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Abstract. The chameleon model is a modified gravity theory that introduces an additional
scalar field that couples to matter through a conformal coupling. This ‘chameleon field’
possesses a screening mechanism through a nonlinear self-interaction term which allows the
field to affect cosmological observables in diffuse environments whilst still being consistent
with current local experimental constraints. Due to the self-interaction term the equations
of motion of the field are nonlinear and therefore difficult to solve analytically. The ana-
lytic solutions that do exist in the literature are either approximate solutions and or only
apply to highly symmetric systems. In this work we introduce the software package SELCIE
(https://github.com/C-Briddon/SELCIE.git). This package equips the user with tools to
construct an arbitrary system of mass distributions and then to calculate the corresponding
solution to the chameleon field equation. It accomplishes this by using the finite element
method and either the Picard or Newton nonlinear solving methods. We compared the re-
sults produced by SELCIE with analytic results from the literature including discrete and
continuous density distributions. We found strong (sub-percentage) agreement between the
solutions calculated by SELCIE and the analytic solutions.
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1 Introduction

With the discovery of the Higgs boson in 2012 [1], we have observed a true scalar field in
nature. However, it remains possible that the Higgs is not the only scalar field, and there
are observed phenomenon that could be explained by the existence of new scalar fields. For
example, from observations of type Ia supernova, baryon acoustic oscillations (BAO), and
gravitational waves [2–5], it has been discovered that the universe is currently in a period
of accelerated expansion. The source of this expansion is referred to as dark energy and is
currently a mystery of cosmology. One proposed explanation is the introduction of scalar
fields, either directly or through modifications to gravity, to explain this behaviour [6–9].
The confirmation of the existence, or lack thereof, of new scalar fields is therefore vital to
our collective understanding of the universe.

If such a scalar field exists and couples to matter, it can mediate a so called ‘fifth
force’ giving rise to many opportunities to search for this new physics [10]. At the time of
writing, terrestrial and solar system experiments have not detected any fifth forces, and as
a result many models that rely on such scalar fields are strongly constrained to have very
weak couplings to matter [11, 12]. An alternative to this fine tuning arises in screened models
where nonlinearites can suppress the fifth force dynamically in and around higher density
environments [7, 10]. A screened field which is not detected in terrestrial and solar system
experiments can still affect large scale cosmological evolution. In recent years much progress
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has been made in tailoring experiments and observations to search for such theories, and
some theories with screening are now also extremely constrained [13, 14]. As a result it is
not enough for a theory to possess a screening mechanism for it to be able to reproduce
the observed cosmic acceleration and evade local experiments, see for example ref. [15]. The
nonlinearities of the theory mean that properties of the scalar fluctuations (which mediate
the fifth force) become background dependent. Assuming that the scalar couples universally
to matter, this means that, in non-relativistic environments, properties of the scalar field
depend on the local energy density. It is possible to classify screening models by which
property of the fundamental scalar becomes density dependent. In the chameleon model [10]
the scalar field has a mass that increases with the local matter density, while the symmetron
model [16] has a matter coupling that decreases with the local matter density. A third type
of screening, known as Vainshtein screening, occurs when the kinectic term in the Lagrangian
describing the scalar fluctuations becomes dependent on the environment [17–20].

To understand the constraints on screened scalar field theories and identify the pa-
rameter space that remains viable, exact solutions to the equations of motion are needed.
However, one consequence of the reliance of screened models on nonlinearities is that ana-
lytic solutions to the equations of motion become much harder to find. This is especially true
for situations where the matter sourcing the field is an irregular shape. For the chameleon
model, for example, various approximate analytic solutions exist but only for highly sym-
metric source shapes such as spheres, planes and ellipsoids [10, 21, 22]. Even for this small
subset of possible source shapes we see that the strength of the fifth force can vary depending
on the matter configuration. To compare screened scalar theories with experimental and ob-
servational tests, and to optimise these searches, we need the ability to determine the scalar
field profiles and corresponding fifth forces for arbitrary sources.

