separately. This structure automatically ensures that
the organ remains contiguous, as is the case during symplastic
growth.

The organ grows primarily through the motion of its vertices.
Other changes, such as refining an edge into two smaller edges
or the introduction of new walls during cell division, may (where
necessary) be performed during the simulation. Topological tran-
sitions, which are important in animal epithelial tissues and soap
bubble rafts, do not occur here because of the inability of neigh-
boring plant cell walls to slide across each other or of an edge
section to shrink to zero length, except during a small number
of special events such as lateral root emergence, abscission, cell
death etc.

2.1.1. Forces
Mechanical simulation using such a model involves considera-
tion of the forces acting on each of the vertices. These are viscous
and elastic forces from walls perpendicular and parallel to the
plane of the simulation, and pressure forces acting on the bound-
aries of each cell. Owing to the small length scale of the cells,
inertia is taken to be negligible, so these forces are always in bal-
ance. The forces acting on each vertex are calculated as functions
both of the vertex positions and of the velocities, and equated
to zero. This gives a system of differential equations relating
the vertex positions and velocities, which are integrated numer-
ically. The specific forms of the forces used are described in more
detail below; in order for the system to be numerically well-
behaved (more precisely, to be a system of differential, rather
than differential-algebraic, equations) and to avoid transverse cell
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FIGURE 1 | Axial and cross walls. (A) Classification of cell walls perpendicular to the plane of the simulation as axial (red) and cross (blue); walls in the plane
of the simulation are shaded gray. (B) Corresponding walls in the 3D organ.

expansion, the mechanical properties of cell walls perpendicular
to the plane of the simulation are considered. In order to pre-
vent solid-body translation and rotation of the growing organ,
the positions of vertices on the shootward (here corresponding to
the right-hand) end of the organ are fixed.

2.1.1.1. Turgor pressure. Plant cells maintain their shape though
an internal turgor pressure, which is generated by osmosis. Turgor
pressure is taken to be constant and uniform in all cells; whilst
experimental measurements (Pritchard et al., 1993) and theoret-
ical considerations (Chavarría-Krauser et al., 2005) indicate that
the turgor pressure is likely to decrease along the axis, in both
cases this change was relatively small (<10%). There is some
evidence that it varies between cell types (and that for roots
it is higher in cortical than epidermal cells) (Javot et al., 2003;
Passioura and Boyer, 2003).

This pressure exerts an outwards force on each cell edge (per
unit length normal to the plane of the simulation), normal to the
edge and with magnitude proportional to its length, as shown in
Figure 2A. Consider the edge e between the vertices with indices
i and j, with positions xi = (xi, yi) and xj = (xj, yj). If these
describe a wall of the cell with index m (and internal pressure pm)
in the positive (anti-clockwise) direction, the force on the wall
due to the pressure in cell m is

pm|xj − xi|n̂ij ≡ pm R(xj − xi), n̂ij ≡ (yj − yi, xi − xj)

|xj − xi| .(1)

Here R(x) ≡ x × k, where k is the unit vector pointing out of
the plane, corresponding to in-plane rotation by −π/2, and ×
denotes the vector product. The turgor force is taken to be equally
distributed between the two vertices, giving the contributions

pm

2
R(xj − xi) (2)

to the total forces acting at xi and xj. The total pressure force
on each vertex is the sum of the contributions from all the cells
of which it is on the boundary, i.e., the force on vertex i can be
expressed in the form

∑
m|i ∈ B(m)

pm

2
R
(

xm+(i) − xm−(i)
)

(3)

FIGURE 2 | Turgor pressure forces. (A) Forces from the pressure pm in
cell m acting on the wall between vertices xi and xj . (B) Total force acting
on the vertex xi from the pressure in cell m.

where the sum runs over all cells m for which the vertex with index
i is within its set of boundary vertices B(m), and m−(i) and m+(i)
denote the indices of the previous and next vertices to i around
cell m in an anticlockwise direction (see Figure 2B).

2.1.1.2. Constitutive assumptions. Turgor pressure forces are
resisted by the cell walls of the tissue, which are assumed here to
be under tension. The cell walls have a strongly anisotropic dis-
tribution of cellulose microfibrils embedded in a viscous matrix;
these microfibrils increase the resistance to deformation of the cell
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wall in the fiber directions, thereby promoting elongation perpen-
dicular to these directions. In simulating growth, over timescales
of hours, axial cell elongation is determined by irreversible creep
of the axial cell walls, which can be modeled using a viscoplastic
constitutive law (Passioura and Fry, 1992; Cosgrove, 1993).

Wall stresses in the current configuration are obtained from
a non-linear anisotropic constitutive law for the Cauchy stress
resultant σ, which we assume takes the form

σ = σy + σa + σe. (4)

Here σy is a non-linear isotropic viscous contribution (incorpo-
rating yielding effects), σa is an additional anisotropic viscous
term which includes the effects of the cellulose microfibrils and
σe is the elastic contribution to the stress tensor. We attribute dif-
ferent combinations of these components to the three classes of
walls in the simulation. We also assume that walls are sufficiently
thin for their bending resistance to be negligible. We do not take
explicit account of wall thickness but instead lump such factors
into material parameters appearing below.

