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ABSTRACT

We calculate the fundamental stellar parameters effective temperature, surface gravity and
iron abundance - Tef, log g, [Fe/H] - for the final release of the Mapping Nearby Galaxies
at APO (MaNGA) Stellar Library (MaStar), containing 59,266 per-visit-spectra for 24,290
unique stars at intermediate resolution (R ~ 1800) and high S/N (median = 96). We fit theo-
retical spectra from model atmospheres by both MARCS and BOSZ-ATLASO to the observed
MaStar spectra, using the full spectral fitting code pPXF. We further employ a Bayesian ap-
proach, using a Markov Chain Monte Carlo (MCMC) technique to map the parameter space
and obtain uncertainties. Originally in this paper, we cross match MaStar observations with
Gaia photometry, which enable us to set reliable priors and identify outliers according to
stellar evolution. In parallel to the parameter determination, we calculate corresponding stellar
population models to test the reliability of the parameters for each stellar evolutionary phase.
We further assess our procedure by determining parameters for standard stars such as the
Sun and Vega and by comparing our parameters with those determined in the literature from
high-resolution spectroscopy (APOGEE and SEGUE) and from lower-resolution matching
template (LAMOST). The comparisons, considering the different methodologies and S/N of
the literature surveys, are favourable in all cases. Our final parameter catalogue for MaStar
cover the following ranges: 2592 < Teg < 32983 K; 0.7 < log g < 5.4 dex; —2.9 < [Fe/H]
< 1.0 dex and will be available with the last SDSS-IV Data Release, in December 2021.

Key words: techniques: spectroscopic — stars: fundamental parameters — stars: abundances —
stars: atmospheres — stars:evolution — galaxies: stellar content.

1 INTRODUCTION

The age and chemical distribution of unresolved stellar populations
in galaxies and star clusters can be probed via evolutionary popu-
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lation synthesis (EPS) modelling (Tinsley 1972, 1980; Bruzual A.
1983; Renzini & Buzzoni 1986; Maraston 1998; Bruzual & Charlot
2003; Maraston 2005; Leitherer et al. 1999; Vazdekis et al. 1996,
2010, 2012; Fioc & Rocca-Volmerange 1997; Conroy et al. 2009;
Maraston & Strombéck 2011; Maraston et al. 2020; Thomas et al.
2003, 2011). This technique relies on stellar evolution theory to
model the spectral energy distribution (SED) of stellar systems
across the Universe. The basis of EPS models is the Simple Stellar
Population (SSP), which is a collection of stars that are coeval and
chemically homogeneous. To create a model SSP there are three
fundamental inputs: the stellar initial mass function (IMF), stellar
evolutionary tracks and a library of stellar spectra with known atmo-
spheric parameters and a comprehensive coverage of the different
stages of stellar evolution.

With respect to the spectral library input, one has a selec-
tion of empirical and theoretical libraries to choose from. Em-
pirical libraries include: ELODIE (Prugniel & Soubiran 2001),
MILES (Sdnchez-Bldzquez et al. 2006), X-SHOOTER Spectral
Library (XSL, Chen et al. 2014; Gonneau et al. 2020), STELIB
(Le Borgne et al. 2003), PICKLES (Pickles 1998) and GRANADA
(Martins et al. 2005). These libraries differ vastly in their cover-
age of stellar parameters, in their spectral resolution, and wave-
length range. Not all of them are adequate to model the SEDs of
galaxies from modern surveys such as Mapping Nearby Galaxies at
Apache Point Observatory (MaNGA) (Bundy et al. 2015; Yan et al.
2016b,a; Blanton et al. 2017; Drory et al. 2015; Law et al. 2015,
2016), which has collected IFU spectroscopy for over 10,000 nearby
galaxies (z ~ 0.05). In most cases the wavelength coverage is not suf-
ficient to model the entire SED wavelength range. In response to this
gap in the market, the MaNGA Stellar Library (MaStar, (Yan et al.
2019)) has been established, covering a larger parameter space in
atmospheric properties, mass and luminosity than any other spec-
tral library. Such comprehensive coverage will allow for the creation
of robust SSP models. Furthermore, MaStar collects spectra using
the Baryon Oscillation Spectroscopic Survey (BOSS) spectrographs
(Smee et al. 2013) in a wavelength range of 3620 — 10350 A and
median resolution of R ~ 1800. This means that the SSP models
created with this library will be perfectly suited for Sloan Dig-
ital Sky Survey (SDSS, (York et al. 2000; Eisenstein et al. 2011;
Blanton et al. 2017)) spectra and spectroscopic surveys also at high
redshift.

To calculate EPS models using empirical spectra, one needs
accurate stellar atmospheric parameters for the empirical spectra
to be able to link them to the theoretical parameters expected for
stellar evolutionary phases. These parameters include the effective
temperature T, surface gravity log g and iron abundance [Fe/H]
- hereafter the fundamental stellar parameters (FSPs). These FSPs
can be determined by analysing the photometric and spectroscopic
data of a star with theoretical spectra from atmosphere models.

Stellar parameter determination is not only essential for cre-
ating population models, but also for Milky Way modelling and
our understanding of stellar astrophysics. Consequently, there have
been many studies and algorithms devoted to the determination of
the FSPs. For large-scale surveys, including MaStar, it has become
necessary to automate this process, which is now possible thanks
to the advancement in computer processing power. Existing work
dedicated to this problem includes the APOGEE Stellar Parameter
and Chemical Abundances Pipeline (ASPCAP, Garcia Pérez et al.
(2016); Majewski et al. (2017)) which uses a )(2 minimisation ap-
proach in the software package FERRE. They determine FSPs by
fitting the observed spectra to synthetic spectra over the range of
~ 200 nm and chemical abundances are found by fitting in a narrow
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Figure 1. Histogram of the median signal-to-noise ratio per pixel of all
MaStar good visit spectra in the MaNGA Product Launch 9 data release.
The median value of this distribution is 96 (per pixel).

wavelength range around interpolated spectra. This analysis is made
at a higher spectral resolution than MaStar at R ~ 22, 500. The Payne
(Ting et al. 2019), uses a fully connected neural network also trained
on synthetic spectra. This approach relies on mapping up to 25 stel-
lar labels to each spectrum and uses a least squares minimisation to
train the network weights. Similar to this, but trained on empirical
stellar spectra, is The Cannon (Ness et al. 2015). This approach uses
a transfer learning method of training a data-driven model on some
empirical spectra with high-fidelity labels and applying the model
to a custom library of survey spectra, matching the line spread func-
tion (LSF) to observations. Furthermore, the Université de Lyon
Spectroscopic Analysis Software (ULySS, Koleva et al. (2009b)),
which is based on an early IDL version of the penalized pixel-fitting
method (pPXF, Cappellari & Emsellem (2004); Cappellari (2017))
takes the approach of y2 minimisation, with empirical data pro-
vided by the ELODIE interpolator as their reference set and LSF
matched after analysis. They first use convergence maps to identify
which parameter combinations converge to the absolute minimum
2 and combinations which may lead to local minima. They then use
Monte-Carlo simulations with y2 maps to break any degeneracies
and determine atmospheric parameters. Despite their success and
accuracy, such methods cannot be used to predict the full parameter
range of MaStar objects due to limitation in their model parame-
ter grid and narrow wavelength ranges which are not suitable for
the wide range of stellar spectral types presented in MaStar. Fur-
thermore, by calculating parameters from fitting a wide wavelength
range, we are less dependent on possible inaccuracies of individual
lines in the model atmospheres.

In this paper we present a method for the task of stellar pa-
rameter determination with which we derived the FSPs of the final
catalogue of MaStar spectra (MPL11), including 59,266 per-visit
spectra for 24,290 unique stars!. This is an extension of the method
we developed for the early MaStar data release?, in support of the
first MaStar-based stellar population models Maraston et al. (2020,

! Note that the full catalogue of parameters will be available at the official
data release. To clarify for readers outside of the SDSS-MaNGA collabora-
tion, the data are made available to the public through scheduled data releases
(DRs) and circulated internally in a MaNGA Product Launch (MPL). Please
refer to Table 1 of Law et al. (2021) for further details and the dates of each
data release.

2 MaNGA Product Launch 7, hereafter MPL7, of 8,646 per-visit spectra
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hereafter M20). In both cases, we fit the observed spectra with a wide
grid of theoretical spectra from model atmospheres using the pPXF
full spectral fitting code (Cappellari & Emsellem 2004; Cappellari
2017). In this paper, we augment the template fitting with a Markov
Chain Monte Carlo (MCMC) technique in order to thoroughly map
the parameter space and derive uncertainties. For completeness, in
Appendix A we describe our previous method which uses a discrete
Xz approach and compare the results with Chen et al. (2020). In
Appendix B the discrete x> and MCMC methods are compared.
The conclusion is that - in regard to stellar population performance
- the two approaches are equivalently good.

It should be also noted that other efforts exist within MaStar to
derive stellar parameters based on different techniques and methods
(Chen et al. 2020), Chen et al. (in preparation), Lazarz et al. (in
preparation) and Imig et al. (in preparation). All parameters will be
released via the SDSS value added catalogue alongside a median
set in December 2021 and their comparison described in Yan et al.
2021, in prep..

The structure of this paper is as follows. Section 2 briefly
describes the main features and target selection of MaStar. This
section also gives a description of the adopted theoretical stellar
atmospheres and the pre-processing steps required for our analysis.
In Section 3 we describe our methodology and results. In Section
4 we present stellar fits of the Sun and Vega to test our method-
ology against stars with well determined FSPs. In this section we
also compare a subset of our parameters to other stellar parameter
catalogues. In Section 5 we explain the link between this work and
the population model calculations. Finally, the work is summarised
and future considerations are made in Section 6.