SELCIE (Screening Equations Linearly Constructed and Iteratively Evaluated) is a soft-
ware package that provides the user with tools to investigate nonlinear scalar field models
such as the symmetron and chameleon in user defined systems such as an irregularly shaped
source inside a vacuum chamber, galaxy clusters, etc. To accomplish this SELCIE uses a
nonlinear solving method (either the Picard or Newton method [23]) with the finite element
method (FEM) via the software package FEniCS [24–27]. Through the FEM the field equa-
tions can be solved over irregularly spaced meshes. This allows the use of meshes that are
more refined in regions where the field variation is largest, allowing us to solve the equa-
tions to a greater degree of accuracy with less computing time. Tools to easily construct
and optimise these meshes are also provided in SELCIE, using the mesh generating software
GMSH [28, 29]. From the calculated field solutions, SELCIE can determine the strength of
the corresponding fifth force that would be experienced by test particles.

This is not the first time the finite element method, or meshes tailored to experimental
configurations, have been used to determine the behaviour of screened scalar fields. A similar
approach to solving screened equations of motion using the finite element method was recently
taken in ref. [30], and this has been used to investigate the existence of screening in UV
complete Galileon models [31]. The behaviour of chameleon and symmetron fields inside an
experimental chamber has been studied using finite difference and finite element techniques,
in refs. [32, 33] leading to new bounds on the parameters of the theory [33, 34]. In ref. [35]
the symmetron equations of motion were solved for the experimental set-ups used to search
for Casimir forces.

Currently SELCIE is configured to find solutions for the chameleon equation of motion;
however, in principle the methodology used can be generalized to other scalar fields. We
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chose the chameleon model as our initial model since it is already heavily constrained at dark
energy scales. This means using SELCIE to improve experimental or observational searches
could allow us to fully rule out this important part of the chameleon parameter space.

In this paper we will demonstrate the effectiveness of SELCIE in solving the chameleon
equation of motion in a variety of different scenarios. We start in section 2 by introducing the
chameleon theory and its equation of motion, and show how these equations can be rescaled
for ease of numerical solving. In section 3 we introduce the FEM, followed in section 4 by a
description of the nonlinear solving methods that we use. Section 5 describes the application
of SELCIE and section 6 describes how its results compare to existing results. Finally, we
conclude with a summary of the results and will briefly discuss the future of SELCIE.

Conventions. In this paper all calculations will be performed in natural units (c = 1 and
~ = 1). The metric convention in this paper is ηµν = diag(−1, 1, 1, 1). The reduced Planck
mass is defined as M2

pl = (8πGN )−1, where GN is Newton’s gravitational constant. Partial
derivatives ∂f

∂x and ∂2f
∂x∂y , will be denoted by f,x and f,xy respectively.

2 The chameleon model

The chameleon field, φ, has an action

S =
∫
dx4√−g

(
M2

pl
2 R− 1

2φ
,µφ,µ − V (φ)

)
−
∫
dx4Lm(ϕ(i)

m , g̃
(i)
µν), (2.1)

where V (φ) is the field potential and R is the Ricci scalar [10, 36]. The matter fields, ϕ(i)
m , are

described by the Lagrangian Lm(ϕ(i)
m , g̃

(i)
µν) and the ‘i-th’ matter species moves on geodesics

of the Jordan frame metric, g̃(i)
µν . This metric is related to the Einstein frame metric, gµν ,

(where g is its determinant) by:
g̃(i)
µν = A2

i (φ)gµν . (2.2)

Applying the least action principle to equation (2.1) gives the equation of motion for the
field,

�φ = V,φ −
∑
i

βi
Mpl

A4
iT

(i)
µν g̃

µν
(i) , (2.3)

where � is the d’Alembert operator, the coupling parameter β is defined as

βi (φ) = Mpl
d(lnAi)
dφ

, (2.4)

and the energy-momentum tensor, T (i)
µν , is defined

T (i)
µν = 2√

−g̃(i)