We model the non-linear isotropic component by

σy = 2

(
μ1 + τw

ε∗

(
1 − exp

(
−ε∗

ε

)))
E, (5)

where

ε ≡

√√√√√ 2∑
i = 1

2∑
j = 1

E2
ij. (6)

Here E is the rate-of-strain tensor, μ1 is an isotropic viscosity
associated with the pectin matrix (plus embedded hemicellu-
lose crosslinks), and τw and ε∗ are the yield stress and yield
strain rate of the wall. This expression is adapted from the (one-
dimensional) model of Dyson et al. (2012), and has the advantage
of being related directly to the properties of cross-links between
cellulose microfibrils. If we assume τw/ε∗ � μ1, the wall is then
more extensible in the post-yielded state (ε � ε∗) and stiffer in
the pre-yielded state (ε � ε∗). This non-linear model is similar
to those used to regularize numerical simulations of visco-plastic
(Bingham) fluids (Papanastasiou, 1987) and generalizes the tra-
ditional Lockhart equation (Lockhart, 1965). For simplicity, as in
Dyson and Jensen (2010), we assume that the cell wall remains of
constant thickness (through the addition of new material to the
cell wall) in the current configuration even as the wall is stretched.
For simulations on a synthetic geometry (Figures 5–7 below), we
set τw = 0.

We include the effect of microfibrils by considering a pair
of microfibril directions, a1 and a2, that are embedded in the
material of the cell wall and are advected with it. The resulting
anisotropic viscous stresses are given by

σa =
2∑

k = 1

{μ2(ak · Eak)ak ⊗ ak + μ3(ak ⊗ Eak + Eak ⊗ ak)}(7)

where the symbol ⊗ denotes the outer product of two vec-
tors (a ⊗ b = abT ). The viscosity μ2 represents the additional
resistance to extension in the fiber directions; ak · Eak gives the
strain rate in the direction parallel to the fibers and ak ⊗ ak

is a tensor which represents the direction of the fiber family.
μ3 is an additional viscosity which resists shear of the cell wall
parallel to the fiber direction. When μ2 is chosen to be much
larger than μ1, the cell wall element has low extensibility in the
direction of the fibers, and this leads to anisotropic cell expan-
sion (Dyson and Jensen, 2010). We note that (Equation 7) is
readily extended to include a distribution of fiber angles; for
simplicity we restrict attention here to just two primary fiber
directions.

While growth is a primarily viscous process, it is helpful to
allow non-yielded walls in particular to sustain an elastic stress
σe. We adopt a simple linear relationship between stress and
elongational strain with stiffness λ, as shown in more detail
below.

2.1.1.3. Cell wall discretization. Cell walls in the plane of the
simulation play an important role in preventing transverse
swelling and in determining the rate of axial elongation. For
such walls we make the constitutive assumption σ = σa + σy .
To simulate their properties, each cell wall is sub-divided into
triangular elements (see Figure 3). We now describe how to cal-
culate the forces exerted by a particular element on its vertices,
without including the element label to simplify our notation.
Such calculations are common in implementations of finite ele-
ment methods—cf. Zienkiewicz and Taylor (2000) or (Bonet and
Wood, 2008). Most vertices will be associated with multiple tri-
angular elements (see Figure 3), and so the total force acting on
each vertex will be the sum of the contributions from all triangles
for which it is a corner. Each element has a pair of fiber direc-
tions A1, A2 in the reference configuration. These fiber directions

FIGURE 3 | Triangulated cell walls in the plane of the simulation. Edges
of cells in the plane (axial or cross walls) are shown as heavy black lines;
vertices are shown as black or red circles. Note that vertices may lie in the
interior of cells (red circles); these are required to avoid using triangles with
large aspect ratio in the initial configuration. As the tissue elongates,
triangle aspect ratios increase, and either a more highly refined triangular
mesh or periodic remeshing is required to accurately simulate organ
bending (see Figure 6).
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map to a1, a2 in the current configuration, which are calculated
using

ak = FAk

|FAk| , k = 1, 2, F = F2F−1
1 , (8)

where F1 and F2 are the gradients of the maps from the unit tri-
angle [with vertices at (0, 0), (1, 0), (0, 1)] to the reference and
current configurations, respectively (see Figure 4A). These maps
are given by linear interpolation, so that position vectors in the
two configurations can be written as

X(ξ) =
3∑

I = 1

XINI(ξ), x(ξ) =
3∑

I = 1

xINI(ξ), (9)

where ξ = (ξ1, ξ2) parameterizes points in the unit triangle, the
shape functions N1, N2, N3 are defined by

N1 = 1 − ξ1 − ξ2, N2 = ξ1, N3 = ξ2 (10)

and xI(t) (I = 1, 2, 3), XI(t) (I = 1, 2, 3) are the positions
of the vertices of the triangles in the current and reference

FIGURE 4 | Coordinate systems and forces for triangular elements

lying within walls in the plane of the simulation. (A) Vertices of a
triangular element have positions X1, X2 and X3 in the reference
configuration, and x1, x2 and x3 in the current configuration. The gradient
of the deformation F is calculated using F = F2F−1

1 , where F1 and F2 are
the gradients of the maps, defined by linear interpolation, from the unit
triangle to the reference and current configurations, respectively. The
elements each have a pair of microfibril directions, A1 and A2, in the
reference configuration; these are embedded in the material of the cell
wall, so are deformed with it to directions a1 and a2 in the current
configuration. (B) Notation used in Equations (16) and (17) for the forces on
and normals to the edges of each triangular element.

configurations (see Figure 4A). The gradients F1 and F2 are
therefore given by

(F1)αB = ∂Xα

∂ξB
=

3∑
I = 1

XIαNI, B(ξ),

(F2)αB = ∂xα

∂ξB
=

3∑
I = 1

xIαNI, B(ξ), (11)

where

NI, B(ξ) ≡ ∂NI

∂ξB
(12)

and XIα denotes the α component of XI (α = 1, 2;B = 1, 2).
The velocity v of a material point is given by

v =
3∑

I = 1

vINI(ξ), (13)

where vI(t) = ∂xI/∂t (the Lagrangian derivative; I = 1, 2, 3) is
the velocity of the Ith vertex of the triangular element in which
the point sits. The rate of strain tensor E appearing in Equation
(5)–(7) is then