2 DATA
2.1 Observations

The aim of MaStar is to collect stellar spectra covering a wider
parameter space in Tg, log g and [Fe/H] compared to previous
libraries. Since this release MaStar now contains 59,266 high quality
per-visit spectra for 24,290 stars (MPL11). The first public data
release (DR15) is drawn from MPL7 of MaStar and contains 8,646
per-visit spectra for 3,321 stars (Yan et al. 2019).

Observations are carried out on the 2.5 m Sloan Foundation
Telescope (Gunn et al. 2006) located at the Apache Point Obser-
vatory. The MaStar library has been created thanks to parallel ob-
servations with the APOGEE-2N (Majewski et al. 2016) survey by
using MaNGA fibre bundles to take optical spectra in the same field
of view. The use of fibre bundles allows for more accurate flux
calibration compared to single fibre methods. Furthermore, MaStar
can recover a higher signal to noise per object (median = 96 (per
spectral pixel) in MPL11, see Figure 1) and wider wavelength cov-
erage (3620 — 10350 A) compared to previous stellar spectroscopic
surveys. The resolution of each individual spectrum varies due to
changes in temperature of the fibers and because the focal plane and
CCDs are not flat. In Figure 2 we show the median, wavelength-
dependent resolution for all MPL11 spectra, of which the median
resolution (R = A/AQ) is approximately 1800. We also show the
1 and 20 range of resolution values about the median, indicated
by the dark and light grey stripes. Details of the features in the
resolution vector can be found in Yan et al. (2019) and Law et al.

for 3,321 stars as part of the SDSS Data Release 15, Yan et al. (2019);
Aguado et al. (2019)
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Figure 2. Median spectral resolution (R = A/AAQ) of MaStar spectra
(MPL11) as a function of wavelength (A). We also show the 68% (dark
grey) and 95% (light grey) percentiles in resolution around the median. For
further details of the features in this figure, please see Law et al. (2021).

(2021). Using the MaNGA fiber bundles and BOSS spectrographs
means that stellar population models created with this library will
be perfectly suited for the analysis of MaNGA, other SDSS spectra
and a wide range of current and forthcoming spectroscopic surveys.

As mentioned, one of the main aims of the survey is to cover
a parameter space in stellar properties (Teg, log g and [Fe/H])
larger than previous efforts. This will contribute to creating more
robust SSP models compared to previous empirical libraries. This
has been achieved by firstly creating a photometry and astome-
try system based on the Pan-STARRS1 (Chambers et al. 2016)
and American Association of Variable Star Observers (AAVSO)
Photometric All-Sky Survey (APASS?). Stars with known stel-
lar parameters were identified in this catalogue and the coordi-
nates used for targeting. In order to recover a uniform cover-
age in the FSPs and [a/Fe], existing stellar parameter catalogues
such as the Apache Point Observatory Galactic Evolution Experi-
ment (APOGEE, Garcia Pérez et al. (2016)), the Sloan Extension
for Galactic Exploration and Understanding (SEGUE, Yanny et al.
(2009)) and the Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST, Boeche et al. (2018)) were then used to guide
observations. This sophisticated target selection also ensures that the
very hot and cold stars are observed as well as an oversampling of
rare combinations of stellar parameters. The survey also observes
many of the targets multiple times, this helps to account for any
variability in the stellar atmosphere. Please refer to Section 3 of
Yan et al. (2019) for more detail on MaStar target selection.

2.2 Synthetic Stellar Atmospheres

Most stellar parameter pipelines rely on comparing observations to
ground truth data which has been parameterised with some level
of confidence. For this purpose, we use the model atmosphere
grids from MARCS (Gustafsson et al. 2008) and BOSZ-ATLAS9
(Mészaros et al. 2012; Bohlin et al. 2017). In general, theoretical
stellar atmospheres are created by combining known atomic and
molecular transitions with certain assumptions regarding properties
such as local thermodynamic equilibrium (LTE), microturbulence

3 https://www.aavso.org/apass/
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(¢) and model geometry. Synthetic spectra are then produced and
compared to empirical observations.

By using synthetic spectra, we can ensure the full wavelength
range of MaStar spectra can be modelled and resolution matched
by downgrading to the MaStar wavelength-dependent resolution.
In future iterations of our pipeline we plan to include models that
account for the varying LSF in MaStar spectra. However, this will
significantly increase the computation time.

Using the MARCS model library we can cover the temperature
range of 2500 — 8000 K, with log g values ranging from —0.5 to
5.5 dex and [Fe/H] from —2.5 to 1 dex. We use spherical model
geometry between log g of —0.5 and 3 and plane-parallel between
log g of 3.5 and 5.5 for a more accurate description of the FSPs for
giants and dwarfs. We also ensure the microturbulence parameter
is set to 2 kms™! for all MARCS models for homogeneity with
the BOSZ-ATLAS9 assumptions (see below). The MARCS models
also assume local thermodynamic equilibrium (LTE) and use the
standard mixing-length model for convection. The synthetic spectra
generated by these models were downloaded at a resolution of R =
20, 000 and downgraded to the MaStar resolution.

The version of BOSZ-ATLAS9 model library covers temper-
atures of 3500 — 35, 000 K, log g values range from 0 to 5 dex and
[Fe/H] from —2.5 to 0.5 dex. These models are of a plane-parallel
geometry with a microturbulence of 2 kms~!. The downloaded res-
olution is R = 5, 000 before downgrading to the MaStar resolution.

We allow some extrapolation of the models by extending up
to 40,000 K in Teg, to —1 and 6 dex in log g and down to -3
dex for [Fe/H]. The extension to 40, 000 K is justifiable as at these
temperatures, the spectrum is close to that of a black-body. The ex-
trapolation of log g and [Fe/H] will have a minor effect on the width
and depth of absorption lines. This combination of parameters gives
3,907 and 5,891 MARCS and BOSZ-ATLAS9 spectra, respectively.
We then separate the grids based on the flat priors described in (see
Section 3.1). If the minimum value of the Ty prior is greater then
5000 K, then only BOSZ-ATLAS9 models are used. Otherwise for
cooler spectra, both grids are explored separately and the best fitting
model of the two grids is selected based on y2. This is done to avoid
the issue of interpolating between non-continuous synthetic spectra
at the model grid interface. The grid of model parameters can be
found in Figure 3.

In our analysis we focus on the main atmospheric parame-
ters required for creating stellar population models: Teg, log g and
[Fe/H]. However, there is scope to widen this parameter space to
other properties such as stellar rotation, microturbulence or ele-
ment abundance ratios, to name a few. Such properties will affect
parameter determination due to relationships inherent in the spec-
tra. In this first paper we use solar-scaled models at all metallicities,
i.e. no alpha-element enhancement so that all models are homo-
geneous and comparable regarding this parameter. We shall tackle
the determination of detailed element abundances in future works.
A constant value of & = 2 kms™! is adopted as this is what is
available in the BOSZ models (as also used in previous works e.g.
Castelli & Kurucz (1994)). We also assume no rotational velocity.

To secure ourselves that these assumptions do not include
strong systematics in our derived parameters, we assess the effect by
¢ and rotational velocity in Appendix C. The result is that varying &
mainly leads to an offset in Teg but the difference is generally small
(100 K) and within our parameter errors. For rotation, we see
no relationship between velocity and gravity. Accounting for these
effects is necessary when deriving properties from individual lines
at high resolution, but for the moderate resolution of MaStar and
because we fit over a wide wavelength range, it seems negligible.

® BOSZ ATLAS9 © QEPeO0o. - 9000
0or O MARCS 00009 ® @ SIWOKCD 000000
00000 @ ¢ EOWOITIOOO0000
1_
= oo
% 2 CHINNN00SSNRNENEEE S8 9§ # & & & SIAEORCCO0CO0000
— CHINNNNN000E0EEE00000 808 8 & & & & AIEDICCCOCO0000
33 oo
2 ® & S0WOBCOO0CO0000
4 & & S03E0CCO0000000
oo 5000000
5  ® IWORTOO000000
QUI000C00000000
3 2 1 08 0 04 03
Te/10% [K]
o o o o o o ©o o o o o o
5F © o . . . . . L] L . . . . L] .
o o . . . . . . - . L L] - . .
4k 0 O e e e o e e e o o o & o o
— O 0O ® ® e e e e ® ¢ © o ® o o
g:’)- o] o . . . . . L] L] . . . . . .
O O e e e e e e & ¢ © o ® o o
32- O O e e e e e e e e o o o o o
2 O O e e e e e e & ¢ o o & o o
1+ o o . . . . . . . . . . . . .
O O e e e e e e e e o e o o
oF o [} . . . . . . . . . . . . .
© o o o o o o o o
10 05 00  -05 -10 -15 =20 -25
[Fe/H] [dex]
1.0 000C0000C0000 0 O © AINENCONC0000000
0OO0O0000000 0 O O ATAIBI0000
0.5r © @ S0IOKCOO000000
. .o 00
— 00 . oo 00
ﬁ ® @ EIEORCOO000000
E —-0.5F . © © IWORTOO000000
— ® @ EEOKCOC000000
E -1.0 ® @ S0IE0C00000000
ﬁ . XX
— _1.5F ® @ EIEOKO0000000
LN
-2.0 . oo 500
LN
-2.5¢ @ @ S0AE0C00CC00000
3 2 1 08 0 04 03

Ter/10% [K]

Figure 3. Adopted grids of MARCS (red) and BOSZ-ATLAS9Y (blue).