∂Lm
∂g̃µν(i)

. (2.5)

For non-relativistic matter T (i)
µν g̃

µν
(i) ≈ −ρiA

−3
i , where ρi is the energy density in the Einstein

frame. Applying this approximation to equation (2.3), we find an equation of motion in
Klein-Gordan form, �φ = Veff,φ, where the effective potential is defined as

Veff(φ) = V (φ) +
∑
i

ρiAi (φ) . (2.6)
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Assuming βi is constant in φ, which results from a conformal coupling of Ai (φ) = eβiφ/Mpl , if
V (φ) is taken to be monotonically decreasing, equation (2.6) shows that the effective potential
will have a unique minimum for βi > 0. This minimum field value, φmin, satisfies

V,φ(φmin) +
∑
i

βiρi
Mpl

eβiφmin/Mpl = 0. (2.7)

The effective mass of the field around this minimum is

m2
φ = Veff,φφ(φmin), (2.8)

from which we can find the Compton wavelength of the field; λc = m−1
φ . For an appropriate

choice of potential, we see that the mass of the chameleon field is dependent on the value of
φmin which itself depends on ρi. If the relation between the field mass and the local matter
density is such that an increase to the latter results in an increase to the former, then a
resulting fifth force will be suppressed in high density regions. As a result, sufficiently large
and dense sources exhibit a thin-shell effect where the exterior field is only sourced by matter
contained in a thin outer shell [10]. Objects such as these are said to be screened and will
experience a suppressed fifth force from the field, while unscreened objects will experience
the full fifth force. In this way the nonlinearities of the chameleon potential can result in
screening of the fifth force.

In this work we use a chameleon field potential of the form

V (φ) = Λ4
(

1 + Λn

φn

)
, (2.9)

where Λ is a mass scale and n is an integer [10, 36]. We continue to assume that βi is inde-
pendent of φ; however, we will now also assume it to be universal for all matter components
and that βφ� Mpl. Using equation (2.7) we can compute the position in field space of the
minimum of the effective potential. For a matter density of ρ0, the value of the field that
minimises the effective potential is

φ0 =
(
nMplΛn+4

βρ0

) 1
n+1

. (2.10)

For the purposes of this paper, the chameleon field and matter distribution describing the
experimental setup under consideration will be treated as static.1 The chameleon equation
of motion to be solved is therefore:

∇2φ = −nΛn+4

φn+1 + βρ

Mpl
. (2.11)

Once a solution to this equation has been found, the chameleon force experienced by an
unscreened test particle of mass m can be computed from the geodesic equation for the
metric g̃µν to be

~Fφ = −mβ
Mpl

~∇φ. (2.12)

The equation of motion (2.11) can be rewritten in terms of dimensionless parameters and
variables. The field and local density are rescaled using φ0 and ρ0, to give the dimensionless

1In future work we plan to relax this constraint.
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quantities ρ̂ = ρ/ρ0 and φ̂ = φ/φ0. Spatial distances are rescaled with respect to an arbitrary
length scale L so that the Laplacian rescales as ∇̂2 = L2∇2. Although this length is arbitrary,
in practise it is useful to take it to be the characteristic length of the system of interest. The
resulting equation of motion is:

α∇̂2φ̂ = −φ̂−(n+1) + ρ̂, (2.13)

where the dimensionless constant α is defined as

α ≡
(
MplΛ
L2βρ0

)(
nMplΛ3

βρ0

) 1
n+1

. (2.14)

Through this rescaling the field is now a function of only three variables (α, n and ρ̂). The
definition of α also makes it simple to discern the degeneracies of any particular model. In
other words, when solving φ̂ for some value of α, that solution is also valid for all combinations
of Λ, β, ρ0 and L that produce the same α-value. A similar approach to utilising degeneracies
in the chameleon model was taken in ref. [37].