E = 1

2

(
∇v + (∇v)T

)
, (14)

where the spatial velocity gradient ∇v is given by

(∇v)αβ =
3∑

I = 1

2∑
B = 1

vIαNI, B(ξ)(F−1
2 )Bβ, (15)

We calculate the forces from a triangular element on each of its
vertices in a similar manner to the pressure forces, as illustrated
in Figure 4B. The forces f12, f23, f31 on each of the edges of the
triangle are given by

f12 = −σ · n12|x2 − x1| f23 = −σ · n23|x3 − x2|
f31 = −σ · n31|x1 − x3| (16)

where σ is given by Equation (4) with no elastic component
(σe ≡ 0); the outward-pointing normals to each of the edges of
the triangle are

n12 = R (x2 − x1)

|x2 − x1| , n23 = R (x3 − x2)

|x3 − x2| ,

n31 = R (x1 − x3)

|x1 − x3| . (17)

Distributing the force on each wall equally to the vertices at either
end, the forces f1, f2, f3 associated with stretching of cell walls on
the three corners of the element are

f1 = 1

2
(f12 + f31), f2 = 1

2
(f23 + f12) f3 = 1

2
(f31 + f23).(18)
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The contributions from all elements are combined to give to total
force from the walls in the plane on each vertex.

Cell walls perpendicular to the plane of the simulation are con-
sidered as viscoelastic; whilst the model is similar to that for cell
walls in the simulation plane, for simplicity we do not include
the effects of microfibril orientation, setting σa = 0 in Equation
(4). Furthermore, because in our 2D simulation the walls perpen-
dicular to the plane between adjacent vertices can only undergo
expansion, we can restrict attention to a single elongational stress
component in the wall direction. However, it is helpful in simu-
lations to retain an elastic element in each “cross” wall, as these
grow more slowly and are not clearly in a yielded state. For the
purposes of mechanical calculations, we treat an edge “viewed
from” each of the cells that border it as two distinct wall segments,
and reference them by the pair (m, e), where m is the index of the
cell and e the index of the edge. For symplastic growth, the two
wall segments corresponding to a given edge have the same length
and hence strain-rate.

From the constitutive law (Equation 4), the tensile stress
resultant in the wall (m, e) is assumed to be

σ(m, e) = 2

(
τ(m,e)

ε∗
(m, e)

(
1 − exp

(
−ε∗

(m, e)

εe

))
+ μ(m, e)

)
εe

+ λ(m, e)

(
le

l0(m, e)
− 1

)
(19)

where εe is the rate of strain of the edge, μ(m,e) is the viscosity of
the wall, ε∗

(m,e) is the yield strain-rate, τ(m,e) is the yield stress, le
is the current length of the edge, l0(m,e) is the rest length of the
wall and λ(m,e) is the spring constant of the wall. The resulting
contributions to the forces on the vertices are

± σ(m, e)
xj − xi

|xj − xi| , (20)

where the positive and negative signs correspond to the forces on
xi and xj, respectively.

The non-linear model (Equation 19) reduces to a linear model
when τ(m, e) = 0; as for the in-plane walls, we use the linear model
for simulations on artificial geometries (Figures 5–7), and the
non-linear model (τ(m,e) > 0) for simulations on realistic root
geometries (Figure 8). For simulations on an artificial geome-
try, cross walls are considered to be viscoelastic (λ(m,e) = λcross =
const, μ(m,e) = μcross = const in Equation (19)), but axial walls
are treated as purely viscous (λ(m,e) = 0, μ(m,e) = μaxial); for
the simulations of Figures 5–7, cell wall properties are assumed
to be constant in time, but we permit differences in axial cell
wall extensibilities between different cells. In the simulation in
Figure 8 below, cross walls have constant and uniform proper-
ties (τ(m,e) = τcross and ε∗

(m,e) = ε∗
cross), axial walls have constant

and uniform yield strain rate ε∗
(m,e) = ε∗

axial, but the axial wall
yield stress τ(m,e) varies between cells and with time in a manner
explained in section 2.1.2 below.

2.1.2. Diffusible growth inhibitor
For simulations in a realistic geometry, it is necessary to spec-
ify the mechanical parameters of individual cell walls to capture

observed patterns of growth. In order to demonstrate the capa-
bilities of this method, we consider a growth regulator which
inhibits growth, with concentration bm (where m runs over the
indices of all cells). This is a relatively simplistic model for the
regulation of cell mechanical properties by hormones, but it pro-
vides a framework that is readily generalized. Chavarría-Krauser
et al. (2005) proposed a related model for the regulation of
growth in a line of cells, where cytokinin produced in the cell
at the tip of the root played similar role to the growth inhibitor
here. Muraro et al. (2013) also proposed a model for the reg-
ulation of growth in the root involving auxin and cytokinin
signaling.

The concentration of the representative growth regulator is
assumed constant within each cell and transported between cells
only by diffusion through cell walls. The cellular concentrations
bm evolve according to

dbm

dt
= 1

Am

∑
n ∈Bm

(
PbSm,n(bn − bm)

)− λbm + αm,

m = 1, . . . , Nc (21)

where Bm is the set of indices of cells adjacent to the cell with
index m, Am is the area of the cell with index m, Pb is a permeabil-
ity coefficient, Sm,n is the length of the wall between the two cells
with indices m and n, αm is the production rate of substance b in
cell m, λ is the decay rate of substance b and Nc is the total number
of cells. In our realistic root geometry, each cell has an additional
attribute labeling its tissue type. We consider production of b to
occur only in those cells which are part of the quiescent center
(QC). The growth inhibitor concentration serves as a proxy for
distance from the QC, and controls growth through modulation
of the yield stress of walls in the plane of the simulation, τw (see
Equation 7), and the yield stress of axial walls perpendicular to
the plane of the simulation, τaxial (see Equation 19). Specifically,
we assume that

τw = τ0
w(

1 +
(

kb
bm

)nb
) , τaxial = τ0

axial(
1 +

(
kb
bm

)nb
) . (22)

The half-saturation constant, kb, is chosen to control the position
at which rapid cell elongation begins and the Hill constant, nb,
controls the sharpness of this transition.