2.3 Pre-processing

Before MaStar and synthetic spectra can be compared, some prepro-
cessing is required. We firstly downgrade the models of MARCS
and BOSZ-ATLAS9 to the same resolution vector as the median
resolution of MaStar data (see Figure 2 for the MaStar resolution
vector). As the resolution is wavelength-dependent, we cannot use
a standard Gaussian kernel to downgrade the synthetic spectra. In-
stead, we use the "gaussian_filterld’ function provided in the pPXF
package. This allows for a variable sigma (standard deviation of
the Gaussian) for every pixel and is computationally efficient. The
models are also resampled at the same velocity sampling as the data,
which for the SDSS spectrographs is 69 km/s/pixel. This is done
in order to make a pixel-by-pixel comparison later in the analysis.
To resample, we use the python package SpectRes (Carnall 2017)
which conserves flux density per angstrom. An example of original
and downgraded model is in the upper panel of Figure 4.
Furthermore, the observed spectra require some correc-
tion for dust extinction, which is also referred to as being de-
reddened. The MaStar catalogue is matched to the Gaia DR2
(Gaia Collaboration et al. 2018) parallax values, which for 24,290
unique stars results in 23,180 clean matches (i.e. only ~ 5 per cent

MNRAS 000, 1-21 (2020)
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Figure 4. Top panel: An example BOSZ-ATLASO spectrum (Teg = 5750 K,
log g= 4, [Fe/H] = 0 dex) before and after downgrading to MaStar resolution.
Bottom panel: An example MaStar spectrum before and after it has been de-
reddened with E (B—V') = 0.19 using the Fitzpatrick (1999) dust extinction
law. All spectra shown are median normalised after processing.
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Figure 5. Distribution of E (B — V') of MaStar data derived from the 3D
dust maps of Green et al. (2019).

of observations lack Gaia parallax values). The Gaia crossmatch
also allows us to create priors based on their reported photome-
try, as explained in Section 3.1. Distance estimates are then used
from Bailer-Jones et al. (2018) in combination with the 3D dust
map provided by Green et al. (2019), who use data from the Gaia,
Pan-STARRS 1 and 2MASS (Skrutskie et al. 2006) surveys to ob-
tain accurate values of E(B — V). With the calculated E(B — V)
values, extinction is corrected for by using the Fitzpatrick (1999)
dust extinction function for each observation. See the bottom panel
of Figure 4 which shows a MaStar spectrum being de-reddened ac-
cording to an E (B —V) = 0.19. The distribution of E (B — V) values
for the target stars can be found in Figure 5. The spectra without a
Gaia crossmatch or Bailor-Jones distance, hence without 3D dust
map E (B — V) values are not used in our final parameter catalogue.

MNRAS 000, 1-21 (2020)

3 MCMC

Here we describe the use of Markov Chain Monte Carlo (MCMC)
methods in parallel with the full spectral fitting code pPXF for pa-
rameter determination of the MPL11 catalogue of stellar spectra.
With this method, we are able to use ,\/2 statistics as an indication of
the quality of fit. These values are used to clean the data by discard-
ing parameters corresponding to bad fits with high y2. However,
for cooler stars, the XZ statistic as a measurement of the model fit
is less reliable due to features such as stellar flares that - as they are
not included in the model atmosphere - can worsen the y2 while the
fundamental parameters are plausible. We discuss how we decide
on the y2 threshold in Section 3.2.3.

3.1 Priors

MaStar targets are first plotted in a CMD using the photometry val-
ues from the Gaia crossmatch. We use this to obtain prior estimates
for Teg and log g, with no estimate for [Fe/H]. In this instance, we
overplot the PARSEC theoretical isochrone tracks (Bressan et al.
2012) for ages from 2 Myr to 10 Gyr providing a fine grid and wide
coverage in both parameters (we use 2, 000-21, 000 Kin T and -6
to 7.95 in log g) and CMD space. Then, for each spectrum, we con-
sider all isochrones that run through a box of A(Ggp — Grp) = 0.8
and A(Mg) = 2 taking the minimum and maximum values of T.g
and log g. For targets that fall outside of the isochrone coverage,
we construct the same box around the closest isochrone point and
follow the same procedure. Furthermore, we impose a minimum
Teq prior of at least £16 per cent of the nearest isochrone value
for all targets as this allows for adequate sampling of +500 K when
analysing the coolest temperature range. The wide parameter cov-
erage allows us to obtain priors for all parameter combinations and
stellar types.

The left-hand panel of Figure 6 shows a CMD in Gaia colours
with the PARSEC isochrones in grey, photometry-matched MaStar
targets in blue and an example of the prior box in red. The middle
and right-hand panels show the derived priors for T and log g. We
emphasise that these values represent the nearest isochrone values
and that we take the minimum and maximum parameters within the
predefined box which define a uniform prior over a fixed range.

3.2 Procedure

The posterior distribution of each FSP is approximated using Baye’s
theorem:

P(spec|x)P(x)

P(spec) @

P(x|spec) =
where x represents the model FSPs (T, log g and [Fe/H])
and spec represents an individual, extinction-corrected spectrum.
The posterior is defined by the probability (P) of the model given the
observation and is represented by P(x|spec). The likelihood is the
probability of the observation given the model and is represented by
P(speclx). The prior probability is defined by P(x) in the absence
of new data. P(spec) is ignored as this is the same division factor in
all cases for the same observation. In other words, Equation 2 says
that given the observed spectrum, the posterior probability of the
parameters that are associated with the model x can be found.
The log likelihood function is modelled as shown in equa-
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and log g priors, respectively.

tion 3 assuming that measurements are independent with Gaussian-
distributed errors.

2 (spec,-—model,-(x) 2 3)

1
P(spec|x) « -5 Z -
i=0
The terms spec; and o; represent the flux value and error at
a given pixel in the spectrum. The term model;(x) represents the
flux at each corresponding pixel of the linearly interpolated model
spectrum. This is parameterised by the FSPs (x) and has already been
convolved by pPXF on the fly as each new model is proposed and
used in the likelihood. The convolution involves fitting the proposed
model with multiplicative polynomials of degree six. This allows
one to account for small velocity offsets in the observed spectrum
and to fit the spectral continuum in order to make a comparison
between the observation and model. Sixth-degree multiplicative
polynomials are used as this was found to produce the best balance
between stable parameter recovery and fast computation speed.

3.2.1 Affine Invariant Ensemble Sampler

Using MCMC, one is able to explore a multidimensional param-
eter space through the use of Markov chains - with each new
proposal only being dependent on the last. The posterior of the
target parameters can be sampled according to a number of avail-
able algorithms. In our analysis we use the Python package emcee
(Foreman-Mackey et al. 2013) which uses an implementation of the
affine-invariant ensemble sampler proposed by Goodman & Weare
(2010). We provide a brief overview of this algorithm, but refer the
interested reader to the original paper.

The property of affine-invariance allows the sampler to outper-
form standard samplers, such as the Metropolis-Hastings or Gibbs,
when sampling anisotropic density distributions. This type of dis-
tribution is sometimes found in the relation between stellar FSPs.
The sampler uses an ensemble of *walkers’ - stochastic chains of
sampled points in each target parameter space - to probe the pos-
terior shape of each parameter. The proposal distribution of each

walker decides where it should move next in the chain. In this al-
gorithm, the distribution is decided from the current positions of
all other walkers in the ensemble (the complementary ensemble).
A new position for a walker X}, is proposed by randomly drawing a
walker X; from the complementary ensemble.

Xk(t)—>Y:Xj+Z[Xk(t)—Xj] 4

Y is the proposed position, ¢ represents a walker step and Z is
arandom variable drawn from the distribution g(z) which takes the
following form (Goodman & Weare 2010):

g(z)"“{ZIIT el (5)
0 otherwise

‘a’ represents one of the few tuning parameters in this algo-
rithm, which directly affects the acceptance fraction of walkers, i.e.
the number of proposed steps that are accepted. A suitable accep-
tance fraction allows the walkers to explore the parameter space
without being trapped in local minima. Foreman-Mackey et al.
(2013) suggest a = 2 and an acceptance fraction between 0.2 — 0.5.
We find this value of a returns an acceptance fraction > 0.5 and
that ¢ = 5 is more suitable for our pipeline, resulting in a mean
acceptance fraction of 0.27 across all walkers. Other tunable pa-
rameters include the number of walkers and the number of steps in
each walker chain.

3.2.2  Parameter estimation

To generate the posterior distribution we use 40 walkers, each of
2,000 steps, of which 200 steps are discarded as a burn-in phase.
The purpose of the burn-in is to remove any bias in the posterior
from the starting positions of the walkers. Example trace plots of
the ensemble walkers for three different MaStar targets of varying
temperatures can be found in Figure 7. The burn-in period of 200
steps is shown by the red shaded area and the steps that form the
posterior in the white area. The posterior distribution for each en-
semble is shown by the histogram on the right of each panel, with
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Figure 7. Example ensembles of walkers for the MCMC procedure. The top three panels show the how the FSPs are determined for a cool dwarf, the middle
three for an intermediate temperature main sequence star and the bottom three for a hot main sequence star. The red shaded area of each panel shows the burn-in
phase and the black lines represent the path of the walkers. The histogram for each panel shows the posterior distribution of the walkers, excluding the burn-in
phase. The solid and dashed blue lines represent the selected parameter and one sigma errors, respectively. The priors for each target are as follows. MANGAID
3-53502120: 2824 <T. < 3034, 4.1 <log g< 5.1, =3 < [Fe/H] < 0.5. MANGAID 5-24235: 5069 <T¢ < 8162, 3.1 <log g< 4.6, -3 < [Fe/H] < 0.5.
MANGAID 7-28679420: 6890 <T.g < 23356, 2.6 <log g< 4.7, -3 < [Fe/H] < 0.5.
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Figure 9. Median y? as a function of the binned effective temperature.

the estimated parameters and errors shown by the solid and dashed
horizontal lines respectively. The priors we use for each MANGAID
are as follows. MANGAID 3-53502120: 2549 < Teg < 3520 K,
4.1 <log g < 5.1 dex, -3 < [Fe/H] < 0.5 dex. MANGAID 5-
24235:5069 < T < 8162 K, 3.1 <logg < 4.6 dex, -3 < [Fe/H]
< 0.5 dex. MANGAID 7-28679420: 6890 < Teg < 23356 dex,
2.6 <log g < 4.7 dex, —3 < [Fe/H] < 0.5 dex. These priors come
from the CMD method described in Section 3.1, where the prior
range depends on the photometry of the MaStar target.