In this dimensionless rescaling, the position of the minimum of the effective potential
and the Compton wavelength of fluctuations around this minimum have the simpler forms,

φ̂min(ρ̂) = ρ̂− 1
n+1 , (2.15)

and
λ̂2(ρ̂) = α

(n+ 1) ρ̂
−n+2
n+1 , (2.16)

respectively, where λ̂ = λ/L is the rescaled Compton wavelength.

3 Finite element method

As discussed in the Introduction we are interested in solving for the chameleon field profile
around matter distributions with complicated shapes. To do this we use the FEM to solve
the chameleon equation of motion shown in equation (2.13). Because of the ease in which
this method can be adapted to arbitrary meshes, this allows us to adjust the mesh to any
arbitrary source shape, and to add additional refinement where necessary. For example, for
sources where the chameleon field profile exhibits the thin-shell effect, much of the variation
in the field occurs at the boundaries of the dense regions. We can add additional refinement to
the mesh in these regions, and make the mesh in other regions coarser to reduce computation
cost whilst not sacrificing the accuracy of the solution. To perform the FEM calculations
we use the FEniCS software package [24–27]. In this section we introduce the FEM, and its
application to solving the chameleon equation of motion. For a more detailed introduction
to the FEM we refer the reader to ref. [38].

In the FEM the domain of the problem, Ω, is segmented into cells, whose boundaries
are defined by their vertices, Pi. The value of the field inside each cell is approximated by a
piecewise polynomial function that matches the field values at each of the cell’s vertices [39].
Extending this to the whole domain, the field, u(x), can be defined using the basis functions
ei(x) as

u(x) =
∑
i

Uiei(x), (3.1)
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where Ui = U(Pi). In this setup, ei is defined such that ei(Pj) = δij and between vertices ei
is only nonzero in cells containing the corresponding vertex Pi [40].

The FEM is designed to solve second order PDEs of the form ∇2u (x) = −f (x, u(x)),
with boundary conditions u(x) = u0(x) applied to the edge of domain, ∂Ω [39]. This is done
by first transforming the second order equation into the integral of a first order equation
using Green’s theorem,∫

Ω

(
∇2u

)
vjdx+

∫
Ω
∇u · ∇vjdx =

∫
∂Ω

(∂nu) vjdx, (3.2)

where ∂nu is the gradient of the field perpendicular to ∂Ω. The function vj is an arbitrary
test function defined to vanish on ∂Ω, for all j [38, 39]. As a result of this choice the boundary
term in equation (3.2) vanishes. Applying this boundary condition and substituting in the
form of the second order PDE gives the relation∫

Ω
∇u · ∇vjdx =

∫
Ω
f(x)vjdx. (3.3)

Decomposing the field u as in equation (3.1) we find

∑
i

(∫
Ω
∇ei · ∇vjdx

)
Ui =

∫
Ω
f(x)vjdx, (3.4)

which can be rewritten explicitly as a linear matrix relation,

MU = b, (3.5)

where U is a vector with elements Ui and the matrix M and vector b are defined to be

Mij =
∫

Ω
∇ei · ∇vjdx, (3.6)

bj =
∫

Ω
f(x)vjdx. (3.7)

The vector U can therefore be determined by inverting M. The calculation of the inverse is
made easier by the fact that the ei are only nonzero for cells that contain the vertex Pi, and
so M is a sparse matrix [40].