2.1.3. Cell division
In order to further demonstrate the capabilities of this compu-
tational approach, we integrated a simple model for cell division
within this mechanical framework. Both the timing of cell divi-
sion (Dissmeyer et al., 2009) and the choice of cell division
plane (Sahlin and Jönsson, 2010; Besson and Dumais, 2011; Alim
et al., 2012) have been modeled previously. Here we employ a
simple model (related to that of Chavarría-Krauser and Schurr,
2004) to specify the division time of cells. Each cell has an
associated variable tm, which is initially taken to be a ran-
dom number drawn from a uniform distribution on [0, 1). This
increases with time in all cells at a rate β. A cell will divide
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provided tm > 1 and the growth inhibitor concentration is suf-
ficiently large (bm > kb). Following cell division, tm for both
daughter cells is set to zero. Such a model results in a rate
of cell division which is roughly constant in the meristem and
zero outside it, as observed by Beemster and Baskin (1998). It
also requires cells to wait a period 1/β inbetween successive
divisions.

We choose to divide cells perpendicular to the direction of
maximum strain rate (Hejnowicz, 1989; Nakielski, 2008). This
direction is obtained by calculating the area-weighted average of
the rate of strain tensor E (Equation 14) over the triangles rep-
resenting the wall of the cell in the plane of the simulation. This
is a symmetric tensor, and the direction of maximum growth is
given by the eigenvector associated with the largest eigenvalue.
The plane of division is chosen to be that which passes through
the geometric center (centroid) of the cell, perpendicular to the
direction of maximum growth.

When a cell divides, the polygon representing the walls of the
cell perpendicular to the plane of the simulation is divided into
two along the plane of division. This requires subdividing two
edges of the parent cell into two; a new triangulation is gener-
ated for the cells which share these edges and the two daughter
cells. This new triangular mesh is obtained from a constrained
Delaunay triangulation of the region. This mesh may contain new
vertices, and the positions of these in the reference configuration
(XI ) are calculated by barycentric interpolation. The microfibril
directions in the reference configuration, A1,2, are constant and
uniform within each cell in the simulations of this paper, and the
fiber directions for the daughter cells are set to be the same as
those of the parent cell.

2.1.4. Computational implementation
The majority of the simulations was implemented in Python,
using the OpenAlea (Pradal et al., 2008) simulation environment,
which provides data structures for representing vertex-based tis-
sues and routines to manuipulate them. Computationally inten-
sive parts of the simulations (such as solution of mechanical
equations) were implemented in C++. Constrained Delaunay
triangulations of cell walls in the plane of the simulation were
obtained using Triangle (Shewchuk, 1996). All simulations were
performed on a standard desktop workstation (16 GiB RAM,
3.4 GHz quad core Intel processor).

An implicit system of differential equations for the vertex
positions is given by equating the total forces on each vertex
to zero, obtained by adding the pressure forces (Equation 3)
from each cell, the forces (Equation 20) from each out-of-plane
wall segment, and the in-plane forces (Equation 18) from each
triangular element. This system (with c. 12,000 degrees of free-
dom for the simulations of Figure 8), is solved numerically using
the backward Euler method or the differential-algebraic solver
(IDA) from the SUNDIALS suite (Hindmarsh et al., 2005). Both
schemes use the Newton–Raphson method for the solution of
non-linear systems of equations, see e.g., Iserles (2009). The
Jacobian matrix is calculated numerically using finite differences,
with the known sparsity pattern used to group terms such that
multiple columns can be calculated simultaneously. The direct
sparse solver UMFPACK (Davis and Duff, 1999) is used for linear

algebra. IDA is used for the simulations of Figures 5–7, as it uses
an adaptive stepsize method to control the error in the solution.
However, we use the backward Euler method for the simula-
tions of Figure 8, as this proves more robust for simulations on
complicated geometries.

In simulations on a realistic geometry, the equations for the
growth inhibitor (Equation 21) form an additional system of
ordinary differential equations which are coupled to the mechan-
ical model. For simplicity of implementation, we use a split-
timestep method, in which we simulate each of the chemical
and mechanical components of the model in turn over a fixed
timestep. The calculated concentrations of growth inhibitor in
each cell are then considered to be constant for the simulation of
the mechanical parts of the model over one timestep. Cell division
is considered at the end of each timestep.

2.1.5. Synthetic geometry
In order to investigate basic mechanical features of the model,
a rectangular “root” was generated, with Ny = 5 files of cells
of length Lx,tot = 2000 μm in the x-direction and height Ly =
20 μm in the y-direction. This height is comparable to the diame-
ter of an Arabidopsis cortical cell (Dolan et al., 1993), although
it should be noted that the other cell files in the real root are
of smaller diameters. Each file of cells was further subdivided in
the x-direction (starting at the wall with smallest x-coordinate,
corresponding to the rootward end) with each cell length drawn
randomly from the uniform distribution on [Lx, 2Lx], where
Lx = 50 μm.

2.1.6. Realistic geometry
Longitudinal sections of Arabidopsis roots, with cell walls high-
lighted by propidium iodide staining, were obtained using confo-
cal microscopy. These images were traced by hand using a vector
graphics package (Inkscape). The OpenAlea environment (Pradal
et al., 2008) provides routines to import tissues from Scalable
Vector Graphics files. The root was aligned such that the long
axis of the root was parallel to the x-axis. Edges were classified
as axial or cross according to the angle between the edge and
the x-axis (those edges within π/4 being axial and the others
cross).