To avoid spurious effects caused by merging the two grids
we explore both grids independently for cooler stars and use only
BOSZ-ATLAS?Y for hot stars. We found that BOSZ-ATLASO gen-
erally provide fits with better y2 at these hotter temperatures. We
use the minimum temperature of the T prior to decide whether a
star is to be analysed with both grids. If the minimum of the prior
is greater than 5000 K, only the BOSZ-ATLAS9 models are used,
otherwise both models are employed. In the case of both grids being
used, the parameters are selected from the best fitting model with
the best reduced )(2.

We apply a small offset to the parameters in the RGB (log g
< 2) that have been assigned parameters from MARCS models. The
majority of spectra in this parameter space are covered by the grids
of both models, except the few that have Teg < 3500 K and the
MARCS models come in to effect. We notice a small systematic
offset (BOSZ-ATLASY subtract MARCS) of —8 K in T, 0.08 dex
in log g and 0.23 dex in [Fe/H] in the limits of 3500 < Teg <

4100 K and log g < 2. We therefore add these offsets to MARCS
based parameters in order to remove any bias. For the dwarf stars,
we apply no offset as most of these can only be fit by MARCS
models.

As the posterior distributions for Teg and log g are produced
by considering priors in the MCMC analysis, we take the median
value of the posterior for these parameters. This is done to take into
account any uncertainty in the distribution and to reflect the prior
solution when no strong solution is found. For these parameters
we calculate the errors using the 16!” and 84" percentiles of the
posterior. We estimate the best parameter for [Fe/H] by taking the
maximum a posteriori (MAP), equivalent to the mode, as no prior
is applied for this parameter and the MAP returns the best fitting pa-
rameter solution. To do this, a Gaussian kernel density estimation is
used to estimate the probability density function and the maximum
value of this returns the MAP. To estimate the errors for this param-
eter we take the 68 percent credible interval and the corresponding
[Fe/H] values at either end of the interval.

Using the FSPs for each spectrum, we then produce an in-
terpolated model spectrum and provide this to pPXF to obtain the
polynomial corrected model that would have been used to evaluate
the likelihood in the analysis. The reduced y? statistic for the ob-
servation and model is then calculated and used later for cleaning
the final catalogue.

3.2.3  Stellar fits

The distribution of x2 values for each spectrum and model fit can be
seen in Figure 8. We also plot the relationship between log-binned
Te and the median x2 in Figure 9. As shown, there is a steep
increase in )(2 for temperatures below 4000 K (log;yTeg = 3.6 K).
We also note the increase in Xz as temperatures increase above
12,500 K (logoTer = 4.1 K). As stars become bluer, the features
in the spectrum become sparse, making it difficult to accurately fit
models. Using these plots we decide to exclude FSP values with
a xy2 > 30. Furthermore, we make an exception for spectra with
Tef < 4000 K and do not exclude these based on a y? criteria.
This exception for poor fits at low temperatures is motivated by
the complex features found at such temperatures combined with
the shortcomings of theoretical atmospheres (Coelho et al. 2007;
Gustafsson et al. 2008). However, our method of fitting a wide wave-
length range is less dependent on only a few lines that may carry
large errors in synthetic spectra. Furthermore, the advantage of us-
ing a wide wavelength range which we explore with MaStar for the
first time, is that we can use a large array of absorptions to constrain
our parameters. Using this 2 cut we are able to maintain 93 per cent
of the data with Gaia values while removing poor fits. Combining
this cut with the exclusion of data without distance estimates based
on Gaia leaves 89 per cent of the 59, 266 spectra.

In Figure 10 we present model fits for a range of stellar types.
For each example we show the model fit in the top panel, the residual
fit in the middle and the flux error as a percentage of the flux in
the lower panel. Even though modelling M type stars is generally
challenging, we are able to fit both the TiO bands and the Ca II
triplet features and recover relatively low x?2 values for a large
proportion of these, as shown in the upper panels. The M giant
spectrum in the upper left-hand panel is a fine example of why
we allow high 12 values for T < 4000 K. Despite a good fit to
the molecular bands and absorption lines, we recover a relatively
high y? which is due to a large flux and small errors for most of
this spectrum. We can also recover an excellent fit to the M dwarf
spectrum shown in the upper right-hand panel despite a strong M-
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Figure 10. Example stellar fits and associated parameters using the MCMC full-spectral fitting method. Top panels: the extinction-corrected MaStar spectra

and interpolated model fit. Middle panels: Absolute residual flux between the data and model. Bottom panels: The percentage error of the flux
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flare feature at ~ 6600 A. Furthermore, small residuals are also
found for stellar types of higher temperature. Reliable fits of the
models to the observations at different temperatures demonstrates
how we can produce a robust set of parameters for calculating stellar
population models. These excellent fits are supported by a median
x? value of 2.3 for all spectra.

3.3 Results

Presented in Figure 11 are the CMDs for MaStar targets color-
coded by the recovered parameters. We remove data belonging to
white dwarfs, blue stragglers and EHB stars as well as maintaining
the cut of y2 > 30, except for stars with Teg < 4000 K. This
comparison also shows the improvement in coverage of spectral
types in the MPLI11 data release with respect to DR15 (MPL7)
(Figure A2). In MPL11, an extension of dwarfs and giants to cooler
temperatures, a hotter main sequence and a denser coverage of
existing regions when compared to MPL7 is evident. We find Teg
to increase as the targets move to the bluer side of the CMD as
expected. The minimum and maximum temperatures are 2592’:1] K

and 32983j‘3% K. The small error for the coolest star reflects that
the spectrum is probably colder than what the model grid allows.
Surface gravity also produces consistent results with no obvious
outliers, decreasing in value towards the giant region of the plot.
Blue horizontal branch stars that cross the main sequence are still
present in the middle panel but are more difficult to see due to the
density of points. The minimum and maximum values of log g are
—0.7’:%'% dex and 5.4’:%'11 dex. [Fe/H] is more difficult to interpret,
however for the main sequence and giant branches there is a decrease
in [Fe/H] as Gpp—GRgrp decreases, leading to higher Teg. This is
due to metal poor stars showing an ultraviolet excess due to line
blanketing effects, which increases their Teg. The minimum and
maximum values of [Fe/H] are —2.9J:%"]l and 1.0’:%'(1) dex*. Similar
to the errors for the lowest temperature, these errors suggest that
these spectra are likely more metal rich than the model grid allows.

In Figure 12 we present the parameter distribution for all spec-
tra with the previously described 2 cut and Gaia E (B — V) values
in a HRD. This representation is powerful in that it allows one
to easily identify outliers and mislabeled spectra. We find a well
populated main sequence from the cool dwarf region through to
the hotter side. There is a well-defined RGB structure in the range
3000 < Te < 5000 K and log g < 3. For RGB stars with log
g < 1, we note a preference to cooler temperatures. The complex
features presented in such SEDs makes it difficult to obtain accurate
Teg values. The recovered RGB has a gradient in [Fe/H] moving
to higher vales for cooler stars due to line blanketing effects. The
cluster of metal rich stars at Te = 3000 K, log g = 0.4 dex and
the lower gravity stars scattered above are some of the reddest stars
we observe in MaStar, with average Gaia colours (Ggp—Gpgp) of
4.2. Therefore we are confident their temperature should place them
separate from the main RGB, possibly even cooler . Cool dwarf
stars at Ter < 5000 K are also easily identified with high log g val-
ues extending down to 5.4 dex. The overall metallicity of the dwarf
stars is typically metal rich. This distribution is consistent with other
studies of local M-dwarf stars such as that by Woolf & West (2012).

4 Multiple spectra reach the maximum metallicity of the model grid, we
present the average of their errors in this summary.

5 We suspect these are Oxygen rich variable stars and plan to further inspect
them in future work.

Table 1. Median errors for each FSP with the MPL11 catalogue. Errors
are split into low, medium and high temperature bins and are estimated two
ways. Error source ’PDF’ represents the errors calculated form the posterior
generated by the walkers of the MCMC and ’Repeat obs’ are calculated by
taking the standard error of repeat observations.

FSP Error Teg < 5000 2Teg  Te =
source 5000 < 15, 000 15,000
Ter (K) PDF 166 413 2709
Repeat obs 12 22 296
Log g (dex) PDF 0.4 0.4 0.4
Repeat obs 0.03 0.01 0.03
[Fe/H] (dex) PDF 0.4 0.6 1.0
Repeat obs 0.04 0.07 0.22

Furthermore, we can also recover parameters for intermediate stel-
lar phases such as the sub giant branch at Teg > 6000K and log g
between 3 and 4 dex. The overall structure of this plot is consistent
with our current understanding of stellar evolution as well as other
HRDs in the literature.

In summarising the errors for each FSP, we split the Tog pa-
rameter in to three bins of cool, intermediate and hot temperatures.
In Table 1 we show the errors for each FSP in temperature bins of
Te < 5000 K, 5000 > Teg < 15,000 K and Teg > 15,000 K
which are estimated from the PDF generated by the MCMC. We
present the median of the upper and lower bound errors of each FSP.
As the Toq bins increase, there is an increase in the error of Teg
which is again due to fewer features in the SED of hotter stars and
that these features become less sensitive to temperature changes.
The uncertainty in log g is independent of T.r. We also see an
increase in uncertainty for [Fe/H] at hotter temperatures. This is
due to hotter stars having less absorption lines from metals which
makes it difficult to accurately determine metallicity.

Parameter accuracy can also be interpreted from considering
repeat observations of the same target. To do this, we calculate
the standard error of each parameter, per target, and report the
mean value of these errors. In Table 1 the standard error of repeat
observations from the cleaned catalogue are presented. For cool
and intermediate temperatures the error in Teg is similar with an
increase for the the hottest stars, as seen in the PDF errors. Log g
errors do not vary by much relative to their overall value and for
[Fe/H], the error of the hottest stars is approximately three times
larger which can be expected due to the same reason as the PDF
error. The error from the PDF is larger than the standard error
due to wide posteriors caused by subtle differences in the model
spectra when estimating parameters to such precision. However, as
the standard error is small for different observations of the same star,
we demonstrate that the wide posterior doesn’t cause a significant
variation in parameters between observations.