4 Nonlinear solvers

Integrating the chameleon equation of motion, equation (2.13), as described in the previous
section, we find the integral form of the equation of motion:

α

∫
Ω
∇̂φ̂ · ∇̂vjdx =

∫
Ω
φ̂−(n+1)vjdx−

∫
Ω
ρ̂vjdx. (4.1)

This equation is nonlinear in φ̂, and so a nonlinear solving method is required to compute
the solution. SELCIE has two inbuilt solvers of this form, the Picard and Newton iterative
solving methods. In the following subsections we outline how these solvers work and their
performance. For a full discussion of these methods and proof of their validity we refer the
reader to ref. [23].
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4.1 Picard method

In the Picard method we take the Taylor series expansion of the potential term around some
field φ̂k which is the kth estimate of the field,

φ̂−(n+1) ≈ φ̂−(n+1)
k − (n+ 1)φ̂−(n+2)

k (φ̂− φ̂k) +O(φ̂− φ̂k)2

≈ (n+ 2)φ̂−(n+1)
k − (n+ 1)φ̂−(n+2)

k φ̂+O(φ̂− φ̂k)2.
(4.2)

Neglecting higher order terms and substituting the expansion in equation (4.2) into equa-
tion (4.1) gives the following equation for φ̂:

α

∫
Ω
∇̂φ̂ · ∇̂vjdx+ (n+ 1)

∫
Ω
φ̂

−(n+2)
k φ̂vjdx = (n+ 2)

∫
Ω
φ̂

−(n+1)
k vjdx−

∫
Ω
ρ̂vjdx, (4.3)

where we have rearranged terms so that the left-hand side of equation (4.3) is bi-linear in φ̂
and vj , and the right-hand side is linear in vj [39]. With the equation in this form, FEniCS
can then be used to solve for the field φ̂. We iterate this procedure by setting φ̂k+1 = φ̂
and then re-solving equation (4.3) to find a new φ̂. We then repeat this process iteratively
updating the value φ̂k each time until the condition |φ̂k+1− φ̂k| < δ, where δ is the tolerance,
is satisfied at all vertices.

A downside of the Picard method outlined above is that the process gives no control over
the rate of change of φ̂ between iterations and by extension the stability of the convergence.
To address this we introduce a relaxation parameter, ω, and a new update procedure so that

φ̂k+1 = ωφ̂+ (1− ω)φ̂k. (4.4)

By decreasing the parameter ω, the solver takes smaller step sizes between values and as
such is less likely to overshoot the true solution and diverge. However, smaller step sizes
also mean that the solver will take longer to converge. Therefore, some care is needed in the
choice of ω.

As discussed in section 3, the FEM calculation can be expressed as a linear equation
for a vector whose elements are the values of the field at each vertex. Writing equation (4.3)
in this form gives

[αM + (n+ 1)Bk] Φ̂ = (n+ 2)Ck − P̂, (4.5)

where Φ̂ is the vector whose elements are the values of the field φ̂ at each of the mesh vertices.
Here M is defined as in equation (3.6), while the matrices Bk and Ck are defined as

[Bk]ij =
∫

Ω
φ̂

−(n+2)
k eivjdx, (4.6)

[Ck]j =
∫

Ω
φ̂

−(n+1)
k vjdx, (4.7)

and ei are the basis functions of the field. The density vector P̂ is defined as

P̂i =
∫

Ω
ρ̂(x)vidx. (4.8)

The advantage of solving the problem in the form of equation (4.5) is that since M and P̂ do
not depend on φ̂k these can be computed once, before the iterative solver, thereby reducing
the total amount of computing required.
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4.2 Newton method

The FEM Newton iterative method solves equations of the form F (φ̂; vj) = 0, by evaluating
the linear problem

N∑
j=1

∂F

∂φ̂i
δφ̂i = −F (φ̂k; vj), (4.9)

where φ̂k is the kth estimate of the field, as was the case in the Picard method, and δφ̂i
are the elements of a correction field δφ̂ which has the same basis functions as φ̂ [39]. The
components of the field φ̂k are then updated as

φ̂k+1 = φ̂k + ωδφ̂, (4.10)

where again ω is a relaxation parameter. The code terminates when |δφ̂| < δ at all vertices,
where again δ is the tolerance. For the chameleon field, we want the field φ̂ to satisfy

F (φ̂; vj) = α

∫
Ω
∇̂φ̂ · ∇̂vjdx+

∫
Ω
ρ̂vjdx−

∫
Ω
φ̂−(n+1)vjdx = 0. (4.11)

Therefore, equation (4.9) becomes

α

∫
Ω
∇̂δφ̂ · ∇̂vjdx+ (n+ 1)

∫
Ω
φ̂

−(n+2)
k δφ̂vjdx

= −α
∫

Ω
∇̂φ̂k · ∇̂vjdx−

∫
Ω
ρ̂vjdx+

∫
Ω
φ̂

−(n+1)
k vjdx.