2.2. PARAMETER ESTIMATES
Turgor pressures within Arabidopis have been measured to be of
the order of 0.3 MPa (e.g., see Javot et al., 2003). The remaining
parameters in the model are difficult to measure experimen-
tally; the viscosity of an elongating cell wall is an emergent
property arising from the dynamic breaking of hemicellulose
crosslinks and the viscosity of the pectin matrix. However, cell
elongation rates within the root have been measured by Peters
and Baskin (2006) to be about 0.1 hr−1 near the QC, and
0.5 hr−1 in the center of the elongation zone, and this guides
our choices of parameter values, as described below. In the
absence of independent information, the main criterion for these
choices was that they gave biologically sensible results. Note
that the growth profile of roots has been measured to vary sig-
nificantly between different seedlings (Walter et al., 2002); a
number of other authors have also measured growth profiles

www.frontiersin.org July 2013 | Volume 4 | Article 233 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Biophysics_and_Modeling/archive


Fozard et al. Vertex-element models for anisotropic growth

in roots using modern techniques (Walter et al., 2003; van der
Weele et al., 2003; Basu et al., 2007; Chavarría-Krauser et al.,
2008).

For an isolated rectangular cell of length L(t) and uniform
width H, with fibers oriented perpendicular to its primary axis,
we have from Equation (7) and (19), neglecting yield, that

Hp = (2μ1H + 4μaxial) ε, ε = 1

L

dL

dt
, (23)

showing how in-plane and side walls together regulate elongation.
Taking

μ1 ≈ p

4ε
, μaxial ≈ Hp

8ε
, (24)

with ε = 0.5 hr−1, the axial cellular elongation rate will be of
the correct order, and the walls parallel and perpendicular to the
plane of the simulation will make similar contributions to the
forces resisting elongation. Yield strain rates (ε∗, ε∗

axial) are chosen
such that all axial walls and cell walls in the plane of the sim-
ulation (in the meristem and elongation zones) are in a yielded
state. Parameters for cross walls and the anisotropic components
of the viscosity in the plane of the simulation (μ2 and μ3) were
chosen to give minimal cell growth in the lateral direction. For
the growth inhibitor, we took the permeability coefficient to be
Pb = 2 × 103 μm hr−1 (following the estimates for auxin from
Kramer, 2004); the decay and production rates were chosen to
give a plausible elongation rate profile (Walter et al., 2002; van der
Weele et al., 2003; Peters and Baskin, 2006; Chavarría-Krauser
et al., 2008) along the root axis. A full list of parameter values
is given in Table 1.

3. RESULTS
We initially (Figures 5–7) consider simulations on a synthetic
geometry, with constant mechanical properties for individual
cells prescribed at the start of the simulation and not includ-
ing growth regulation by diffusible substances. We use models
with linear viscous terms (τ = 0, τw = 0), allowing us to explore
the properties of the mechanical model in more detail. Later
(Figure 8), we will consider simulations on a realistic geometry,
and include growth controlled by a diffusible growth inhibitor
and non-linear viscous terms in order to represent the yielding
behavior of cell walls. Unless otherwise noted, all parameters are
as listed in Table 1.

Figure 5 shows the importance of the mechanical proper-
ties of cell walls in the plane of the simulation in promoting
elongation. We consider two simulations with identical synthetic
geometries as their initial configuration (shown in Figure 5A). In
Figure 5B, cell walls in the plane of the simulation have signifi-
cant viscosity, both isotropic (μ1) and parallel to the microfibrils
(μ2), which initially lie in the (transverse) y-direction. We find
that the organ elongates preferentially in the (axial) x-direction,
with cells maintaining a rectangular shape, demonstrating how
fiber reinforcement allows anisotropic expansion. Note that this
is a consequence of our choice of substantial viscosity μ2 in the
microfibril direction. In Figure 5C, the viscosity of the cell walls
in the plane is reduced to a very small value (μ1 = 0.002 MPa hr),

Table 1 | Table of default parameter values.

Symbol Description Default value Units

pm Pressure 0.3 MPa

μcross Cross wall viscosity 0.05 MPa μm hr

λcross Cross wall spring constant 100 MPa μm

τcross Cross wall yield stress 0 MPa μm

ε∗
cross Cross wall yield strain rate 0.05 hr−1

μaxial Axial wall viscosity 1.5 MPa μm hr

τaxial Axial wall yield stress 0 MPa μm

ε∗
axial Axial wall yield strain rate 0.05 hr−1

μ1 Wall isotropic viscosity 0.15 MPa hr

μ2 Wall anisotropic
(extensional) viscosity

20.0 MPa hr

μ3 Wall anisotropic (shear)
viscosity

0 MPa hr

ε Wall yield strain rate 0.05 hr−1

τw Wall yield stress 0 MPa

Pb Wall permeability for growth
inhibitor

2 × 103 μm hr−1

λb Growth inhibitor decay rate 16 hr−1

αb Growth inhibitor production
rate in QC cells

2 nM hr−1

kb Half saturation constant for
growth inhibitor

1 × 10−5 nM

nb Hill coefficient for growth
inhibitor action

2 n/a

τ0
axial Axial wall yield stress 0.1 MPa μm

τ0
w Basal wall yield stress 0.1 MPa

β Cell division rate 0.1 hr−1

Ny Number of cell files in
synthetic geometry

5 n/a

Ly Radial size of cell files 20 μm

Lx Minimum (and half
maximum) axial cell length

50 μm

but remains non-zero in order to regularize the numerical solu-
tion, and the anisotropic components of the viscosity (μ2, μ3)
are set to zero. We increase the viscosity of axial walls (μaxial =
10 MPa μm hr) in order to compensate for the loss of viscosity in
the plane of the simulation. The cells bulge and become rounded,
as there are no forces acting to hold together their axial sides.
This behavior is similar to the transverse expansion of cortical
cells arising when the elongation of endodermal cells is inhibited
through blocking their response to gibberellic acid (Ubeda-Tomas
et al., 2008).