4 COMPARISON AND TESTING
4.1 Stellar fits of the Sun and Vega

By fitting the stellar atmospheres of nearby, standard stars, we are
able to obtain a sense of the accuracy of our algorithm and use
the results to calibrate our predictions. The benefit of using these
nearby stars is that their atmospheres can be studied in great detail,
leading to precise FSPs in the literature. For this analysis, we use the
spectrum of the Sun obtained by the SOLar SPECtrometer (SOL-
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Figure 12. Spectroscopic Hertzsprung-Russel diagram showing the cleaned parameter distribution of MPL11 spectra, color coded by [Fe/H].

SPEC, (Meftah et al. 2018)) and the spectrum of Vega obtained by
the Hubble Space Telescope, available in the CALSPEC archive®
(Bohlin et al. 2014).

4.1.1 Sun

To determine the FSPs of the Sun, we use the MARCS and BOSZ-
ATLASY models independently as the Sun’s effective temperature
is within the overlap region of the model grids. This was done to
highlight any biases in either of the models and to avoid errors
from non-continuous synthetic spectra at the MARCS and BOSZ-
ATLAS?Y interface. Despite the solar spectrum and models extend-
ing beyond the MaStar wavelength range (3620 — 10350 A), we fit

6 http://www.stsci.edu/hst/observatory/crds/calspec.html

MNRAS 000, 1-21 (2020)

the spectrum in this range in order to be consistent with our other
results. Furthermore, we adopt no priors for this analysis and start
the MCMC algorithm with an initial guess of Teg = 5000 K, log g
=3 dex and [Fe/H] = 0 dex when analysing the solar spectrum.

In the upper panel Figure 13 we show the observed spectrum of
the Sun and the full-spectral fit models from MARCS and BOSZ-
ATLASY. Provided with the SOL-SPEC file of the Sun was the
uncertainty in the flux which was used in the likelihood of the
MCMC and when calculating the reduced 2 of the model fit. Here
we see excellent modelling of the strong absorption features such as
the NaD doublet at 5893A, Ha at 6563A and Ca II triplet between
8498 and 8662A. The quality of the model fit is also comparable
between the two template sets; MARCS returns a reduced y2 =
7.1 and BOSZ-ATLAS9 a 2 = 6.6. The residuals of each fit are
shown in the lower panel on the figure (observation subtract model).
As one would expect from similar full-spectral fits, the recovered

[xep] [H/ed]
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Figure 13. Full spectrum fit of the solar spectrum from Meftah et al. (2018) using our MCMC full-spectral fitting routine. Upper panel: the black line represents
the solar spectrum, the blue line represents the MARCS model with the selected parameters and the red line represents the BOSZ-ATLAS9 model with the
selected parameters. Lower panel: the residual of the solar spectrum subtract each model, with the same colour scheme as above. The black dashed line
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Figure 14. Full spectrum fit of Vega’s spectrum from the CALSPEC archive (Bohlin et al. 2014) using our MCMC full-spectral fitting routine. Upper panel:
the black line represents the data and the red line represents the BOSZ-ATLAS9 model with the selected parameters. Lower panel: the residual of the data

subtract the fitted model. The black dashed line represents an exact fit to the data.

parameters are also comparable. The MARCS models recover Teg =
5812%1% K, log g = 4.7*0-3dex, [Fe/H] = —0.3*0:3 dex. BOSZ-
ATLAS9 models recover Te = 5771?@3, log g = 4.8’:%'2dex,
[Fe/H] = =0.1"0:3 dex. In Meftah et al. (2018), they calculate the
Sun’s effective temperature by equating the integral of the solar
spectrum to that of a blackbody spectrum at 5772 K. With the
MARCS models we are 40K hotter than this and 1 K cooler with
the BOSZ-ATLAS9 models, indicating that we recover T.g well
for this spectral type. The surface gravity of the Sun in log g is
4.437 dex (Lide 2005) which shows that for both models we slightly
overestimate this parameter, but it’s still within the quoted errors.
Lastly, an underestimate of the metallicity [Fe/H] is found with both
model sets, with the solar metallicity ([Fe/H] = 0 dex) within the
estimated errors.

4.1.2 Vega

In Figure 14 we show the full-spectral fit of Vega’s spectrum using
the BOSZ-ATLAS9 models (MARCS models are not hot enough to

fit this spectrum). We also take into account the uncertainty in the
flux when calculating the FSPs here. As before, the top panel shows
the data and model from the selected parameters, and the bottom
panel shows the residual of the fit (observation subtract model). This
fit returns a reduced Xz of 5.8 which shows the flexibility of the
interpolation in the MCMC method. The parameters recovered are:
Ter = 91347780 K, log g = 4.070:3 dex, [Fe/H] = —1.2*}3 dex.
In Castelli & Kurucz (1994), they cite that for Vega: Tog = 9550 K,
log g =3.95 dex and [Fe/H] = —0.5 dex. For Teg, we find a value
with relatively small uncertainty and consistent with the literature
within our margin of error. We are also able to recover a very
accurate value for log g with small uncertainty. Finally, our value
of [Fe/H] is lower than the literature by 0.7 dex. There is however
a considerable uncertainty in our estimate of this parameter. The
metallicity of hot stars is difficult to determine as they have fewer
absorption features that can be fit. As a result, we find a relatively
flat posterior at low metallicities for Vega.

MNRAS 000, 1-21 (2020)



SDSS-1V MaStar: Theoretical Atmospheric Parameters for the MaNGA Stellar Library 13

APOGEE, N = 3617 LAMOST, N = 10955 SEGUE, N = 1461
9000 9000f . | 9000r
8000r 8000+ 8000+
&
LE) 70008 7000F 7000F
E 6000r 6000+ 6000F
&4,
= 5000F 5000+ 5000+
Q
F
4000+ 4000+ 4000+
3000'.’/'.. . ., ., |®000pf ., |30 L L, .,
3000 4000 5000 6000 7000 8000 900 3000 4000 5000 6000 7000 8000 900 3000 4000 5000 6000 7000 8000 900
Tesr [K] literature Tesr [K] literature Terr [K] literature
5.
O
Sa
=
w3
[5)
=)
Sl
@ .
31-: - plE
: _’_/_/‘ o
Ut ;
0 1 2 3 4 5 0
log g [dex] literature
1 e 1
O
= o ot
O
=
q>§ -1t -1+
=
ot 2F
()
=
31 . . . sy . . . . . .
3 -3 -3

-2 =1, 0 2 =1 0 -2 -1 0
[Fe/H] [dex] literature [Fe/H] [dex] literature [Fe/H] [dex] literature
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Table 2. Statistical comparison of our parameters from the MCMC procedure with literature values of APOGEE, SEGUE and LAMOST. We present the
median of the differences between the two sets (this work subtract literature) and the standard deviation (o) of the difference for three stellar phases: Dwarfs
(Ter < 5000 & log g > 4.5), RGB (T < 6000 & log g < 4.0) and MS/HB (all remaining spectra).

Source Parameter Median difference o Median difference o Median difference o
(Dwarf) (Dwarf) (RGB) (RGB) (MS/HB) (MS/HB)

APOGEE Te (K) -161 127 39 202 -37 227
Log g (dex) -0.1 0.2 0.3 0.4 -0.1 0.3

[Fe/H] (dex) -0.3 0.5 0.0 0.3 -0.1 0.3

LAMOST Teg (K) -18 118 54 217 -47 146
Log g (dex) -0.1 0.2 0.2 0.6 0.0 0.2

[Fe/H] (dex) -0.3 0.3 0.0 0.3 -0.1 0.3

SEGUE Te (K) -94 377 142 204 -49 295
Log g (dex) 0.0 0.2 0.3 0.6 0.0 0.4

[Fe/H] (dex) -0.1 0.5 0.3 0.3 0.1 0.4

MNRAS 000, 1-21 (2020)
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4.2 Comparison with literature

Due to the target selection strategy used for MaStar, there is
a large overlap between stars with literature values and MaStar
observations. Using the Two Micron All Sky Survey (2MASS,
Skrutskie et al. (2006)) IDs of MPLI11 stars we find 2088
unique matches (4786 matches including repeat observations) with
APOGEE/APOGEE-2N DR16 parameters (Ahumada et al. 2020)
that have been derived using ASPCAP. To compare with the LAM-
OST DR6-v2 A F,G,K star catalogue parameters’, derived using the
LAMOST Stellar Parameter pipeline (LASP, Xiang et al. (2015)),
we match MPL11 stars based on the RA and Dec, with a maxi-
mum error of 0.0001 deg. Doing so, we find 4954 unique matches
and 12,721 matches to repeat observations. For the comparison
with SEGUE we use the cross match from the initial targeting for
observations, as described in Section 2.1. These parameters have
been derived using the SEGUE Stellar Parameter Pipeline (SSPP,
Lee et al. (2008a,b)). This returns 804 unique matches to MPL11
stars and 2457 matches to all observations.

For the three literature catalogues described we clean the
matches based on our reduced y? criteria of 30, as previously de-
scribed. In Figure 15 we show a one-to-one comparison of each
survey and the corresponding parameters we recover. At the top of
each column are the number of observations that are compared. The
hexagons show the density of points, the darker shade representing
denser areas, with black markers representing single spectra. The
red dashed line shows the fiducial one-to-one line for comparison.

Considering the Teg comparison (top row), we see a small
systematic offset for SEGUE and LAMOST at temperatures above
~ 6500 K, where we are underestimating the temperature com-
pared to the literature. Slight systematic trends are seen for log g.
APOGEE has the most homogeneous distribution of log g values,
from which we tend to overestimate at values below 4 dex. We also
overestimate compared to LAMOST at intermediate values, with
increasing scatter towards lower gravity. For all catalogues we are
consistent between the densest region of 4 < log g < 5 dex. For
[Fe/H], the LAMOST comparison shows that we find more metal
poor solutions where they find values of -2 < [Fe/H] < —1.5 dex.
This may be due to the LASP having few examples of the most metal
poor stars as they rely on empirical templates. Apart from this, there
is good agreement with APOGEE and LAMOST, with some scatter.
We also note a slight systematic offset with the SEGUE comparison
between —2 and —1 dex.