(4.12)

In matrix form the equation to be solved at each iteration is

[αM + (n+ 1)Bk]δΦ̂ = −αMΦ̂k − P̂ + Ck, (4.13)

where δΦ̂ and Φ̂k are the vector forms of δφ̂ and φ̂k respectively. The matrices M, B, C and
P̂ are defined in equations (3.6) and (4.6)–(4.8) respectively. As was the case with the Picard
method, we can compute M and P̂ prior to the iterative solver to reduce computation time.

4.3 Optimising solvers

Regardless of whether the Picard or Newton solver is chosen, when solving for φ̂k or δφ̂ in
equations (4.5) and (4.13) respectively, at each step it is necessary to solve a linear system
of the form Ax = b. For large matrices A, direct substitution is impractical, so iterative
methods are required, which can be further classified into stationary and Krylov subspace
methods. Stationary methods apply an operator to the residual error from some initial
estimate of x through, for example, splitting of the matrix A. Krylov methods work by
forming a set of basis functions with successive powers of A applied to the residual, and
are guaranteed to converge (although this may be slow for large systems). The archetypal
example of a Krylov solver is the conjugate gradient (CG) method, which is suitable for
symmetric positive-definitive A. Due to the construction of the test and trial functions, the
matrices in equations (4.5) and (4.13) always satisfy this property [39]. The convergence of
both types of iterative methods can be improved by preconditioning with a matrix K. This
involves solving the system K−1Ax = K−1b, where K is chosen such that the spectrum of
eigenvalues of K−1A is close to 1, and K−1b is inexpensive to evaluate. The simplest type
of preconditioner is the Jacobi (or diagonal) preconditioner, where K = diag (A).
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Figure 1. Plot showing how the optimum linear solver and preconditioner combinations for various
nonlinear solving methods scale with mesh cell number for a 2D spherical source inside a vacuum
chamber.

To determine the optimal choice of nonlinear method, linear solver and preconditioner,
we tested various combinations against meshes of varying cell number for a 2D spherical
source inside a vacuum chamber. In total, we investigated 6 nonlinear methods: (1) Newton;
(2) Picard; (3) Newton with pre-calculated system matrices; (4) Picard with pre-calculated
system matrices; (5) the inbuilt FEniCS Newton solver; (6) the inbuilt FEniCS SNES solver.
For each of these we tested 10 linear solvers and 11 preconditioners included in FEniCS,
giving a total of 660 solver combinations. Some of these either did not work together or
converge, so were excluded from the analysis. The results are summarised in figure 1, which
shows the total run-time against cell number for each nonlinear method. In each case, we
show the best combination of linear solver and preconditioner. From this, we see that the
matrix form of the Picard method is both the fastest and also scales better with mesh size. In
this case, the optimal combination was found to be the CG solver with Jacobi preconditioner.
To check this generalised to other systems, we evaluated the solution time of the linear system
for a variety of source shapes, and found only small differences. The combination of matrix
Picard and CG solver with Jacobi preconditioner is therefore the default choice in SELCIE.

5 Using SELCIE

In this section we will illustrate the typical work flow of a SELCIE user.