Figure 6 shows how cell-scale variations in mechanical proper-
ties can lead to organ-scale behavior. All the cells in the “uniform”
case, shown in Figure 6B, have the same isotropic viscosity in
the plane of the simulation (μ1 = 0.15 MPa hr), along with sig-
nificant viscosity parallel to the microfibrils (μ2 = 20.0 MPa hr),
which causes the organ to elongate in the x-direction. The
“non-uniform” case, shown in Figure 6C, is identical to the uni-
form case, except that cells in the uppermost file (gray) have
lower isotropic viscosity (μ1 = 0.13 MPa hr). In both cases, the
initial configuration is as in Figure 6A. The graph of organ
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FIGURE 5 | Viscous cell walls in the plane of the simulation avoid

transverse swelling of cells. The synthetic geometry (A) was used to
initialize simulations, with results at t = 1 hr shown in (B) and (C). In (B),
with large anisotropic wall viscosity, cells retain their rectangular shape and
elongate in the x-direction, whereas in (C), with no anisotropic viscosity
and only small isotropic wall viscosity (μ1 = 0.002 MPahr,
μ2 = μ3 = 0 MPa hr), cells become rounded. Scale bars indicate 100 μm.
Parameters are as listed in Table 1, except that μaxial = 10.0 MPaμm hr in
(C) to compensate for loss of cell-wall viscosity in the plane of simulation.
7772 triangular elements were used for the cell walls in the plane of the
simulation; these elements are visible in the magnified images.

length against time in Figure 6D shows that the difference in
the length of the midline of the organ between the uniform and
non-uniform cases is small. However, the angle θ made between
the left-hand end of the growing organ and the x-axis, shown
in Figure 6E, indicates a clear bending response (at t = 2 hr) in
the non-uniform case, as shown in Figure 6C. In the absence
of adhesion to their neighbors, cells with lower viscosity would
extend more rapidly; as the cells are tightly adherent to each
other, the organ bends. The tip angle would be expected to
be an increasing (and accelerating) function of time, but sim-
ulation results in Figure 6E do not always show this. This is
because, for an organ undergoing bending, the finite element dis-
cretization provides a less accurate approximation to the strain
rate tensor in the plane of the simulation as the aspect ratio

of the triangular elements increases (during elongation of the
organ), as shown in Figure 6F. In Figures 6G,H we illustrate two
approaches to avoid this effect. In the first one (“refine”), we use
a finer spatial discretization (77,653 triangular elements, com-
pared with 7722 in the “uniform” and “non-uniform” cases).
With the finer mesh, the tip angle is an accelerating function of
time, but the simulation is considerably slower (c. 60 min com-
pared with c. 3 min for the non-uniform case). In the second
approach (“remesh”), we regenerate a new constrained Delaunay
triangulation of the geometry every 5 timesteps (0.5 hr). This
introduces new vertices within the wall of each cell; the posi-
tions of these vertices in the reference configuration (X) are
calculated by barycentric interpolation. The tip angle in this
case is in agreement with the results from simulations on the
finer mesh, but this method is computationally more efficient
(c. 8 min). In summary, care must be taken to avoid erroneous
predictions associated with distortion of elements, but prac-
tical steps can be taken that do not make computation time
excessive.

Figure 7 illustrates the effect upon organ growth of anisotropic
viscosity caused by oriented cellulose microfibrils. In particular,
it shows how reorientation of microfibrils can slow organ elon-
gation (cf. the multinet model of Green, 1960). In Figure 7B,
the microfibrils are initially oriented transversely (parallel to the
y-axis), whereas in Figure 7C, the microfibrils are initially ori-
ented in a pair of directions making angles ±0.2 radians to the
y-axis. Again, the initial configuration is as in Figure 7A. As can
be seen from Figures 7D,E, the organ with microfibrils initially
parallel to the y-axis extends exponentially with time, and there
is little reorientation of the microfibrils. In simulations with the
microfibrils starting at a small angle to the y-axis, initially they do
not increase the resistance to elongation significantly, as can be
observed in Figure 7D. However, as the organ extends, the angle
φ made by the microfibrils with the y-axis increases (as they are
embedded in the material of the wall), as shown in Figure 7E.
This increases their contribution to the viscosity in the direction
of elongation, thereby slowing the growth of the organ. (The sit-
uation in Figure 7B, where microfibrils are perpendicular to the
direction of elongation, is not stable to small numerical perturba-
tions; slight asymmetries may cause the microfibril orientations
to rotate.) This demonstrates how fiber reorientation alone is
sufficient to suppress tissue growth, supporting predictions for
individual cells by Dyson and Jensen (2010). Note that, in an
actual root, we expect fiber angles to be spatially non-uniform,
being aligned more closely with the axis of elongation as we move
further away from the root apex.