The median and standard deviation of the differences between
our values and the literature are presented in Table 2, where we
also distinguish between three key stellar phases. We define these
phases in Tt and log g space based on our parameters: dwarfs
(Ter < 5000 K, log g > 4.5), RGB (Te < 6000 K, log g < 4),
MS and HB (remaining spectra). In general we obtain a lower Teg
for dwarfs and MS/HB and larger for RGB stars. Overall we find
the smallest offset to all three surveys when estimating T.g for the
MS/HB. The dispersion seems to be most significant for SEGUE
across all stellar types, with the one towards LAMOST being the
smallest on average. This is interesting as the latter parameters are
also based on fitting a medium-resolution spectrum over a wide
wavelength range.

The median difference and dispersion in log g is the largest for
each survey when comparing against the RGB stars. This could be
due to the RGB containing the largest range in log g for the three
stellar phases we define. For dwarfs and the MS/HB, no significant

7 http://dr6.lamost.org/v2/

Table 3. Median errors for the spectra compared to APOGEE, LAMOST
and SEGUE in Table 2. As done before, we split this analysis in to three
stellar phases: Dwarfs, RGB and MS/HB stars.

Source Parameter Error Error Error
(Dwarf) (RGB) (MS/HB)

APOGEE Teg (K) 152 225 167
Log g (dex) 0.3 0.6 0.3
[Fe/H] (dex) 0.4 0.4 0.4
LAMOST Te (K) 175 256 353
Log g (dex) 0.3 0.6 0.4
[Fe/H] (dex) 0.4 0.4 0.6
SEGUE Te (K) 281 430 475
Log g (dex) 0.3 0.6 0.4
[Fe/H] (dex) 0.6 0.7 0.8

offset is found for each survey. The scatter for log g is larger for the
LAMOST and SEGUE RGB comparison, but as shown by Figure
15, the statistics are based on only a few spectra due to a lack of
observations by the literature in this parameter space.

For metallicity the systematic offsets are small, for the
APOGEE and LAMOST RGB comparison we find no offset. Ex-
cept for the RGB, we find slightly larger dispersions for SEGUE
parameters.

In Table 3 we compare the median errors we calculate from the
posterior of each parameter with the same sample stars in each litera-
ture comparison for the three stellar phases. Comparing these errors
to the dispersion values in Table 2 we can get a sense of whether our
errors are sensible. For Teg, the errors we find are approximately
equal to the APOGEE dispersion, with the largest discrepancy being
in MS/HB stars where our error are lower by 60 K. This is similar
for LAMOST, however our errors in the MS/HB are larger by 207 K.
Errors differ the most for the SEGUE comparison, where ours are
larger for the RGB and MS/HB by 226 and 180 K, respectively.
The error for log g is approximately equal to the dispersion of all
surveys and all stellar phases. Importantly, the increase in disper-
sion for RGB stars we see across all surveys is reflected by a larger
error in our parameters of 0.6 dex. Comparing with APOGEE, our
errors in [Fe/H] differ from the dispersion by 0.1 dex. For LAMOST
MS/HB stars our errors on [Fe/H] are larger by 0.3 dex. Our errors
are also larger for SEGUE RGB and MS/HB stars.

5 SSP MODELS AS OUTPUT AND AS A TEST

As discussed in the Introduction, stellar parameters are needed for
including empirical stellar spectra in a population synthesis model.
Consequently, stellar population models also serve as a guide to
identify areas requiring further calibration of the input stellar library.
This approach was put forward in M20 for the models obtained
with the discrete y2 Method (Appendix A) on the first MaStar data
release and is being adopted also for the parameters generated for
MPL11 with the MCMC Method.

The stellar parameters calculated with the discrete Xz Method
as well as those by Chen et al. (2020) were used in M20 to generate
two sets of stellar population models, named Th-MaStar and E-
MaStar, respectively 8, covering intermediate/old ages 0.1—15 Gyr,
metallicities ([Z/H]) from —2.35 to 0.35 dex, for various IMFs. As

8 available at https://www.icg.port.ac.uk/mastar/
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described, the discrete y2 Method is referred to as Th due to the
adoption of purely theoretical stellar atmospheres as a reference,
whereas the method of Chen et al. is referred to as 'E’ as they use
a semi-empirical reference library. Specifically, empirical spectra
are used for Te < 20,000 K and theoretical templates otherwise.
Furthermore, chemical composition measurements are ultimately
derived using theoretical model atmospheres.

In M20, a thorough comparison of the E and 7h models and
the conclusions we could draw on the respective stellar parameters
is carried out and we refer the reader to the paper for more detail.
Here we briefly summarise their findings, as they are relevant to the
stellar parameter calculation we perform in this paper.

Firstly, the Th models are able to probe to lower ages than the
E models due to the wider parameter coverage. Particularly in the
very metal-poor regime ([Z/H] = —2.25), the Th parameters allow
for model creation with main sequence turn-off ages down to 1 Gyr,
compared to ages of 6 Gyr with the E parameters (see Table 1 in
M20). With the Th parameters we are also able to identify low-mass
main sequence dwarfs down to the hydrogen burning limit. Similar
results are found for the metal-poor regime ([Z/H] = —1.35), with
Th and E models reaching turn-off ages as low as 0.5 Gyr. The
Th models show a good match between the RGB slope and what
theoretical isochrones suggest, while the RGB of the E models is
slightly cooler for solar and half-solar [Z/H]. Furthermore, for the
old, metal-rich populations, the 74 models can reproduce signifi-
cant near-IR bands thanks to the identification of cool upper-RGB
spectra.

To further test the accuracy of population models and stellar
parameters, M20 derived ages and metallicity for observed star
cluster spectra through full spectral fitting (Wilkinson et al. 2017)
and compared with literature values. The result was that metallicity
estimates are similarly well reproduced for both models, with a
median offset of approximately —0.1 dex and a scatter of 0.6 dex,
while ages were better reproduced by the Th-models, leading to
offsets that could be as small as 9 per cent, in dependence of the
assumed literature values.

The results from M20 support our use of only theoretical spec-
tra and full spectral fitting for the calculation of stellar parameters,
which led us to expand our procedure into the MCMC Method.
Although Chen at al. parameters ultimately rely on theoretical at-
mospheres, the main advantage of our 7h-models is that we are not
restricted to the grid of the reference empirical library. The stellar
parameters calculated with the MCMC Method have been subjected
to the same procedure, namely test population models were calcu-
lated in parallel to the parameter calculations in order to check the
accuracy of the parameters, any gap in evolutionary phase coverage,
the exact cut to apply in chi-square, etc. Stellar population models
based on the parameters from the MCMC Method are now able to
extend to much younger ages and will be published in a fortcoming
paper (Maraston et al. in prep.)

6 CONCLUSIONS

The MaNGA Stellar Library (MaStar) (Yan et al. 2019) will be the
largest library of stellar spectra upon completion. By using the
MaNGA IFU fiber bundles and software pipeline with the BOSS
spectrographs, MaStar has the same wavelength range and wave-
length dependent resolution as MaNGA spectra. Furthermore, the
catalogue contains a wide variety of stellar types which allows for
the creation of robust stellar population models (Maraston et al.
2020).

MNRAS 000, 1-21 (2020)

We expand our method for stellar parameter calculations
(Maraston et al. 2020) based on fitting theoretical spectra from
model atmospheres with the full spectral fitting code pPXF
(Cappellari & Emsellem 2004; Cappellari 2017) by adding an
MCMC procedure for fully mapping the parameter space and quan-
tifying uncertainties. We also define a more elaborated method
for including constraints from GAIA photometry. We apply this
method to the complete ensemble of MaStar, consisting of 59,266
per-visit-spectra for 24,290 unique stars to determine the funda-
mental atmospheric stellar parameters (T, log g and [Fe/H]). Us-
ing Gaia matched photometry and theoretical isochrones we are
able to first set realistic priors on the Teg and log g parameters
before computing their posteriors. FSPs are then determined by
comparing observations to synthetic stellar atmospheres of MARCS
(Gustafsson et al. 2008) and BOSZ-ATLAS9 (Mészaros et al. 2012;
Bohlin et al. 2017). By using the full wavelength range of MaStar
we are less sensitive to individual and potentially spurious absop-
tion lines in the synthetic spectra. Using this approach, we are able
to obtain accurate full-spectral fits across all spectral types which is
crucial for creating stellar population models. We find a median y2
of 2.3 for spectra with recovered parameters.

The outcome is a comprehensive parameter catalogue, span-

ning 25921) < Tep < 329837508 K; —0.7'0 < log g <

5.4’:%'11 dex; —2.9’:%"} < [Fe/H] < I.Ot%'? . Uncertainties are
also provided. The corresponding H-R diagram has a sound over-
all structure, with well defined branches and a metallicity structure
obeying stellar evolution.

For testing our procedure, we perform full-spectral fits of the
Sun (Figure 13) and Vega (Figure 14) in order to test our recovered
parameters against very well known, empirically derived, stellar
parameters. Using the MARCS and BOSZ-ATLAS9 models inde-
pendently, we find excellent results for both calibration stars.

Our procedure is further tested by comparing with the literature
parameters of independent surveys obtained with their respective
stellar parameter pipelines. This comparison is split in to three key
stellar phases: dwarfs, RGB and MS/HB stars. We find the closest
agreement in terms of median offset and dispersion with LAMOST
and APOGEE across the three stellar types. This is encouraging
as LAMOST offers the largest cross match of data and therefore
represents a more statistically significant result and APOGEE is
based on high-resolution spectroscopy on a small and completely
independent wavelength range. For log g, the RGB showed the
largest dispersion with LAMOST and SEGUE which may result
from this stellar phase containing the largest range in log g values
and the fewest number of cross matched stars. Overall the statistics
show a good correlation for [Fe/H] except for SEGUE.