Figure 8 shows that the computational model can be used to
simulate growth on the scale of the root apex of an Arabidopsis
seedling. In the present model, we simulate growth by cell expan-
sion alone, ignoring cell division. The geometry used (Figure 8A)
consists of the whole root tip and about half of the rapidly grow-
ing region (elongation zone), but not the region further away
from the tip within which growth slows (the “growth terminating
zone”) (Verbelen et al., 2006). In Figure 8, levels of the diffusible
growth inhibitor are high near the QC, but decrease along the
main axis of the root. This modifies the yield stress of the cell
walls [according to Equation (22)], and leads to cells undergoing
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FIGURE 6 | Variations in cell mechanical properties lead to organ-scale

bending. (B,C) Simulation results at t = 2 hr with initial synthetic geometry
(A). The gray cells in the uppermost file of the organ in (C) have slightly lower
isotropic viscosity (μ1 = 0.13 MPahr) than the other cells in (B) and (C)

(μ1 = 0.15 MPa hr). (D,E) The total length of the midline of the organ L and the
angle θ made between the tip and the x-axis, respectively. Initially, both
organs grow roughly exponentially; however, the bending rate may decrease

after a while if triangular elements become highly elongated (F), in which case
linear interpolation over them gives a poor approximation to the strain rate of
the cell walls. This computational artifact can be avoided either by generating
a more refined initial mesh (“refine”, (G)) or by periodically regenerating the
triangulation of the tissue (“remesh”, (H)), as shown in (D) and (E). Crosses
marked (B,C) in (D, E) correspond to solutions (B,C) at t = 2 hr. Parameters
are as listed in Table 1. Scale bars indicate 100 μm.
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FIGURE 7 | Cell wall microfibril reorientation can slow organ elongation.

(B,C) Simulation results after 3 hr with initial tissue geometry displayed in (A).
In (B), microfibrils (indicated by red and green lines) are initially aligned with
the y-axis, whilst those in (C) are oriented at angles of ±0.2 to the y-axis. (D)

shows the lengths of the organs, and (E) shows the mean angle φ between
the microfibril orientations and the y-axis. The organ in (B) grows (roughly)

exponentially, whilst the elongation rate of the organ in (C) slows as the
microfibrils become more closely aligned with the direction of expansion.
Triangulation of geometry has 7722 elements; results with refined initial
mesh or periodic remeshing (not shown) are very similar to those shown
here (<1% relative difference). Markers on (D,E) show solutions (B,C) at
t = 3 hr. Parameters are as listed in Table 1. Scale bars indicate 100 μm.

a rapid transition between slowly growing and rapidly elongat-
ing states, as is found in experimental measurements of growing
roots (Chavarría-Krauser, 2006; Peters and Baskin, 2006). (The
simulations of Figure 8 have 6265 triangles and 12,860 degrees
of freedom; the simulation (Figures 8A–C) for 2 hr took less
than 2 min.) The local cellular pattern near the root apex at
t = 1 hr and t = 2 hr is shown in Figures 8D,E. Cell divisions can
be observed in a number of cells, showing the capability of the
model. However, it is clear that additional information about the
regulation of growth and division in the region near the QC is
necessary for the model to be used to study this region in detail.

In order to obtain simulations which qualitatively agree with
observations of growing roots (Figures 8A–C), it proved
necessary to modify the simulation parameters, setting
μaxial = 0.05 MPa μm hr, τ0 = 0.1 MPa, τ0

axial = 0.1 MPa μm,
μ1 = 0.3 MPa hr. These changes were made to reduce the
importance of the walls perpendicular to the plane of
the simulation. However, with greater axial wall viscosity
(μaxial = 0.5 MPa μm hr; the isotropic viscosity μ1 was decreased

to 0.2 MPa hr to increase the overall expansion rate of the organ),
it was found that the organ undergoes substantial bending, as
shown in Figure 9A. This is a result of the cells on the lower side
of the geometry being slightly narrower than those on the upper
side; such differences are pronounced in 2D as cell widths depend
upon the plane used to generate the 2D section. This effect is
illustrated in Figure 9B; this simulation is identical to Figure 6B,
except that the bottom file of cells is made to be slightly narrower
(18 μm compared with 20 μm), and this results in the organ
bending. Despite the limitations of the simulation, this result
illustrates the sensitivity of the overall organ morphology to the
shape of its constituent cells when one takes full account of the
mechanical and kinematic constraints of symplastic growth.

4. DISCUSSION
We have presented a 2D vertex-element model for growing plant
tissues that allows us to connect detailed mechanical properties
of individual cell walls to the shape and growth rate of a whole
organ. We showed for example that consideration of cell walls in
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FIGURE 8 | Simulation of a growing Arabidopsis root apex. (B,C)

Simulation results at t = 1 hr and t = 2 hr with initial geometry (A).
Shading indicates cell growth inhibitor concentration (on a logarithmic
scale); graphs below (B,C) show the expansion rate of the cells (hr−1),
plotted at the x-position of the cell centroids. (D,E) The regions highlighted

in gray in (B,C) in more detail. Triangulation of geometry has 8937
elements (see (A)). Simulation parameters are as in Table 1, except
μaxial = 0.05 MPaμm hr, τ0

axial = 0.1 MPaμm, μ1 = 0.3 MPa hr, τ0 = 0.1 MPa
for (B,C) and μaxial = 0.5 MPaμm hr, τ0

axial = 0.1 MPaμm, μ1 = 0.2 MPahr,
τ0 = 0.1 MPa for (D).

FIGURE 9 | Bending caused by small asymmetries. (A) Simulation results
at t = 2hr with greater axial wall viscosity μaxial than in Figure 8; bending is a
consequence of cells on the lower side of the root being narrower than those
on the upper side. (B) The result of a simulation on the artificial geometry of

Figure 6A at t = 2 hr, where the lowest file of cells is slightly thinner (18 μm)
than the other files (20 μm); cf. Figure 6C. Simulation parameters are as in
Table 1, except μaxial = 0.5 MPaμm hr, τ0

axial = 0.1 MPaμm, μ1 = 0.2 MPahr,
τ0 = 0.1 MPa for (A).

the plane of the simulation is necessary when cells have a large
aspect ratio, as is the case for cells in the elongation zone of A.
thaliana, otherwise cells bulge and become rounded (Figure 5C).
Note that angular springs could also be used to prevent this

bulging, and are likely to be less computationally expensive; alter-
natively, beam elements could be used (Dupuy et al., 2010).
However, our model directly includes the wall mechanical prop-
erty that is believed to be responsible for the anisotropy of growth
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(Baskin, 2005). The constitutive law used for cell walls in the plane
of the simulation incorporates anisotropy generated by cellulose
microfibrils, and the yielding of cell walls is modeled using a non-
linear viscous law, derived from a model of crosslink turnover
(Dyson et al., 2012). While we have not here presented a complete
parametric study, our model can nevertheless be used to assess the
effect of enzymes that target different components of the cell wall
on organ-level morphologies.