As there are many steps in each pipeline, some disagreement
between catalogues is expected and it is difficult to conclude on
which represents the ’true’ atmospheric parameters. To probe the
correctness of our parameters, we ultimately use stellar population
models based on the parameters and assess how well they are able to
recover independent age and metallicity values of stellar systems, as
we have done in Maraston et al. (2020). In that paper we showed that
- even with the relatively simple discrete 12 method (see Appendix
A) - we are able to obtain a set of stellar parameters that allows us
to create accurate stellar population models which could reproduce
well the ages and metallicities of intermediate-age and old star
clusters. With the full MaStar catalogue and the extended MCMC
method we are now able to calculate stellar population models down
to a few Myr of age (Maraston et al. in prep.), which we shall probe
against globular cluster fitting in a fortcoming paper.
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As a final remark, in this work we have considered only the
three fundamental atmospheric stellar parameters required for cre-
ating stellar population models. In Appendix C we briefly explore
the effect of changing rotational velocity and microturbulence in
the model grids and found both effects to be negligible at MaS-
tar’s spectral resolution. We now plan to derive individual element
abundances for the MaStar spectra.
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APPENDIX A: DISCRETE y2 METHOD

Here we recap the method for parameter determination employed
to create MaStar intermediate - old age stellar population models in
M20. This method was applied to the DR15 (MPL7) MaStar spectra
- 8,646 spectra for 3,321 unique stars. This method has now been
expanded as described in the paper and used from MPL11 onward.

Al Synthetic Stellar Atmospheres and Priors

We compare observations to theoretical spectra from the model
atmospheres of MARCS (Gustafsson et al. 2008) and BOSZ-
ATLAS9 (Mészaros et al. 2012; Bohlin et al. 2017). The combined
model grid can be seen in Figure 3. In the area where the grids
overlap, they are explored simultaneously and the FSPs are then
drawn from the best fitting template. In this common region we
find ~ 88% of the observations matched to BOSZ models and the
remaining matched to MARCS models.

Before analysis, we narrow the theoretical grid by adopting
priors based on photometry to reduce computation time. We have
verified that the result without the application of these priors is the
same, but the calculation time is much longer.

To estimate the prior Teg, we approximate a function that
describes the relationship between the colour (g — 7) and Teg of
the theoretical models. As this is sampled from a discrete grid, a
1-dimensional interpolation function is used to match our observed
colour to an effective temperature. The g — i magnitudes are derived
from the MaStar spectra for each observation and are provided to
the interpolation function which returns the corresponding Teg,
according to the theoretical models (see Figure A1). This estimate
is then used to determine a prior range, whereby an estimate of
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Figure Al. Estimated g — i colours of each theoretical model and their
corresponding effective temperature Teg.

Teg < 12000 K has a range of £1000 K and an estimate of T >
12000 K has a range of +2000 K. The prior range is larger for high
temperatures as estimates are less accurate at such temperatures and
the theoretical grid becomes sparser.

A2 Procedure

By minimising the ,\/2 value between models that fall within our
prior range and selected spectra, the FSPs can be obtained. Using
this method, the FSPs are derived from individual best-fits and not
a combination of models.

The  model fit is  performed  with  pPXF
(Cappellari & Emsellem 2004; Cappellari 2017). Typically
used for fitting stellar and gas kinematics in combination with
stellar populations of galaxies, here we use this method to fit single
stellar templates individually. By using pPXF, one can parameterise
the line of sight velocity distribution (LOSVD) of the target and
hence account for small velocity offsets in the observed spectrum.
The parameterisation of the LOSVD is performed in pPXF using
Gauss-Hermite functions (see Section 3.2 in Cappellari (2017)).
Furthermore, inaccuracies in spectral calibration or in reddening
effects by dust are accounted for by fitting the observed spectrum
with multiplicative polynomials.

A3 Results

One assessment of the quality of fit of our models can be made by
considering the distribution of reduced y? values for all observa-
tions, which we find the median value to be 8.0 with this method.
Despite using a relatively coarse grid of model spectra, we are able
to obtain good fits as testified by this low value of the median X2
The quality of the fits to the data provides some confidence in the
recovered parameters. However, by taking the best fitting model,
degeneracies in are not mapped.

Using the Gaia photometry-matched values for the MaStar
targets we can colour-code CMD plots with the recovered results.
Doing so, mislabeled spectra can be identified through our under-
standing of stellar evolution. The three panels of Figure A2 show the
CMD plots for Teg, log g and [Fe/H], respectively. On the x-axis we
use the Gaia colour-index of G g p — G g p Which represents the blue
and red pass bands of the instrument and the y-axis is the Gaia ab-
solute magnitude, M. We see good agreement for T with bluer
colours moving to hotter temperatures. For log g, we expect cool
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Figure A2. Extinction-corrected MaStar targets (MPL7) shown in a CMD, colour-coded by the recovered FSPs from the discrete y2 Method. On the x-axis we
use the Gaia colour-index of Ggp—Ggrp which represents the blue and red pass bands of the instrument and the y-axis is the Gaia absolute magnitude. The
left-hand panel is colour-coded by T, the middle panel by log g and the right-hand panel by [Fe/H].
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Figure A3. Distribution of the difference between Chen et al. (2020) parameters and those from this study using the discrete y> method (this method parameters
minus Chen et al. (2020)). The comparison is split in to three stellar phases based on our parameters: Dwarfs (Teg < 5000 & log g > 4.5), RGB (T < 6000

& log g < 4.0) and MS/HB (all remaining spectra).

dwarfs to show high values and for this to decrease for decreasing
Mg due to mass loss and radial expansion towards the giant phase.
This is confirmed with the recovered parameters. Furthermore, blue
horizontal branch stars may cross the main sequence in the CMD,
but the log g values here are different to their main sequence coun-
terparts. This mixing of log g values in this area is expected and
the area is populated by stars undergoing rapid stellar evolution.
We show how these can be disentangled by plotting parameters in
the theoretical Hertzsprung-Russell diagram (HRD) in figure 3 of
M20. Finally, metal poor stars are observed to show an ultraviolet
excess, due to line blanketing effects, which will increase their Teg.
We see from the right-hand plot of Figure A2 that as stars move
to the bluer part of the CMD, their metallicity generally decreases,
with metal-rich targets typically found along the right side of the
parameter space, as expected.

For this method applied to DR15 we obtain parameters in the
range of: 3400 < Te < 25,000 K, 0 < log g < 5.5 dex and
-2.5 < [Fe/H] < 1.0 dex. As this method uses the minimum y2
value and does not interpolate between model spectra, the errors
for each parameter are equal to half the model grid spacing, which
varies depending on the location in the grid. The error in Teg is
+50 K for Teg < 4250K, +125 K for 4250 < Teg < 12000 K
and +250 K for Te > 12000 K. The error in log g is +0.25 dex
for all temperatures. For Teg < 4250 K, the error in [Fe/H] is
+0.25 dex for [Fe/H] < —1 and +0.25 dex for [Fe/H] > —1. For
Tegr = 4250 K, the error in [Fe/H] is +0.125 dex.

We consider the standard error in the parameters for repeat
observations of the same star. Doing so, we find mean standard

errors for Teg, log g and [Fe/H] to be 44 K, 0.07 dex and 0.03 dex,
respectively.

A3.1 Comparison with Chen et al. (2020)

Chen et al. (2020) derive stellar parameters for MPL7 using a
semi-empirical approach. They first fit MILES empirical spectra
(Sanchez-Blazquez et al. 2006) with Kurucz model spectra to de-
rive the MILES parameters. They then use the MILES spectra and
derived parameters with the ULySS full-spectral fitting package
(Koleva et al. 2009a) to fit MaStar spectra based on combinations
of the best fitting MILES spectra and their own parameters. For this
reason, in M20 we refer to this set as ’Empirical’ (E-MaStar). Simi-
lar to what is presented here, a y? statistic is used to assess quality of
fit between the observations and models. However, a key difference
is that they use interpolated composite stellar models rather than the
single model fit used here. An advantage of the method presented
by Chen et al. (2020) is that by interpolating between model spectra
they are not restricted to their model grid. Nonetheless, they are
restricted in overall parameter range by the MILES library.

In Figure A3 we show a comparison between the atmospheric
parameters from our method to those by Chen et al. (2020) (our
parameters subtract Chen’s) which we split in to three stellar phases
as defined in Section 4.2. We perform the comparison within the
narrower parameter range provided by Chen et al., namely 3376 <
Teg < 19213 K. The median offset for each stellar phase and FSP
is shown in Table Al. Firstly, the offset in Teg is shown to have a
dependency on stellar type, with largest median difference for MS
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Table A1. Median difference values between this work and that of Chen et al.
(2020) for Dwarf, RGB and MS/HB stars.

FSP Phase Median difference
Te (K) MS/HB 191
RGB 157
Dwarf 107
Log g (dex) MS/HB 0.51
RGB 0.14
Dwarf 0.21
[Fe/H] (dex) MS/HB -0.02
RGB 0.10
Dwarf -0.24

and HB stars. This stems from the larger uncertainty for hotter stars
in the MS. In general, we tend to estimate a higher Teg than Chen.
The MS/HB stars show an offset of 0.37 dex higher than the RGB for
log g. Although the offset in log g for the RGB is just 0.14 dex, there
is a population of stars where we find lower values than Chen, which
reduces the median difference. For [Fe/H] the systematic difference
is small for MS/HB and the RGB. We tend to find lower metallicities
for dwarf stars with a population where we predict them to be more
metal rich by up to 1 dex.

In M20 we show that the testing of stellar population models as
a function of stellar parameters find consistent results for E-MaStar
and Th-MaStar, but favours Th-MaStar for age determination (see
details in M20). By performing such tests, we are able to assess the
scale of the parameters simultaneously.

We also calculate the standard error for repeat observations as
done previously for the parameters we present. For Chen’s results,
they find a mean standard error of 8 K, 0.02 dex and 0.01 dex for T,
log g and [Fe/H]. As the number of spectra with derived FSPs differ
between the two sets, we repeat this measurement for our results
using the same sample of spectra. For T, log g and [Fe/H] we find
mean standard errors of 32K, 0.06 dex and 0.03 dex, respectively. In
terms of Teg, Chen’s results are four times more precise than what
we find. However, compared the the average temperature of stars in
the catalogue, both errors are not significant. The same is true for
the errors in log g and [Fe/H].

APPENDIX B: COMPARISON OF THE DISCRETE )2
METHOD AND MCMC METHOD

Here we present a comparison of the discrete x? and MCMC meth-
ods using the MPL7 catalogue of spectra. We assess how well each
method can recover the FSPs and a selection of full-spectral fits.
For this comparison we also maintain the same procedure for the
MCMC Method in terms of the priors, interpolation and algorithm
as has been previously described. To clarify, the main difference that
the MCMC Method offers is the interpolation of model spectra off of
the MARCS and BOSZ-ATLAS9 parameter grid and use of MCMC
to probe the posterior distribution of each FSP. One may expect a
difference in the recovered parameters due to asymmetric posterior
distributions in the MCMC Method and degeneracies between FSPs
that will affect the position of the median in the posterior.

Firstly, we consider stellar fits of different spectral types using
both methods. We make an assessment of the recovered parameters
and quality of the full-spectral fit. As shown in Figure B1, the full
spectral fit using the MCMC Method is able to recover comparable
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Table B1. Comparison of the FSPs recovered from the full-spectral fits of
Figure B1, using the discrete x> and MCMC methods.

D Parameter Discrete Method ~ MCMC Method
7-18036378 Tesr (K) 3400 3569
Log g (dex) 0.0 0.6
[Fe/H] (dex) -1.5 -0.3
4-1263 Tesr (K) 4500 4536
Log g (dex) 5.0 4.7
[Fe/H] (dex) -0.3 -0.1
3-141876391 Ter (K) 6500 6281
Log g (dex) 4.5 4.1
[Fe/H] (dex) -0.5 -0.6
4-10681 Tesr (K) 16000 15360
Log g (dex) 4.0 4.2
[Fe/H] (dex) -0.8 0.2

fits to the discrete y2 Method. In Table B1 we compare the pa-
rameters recovered from these spectral fits. The parameters of the
MCMC Method shown here are similar to those of the discrete y2
Method, with the most significant discrepancies in [Fe/H]. Of the
8646 spectra in MPL7, we find 4614 that have a x2 < 30 for both
methods and with corresponding literature values from APOGEE,
SEGUE and LAMOST. For the discrete ,\/2 Method we recover me-
dian differences for Teg, log g and [Fe/H] of —117 K, —0.38 dex
and —0.04 dex. Using the MCMC Method we find a closer agree-
ment with smaller systematic offsets for all paremeters with median
differences of —65 K, —0.11 dex and 0.01 dex.

In Figure B2 we show a comparison of the MPL7 FSPs us-
ing the discrete y2 and MCMC methods. These density plots for
the FSPs show the one-to-one relation between the two meth-
ods, with denser regions represented by darker blue hexagons. For
Tefr, the MCMC Method estimates slightly hotter values at around
8000K. Standard deviations of 279 K and 1249 K are found for
Teg < 10,000 K and T > 10,000 K. This difference at high
temperatures may be due to the wider priors in Teg used in the
MCMC Method. The offset in Teg is small at just 67 K. Log g
shows the largest discrepancy of all the FSPs, there is a consider-
able scatter of 0.6 dex and a median offset of 0.4 dex, which is more
prominent at lower values. The precision of log g in the model grid
is 0.5 dex, which could explain this larger scatter in values. Further-
more, asymmetric posterior distributions at the edge of the model
grid lead to a discrepancy in parameter determination. Finally, the
metallicity shows some scatter with a standard deviation of 0.4 dex
and a small systematic median offset of 0.1 dex.

APPENDIX C: ADDITIONAL PARAMETER
CONSIDERATIONS

C1 Microturbulence

The relationship between atmospheric stellar parameters (Teg, log
2) and microturbulence (¢) is complex and varies across the H-R di-
agram (Montalban et al. 2007; Garcia Pérez et al. 2016). Through-
out our analysis we have used a fixed & = 2 kms~! as this is what’s
available for the BOSZ models. By fixing & we may expect some
systematic effects in the results for giants and dwarfs due to the
broadening of absorption features. Here we briefly explore the ef-
fects of using models with alternative values of ¢ when estimating
the parameters of dwarf and giant stars. We focus on dwarf and
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Figure B2. Comparison of FSPs derived from the MaStar MPL7 data release using the discrete y2 and MCMC methods. The density of points is shown by
the hexagons, where white is a minimum of five data points and dark blue shows higher density. Single black points are low density that aren’t included in the
minimum bin count of five. The red dashed line is a one-to-one marker that indicates perfect correlation.

giants as we fit these with MARCS models for which templates at
various values of & are available. We plan to include ¢ as a free
parameter in future iterations of the pipeline.

Cl.1 Giants

For this experiment we use MARCS models with spherical model
geometry, 2500 < Teg < 8000 K, —0.5 <logg < 3.5dexand ¢ =
2 or 5 kms~!. This specific parameter grid reflects what is available
at the MARCS website. Initially all spectra with log g < 2.5 dex
are selected, we then randomly select ten percent of these to create
a representative sample for our analysis. The MCMC method is
then applied using the model grids with their respective values of ¢
independently.

In Figure C1 we show a comparison of the results when using
models with & = 2 or 5 kms™!. For T we see some scatter at
around 3500 K and an offset smaller than 100K towards hotter
temperatures when & = 5 kms~!. Log g shows more scatter and
a preference for lower gravity when using & = 5 kms™!. In terms
of the model fit, y2 values are generally better when using ¢ = 2
kms~!. A median offset of 0.2 is found here.

Cl.2 Dwarfs

For the analysis of dwarfs we use MARCS models again with plane-
parallel model geometry, 2500 < Teg < 3900 K, 3 <logg < 5 dex
and & = 0 or 2 kms ™! The spectra are selected using Tez < 3900 K
and log g > 4 dex and ten percent are used in the analysis.
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Figure C1. Comparison of T, log g and y? for giant stars, using the MCMC method and models with a microturbulence of 5 and 2 kms™! (our fiducial
value). Denser regions are represented by darker blue hexagons and individual spectra by single black points. The red solid line is a one-to-one marker that

indicates perfect correlation.
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Figure C2. Comparison of Teg, log g and y? for dwarfs stars, using the MCMC method and models with a microturbulence of 0 and 2 kms~!. Denser regions
are represented by darker blue hexagons and individual spectra by single black points. The red solid line is a one-to-one marker that indicates perfect correlation.

In Figure C2 we show a comparison of the results when using
models with & = 0 or 2 kms™!. Regarding T we see a systematic
offset of approximately +100 K towards the models with & = 2
kms™! at temperatures below 3800 K. For log g there is a slight
preference to higher gravity when £ = 0 kms™!, but the difference
is within £0.1 dex. Higher gravity values are in better agreement.
Again, the x2 values are generally smaller for & = 2 kms™!, with a
median offset of 0.7.

C2 Rotational Velocity

The rotational velocity of stars causes a broadening of absorption
features and reduces their depth; this may lead to a degeneracy
between rotation and log g. To see what effect this would have on
the synthetic spectra at MaStar resolution we convolve the BOSZ
models with a rotation profile (Gray 2008) for six values of v sin i:
0, 50, 100, 150, 200, 400 kms~!. In Figure C3 we show that up to a
v sin i = 200 kms ~!, only the central pixel of absorption lines is
affected, and the effect is negligble. In the most extreme case, v sin
i = 400 kms™!, absorption lines become noticeably shallower and
broader. In terms of degeneracy with log g, we show in Figure C4
a model with Teg = 9000 K, log g = 3.5 dex, [Fe/H] = 0 dex and
v sin i = 50 kms™! will have the same absorption line depth as a
model with log g = 4.5 dex and v sin i = 150 kms™!. However, the
wings are significantly different which indicates broadening from
rotation, not the change in gravity.

Furthermore, we investigate this effect on twenty MaStar spec-

MNRAS 000, 1-21 (2020)

tra which have been previously analysed by our pipeline with v sin
i = 0 kms™!. The selected spectra are representative of hot stars
(8700 < T < 32000 K) as the rotational velocity is typically
larger in this temperature range (Glebocki & Gnacinski 2005). We
convolve the BOSZ models to obtain spectra with v sin i = 50 — 200
kms~!. These models are then used independently in our pipeline
to determine the fundamental atmospheric parameters. In Figure
C5 we show the variation in log g with the convolved models and
find no systematic effect between the two variables. This result con-
firms that generally the effect of rotation is not a major concern at
MaStar’s resolution.
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Figure C3. BOSZ synthetic spectra with T = 9000 K, log g = 4 dex and [Fe/H] = 0 dex, convolved with rotation profiles of 0 — 400 kms~!. The middle and
right panels shows the H-alpha and H-beta absorption lines in detail.
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Figure C4. Two BOSZ synthetic spectra with Teg = 9000 K, [Fe/H] = 0 dex. The red spectrum represents log g = 4.5 dex, v sin i = 150 kms~! and the black
shows log g = 3.5 dex, v sin i = 50 kms~!. The middle and right panels shows the H-alpha and H-beta absorption lines in detail.

4.4

Logg [dex]
P ~ ~ ~
o — N [8)

£
©

0 50 100 150 200
vsin i [kms™1]

Figure C5. Variation in log g with v sin i and T.g for a sample of twenty MaStar spectra.
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