Simulations on a synthetic geometry showed how variations
in cell scale properties could lead to organ-scale behaviors. These
simulations also indicated the difficulty in simulating highly elon-
gated tissues, as the elements in the plane of the simulation also
become elongated and so less able to approximate the strain rate
in the tissue. We demonstrated a solution to this computational
difficulty through periodic remeshing of the tissue (Figure 6E).
Our results highlight the importance of careful assessment of
numerical errors that can easily arise in simulations of this
complexity.

The effects of cellulose microfibrils on plant cell growth were
investigated. Microfibrils rotate as the organ elongates, reduc-
ing the angle between their direction and the midline of the
organ (Anderson et al., 2010). This increases the effective viscos-
ity of the organ along the midline, thereby reducing its growth
rate (Figure 7). Such observations support the hypothesis that
microfibril reorientation may play a role alongside stiffening of
the pectin matrix in determining when cells stop expanding as
they leave the elongation zone.

The mechanical model was then applied to simulate a growing
root apex (Figure 8), using a geometry acquired from confo-
cal imaging. The yield stresses of cell walls were regulated by a
diffusible growth inhibitor. Such a model is intentionally artifi-
cial. It is thought that a number of different hormones regulate
growth in Arabadopsis roots (Ubeda-Tomas et al., 2012). Whilst
the details of some hormone response networks have become
sufficiently clear to permit the development of mathematical
models (Middleton et al., 2010, 2012b; Dupeux et al., 2011), there
are gaps in our understanding of how the levels of these hor-
mones are controlled through synthesis and transport, and the
downstream effect of these hormones upon cell wall biochem-
istry needs further investigation (Sanchez-Rodríguez et al., 2010).
There is also only partial information about the effects of the
numerous cell wall remodeling enzymes on cell wall mechanical
properties, and we did not include spatial variation in the initial
microfibril orientations. Moreover, our model does not at present
include a number of processes, including the shedding of lateral
root cap cells and forces imposed by the external medium, which
are important for the maintenance of the structure and shape
of the root apex. As the understanding of these effects becomes
more well developed, these can be readily included in the current
framework.

For simulations of the whole root apex, simulation parame-
ters had to be chosen carefully to avoid bending because of small
asymmetries in the geometry (Figures 8C,D). These asymme-
tries may be partly a consequence of the 2D representation of a
3D tissue, and also because of inaccuracies in the acquisition of
the tissue geometry. By stiffening epidermal tissues and softening
inner tissues (simulations not shown), we find that the tendency

to grow straight is promoted. This may be a benefit of residual
stress patterns in elongating organs, or it may compensate for
the fact that a 2D projection of a 2D root underestimates the
proportion of cells in peripheral tissues.

For roots to grow straight, in the absence of other exter-
nal stimuli, may require additional mechanisms to coordinate
growth, for instance sensing the stress or strain within indi-
vidual cell walls. Alternatively, this bending may benefit the
plant by encouraging the root to explore its local environment.
These questions may need 3D models to be properly resolved.
Nevertheless, it is notable that our method can be implemented
to produce uniform elongation of a structure that has internal
asymmetries in its architecture. It will be of significant interest
to understand in more detail the interplay between geometric
asymmetries and gradients in mechanical properties in processes
such as gravitropic bending, extending existing models for root
gravitropism (Barlow et al., 1989; Stočkus and Moore, 1996;
Chavarría-Krauser, 2006; Moulia and Fournier, 2009) to include
more cell-scale detail. Our results show that small differences in
the mechanical properties in the outer tissue layers can lead to
substantial curvature generation.

This vertex-element framework can be extended to include a
number of biological processes which are important in regulat-
ing growth. Water transport between individual cells is regulated
by the osmotic potential of the cells and the permeability of the
cellular membranes. The latter can be controlled by aquaporins;
certain aquaporins were observed to be specifically expressed in
certain regions during the development of lateral root primordia
(Péret et al., 2012), and a mathematical model which lumped tis-
sues into different compartments elucidated the role of this pro-
cess in controlling lateral root emergence. The current framework
may be readily extended to incorporate non-uniform turgor pres-
sure and water transport between cells, along with water transport
in the apoplast and the supply of water to the xylem and from the
phloem (Steudle and Peterson, 1998; Passioura and Boyer, 2003;
Wiegers et al., 2009). The more detailed representation presented
here will be of use in interpreting the importance of cell-scale
spatial and temporal variations in aquaporin expression during
lateral root emergence.

We have shown that, even in 2D, it is necessary to simulate
both the edges and faces of individual cells in order to predict
realistic organ-level growth. In extending the present model to
3D, there are a number of key difficulties which need to be over-
come. Acquiring accurate 3D geometries for a whole root apex is
currently beyond the capabilities of confocal imaging, although
much progress has been made for other organs such as the shoot
apical meristem (Fernandez et al., 2010). As the orientation of
cell walls with respect to the direction of growth is critical, these
geometric representations need to be of a very high quality. Finite-
element discretization of cell walls in 3D is also more complicated,
particularly if the cell walls are represented by shell elements:
although many finite element packages implement this, cell divi-
sion proves to be difficult in such a context. Such considerations
illustrate the many challenges that remain in further developing
such approaches and reinforce the current value of 2D formula-
tions, both in their own right and in laying crucial foundations
for further 3D studies.
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