5.1 Mesh generating tools

We begin by determining the spatial regions within which we wish to solve the chameleon
equations of motion, and covering them with an array of points defining a mesh. SELCIE
is equipped with tools to help the user construct meshes using the GMSH software [28, 29].
One possibility is to use the functions built into SELCIE to generate basis shapes such as
ellipses and rectangles. These shapes can then be rotated, translated, combined or subtracted

– 9 –



J
C
A
P
1
2
(
2
0
2
1
)
0
4
3

(a) (b)

Figure 2. GMSH meshes constructed using: a) a combination of functions manipulating rectangles
and ellipses into a complex shape. b) A mesh of a shape obtained from a series of Legendre polynomials
with coefficients [0.0547, 0.0013, 0.0567, 0.2627], constructed using the points_to_surface() function.

from one another to produce new, more complex shapes. An example of a complex shape
constructed in this manner is shown in figure 2a. Alternatively, it may be that the desired
mesh shape is defined by a known function. In that case, SELCIE can construct the mesh
directly from a list of points obtained from the function that defines the closed surface of
the shape. Figure 2b is an example of a mesh constructed using this method. These tools,
either used separately or in combination, allow the user to construct a vast range of shapes
without prerequisite knowledge of the GMSH interface. These shapes can also be made into
subdomains of a larger mesh which can be used to evaluate the field.

A major benefit to the finite element method is the ability to use non-uniform meshes.
This can be especially useful with screened scalar field models where the field may vary more
significantly in some regions of space than others. As such, SELCIE gives the user control
over the size of individual cells as a function of distance from the boundaries. This can be
done by defining some range for which the cell size will vary linearly between some given
minimum and maximum. Once generated the mesh is saved as a .msh file.

5.2 Dimensional reduction through applying symmetry

Solving differential equations in three spatial dimensions can be computationally expensive.
To reduce the number of degrees of freedom in a given problem a symmetry can be imposed,
reducing the effective dimension of the problem. When applicable, this can be done in
SELCIE through the introduction of a symmetry factor, σ into the integrations,∫

Ω
f (x, u(x)) dx→

∫
Ω/S

f (x, u(x))σdx. (5.1)

where S is the symmetry group of the applied symmetry. Systems with axis symmetry
around the x or y axes can be simplified to 2-dimensions using the symmetry factors |y| and
|x| respectively. The final option built into SELCIE is a translational symmetry perpendicular
to the plane of the 2D mesh which has a symmetry factor equal to 1.

5.3 Solving for the field

Once the mesh has been created and saved, the user can then define the matter distribution
which sources the chameleon field profile. The user can define the density profile in terms of
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(a) (b)

(c) (d)

Figure 3. Calculated field results from SELCIE for an axis-symmetric system in the y-axis consisting
of a torus with a hole radius of 0.05 and a tube radius of 0.1, inside a vacuum chamber of unit radius,
wall thickness 0.1, and density equal to that of the torus. The chameleon parameters are n = 3 and
α = 1012. a) The density profile of the system. b) The chameleon field profile. c) The magnitude of
the field gradient. d) The strong residual of the field.

a set of functions, each defining the density on a different subdomain of the mesh. In this
way, complex density profiles can be easily constructed.

After applying the appropriate symmetry factor, the user is now free to use either the
picard() or newton() functions to solve for the field given the density profile and a choice of
the chameleon parameters n and α. It is then possible to compute the field gradient (vector
or scalar magnitude).

To diagnose the accuracy of the solutions to the chameleon equation of motion obtained
by SELCIE, the strong residual can be evaluated. We do this by inputting the solution
obtained for the scalar field into the equation of motion, equation (2.13). The amount by
which this differs from zero is the strong residual, and we say that the solutions we obtain
are accurate when the strong residual is significantly smaller than the dominant term(s)
in the equation of motion. As an example, figure 3 shows the density profile of a torus
inside a vacuum chamber, the associated chameleon field profile, the magnitude of the field
gradient, and the strong residual. The equations have been solved assuming that the system
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Figure 4. Plot of the strong residual of equation (2.13) and the components of the equation of
motion for a torus with hole radius 0.05 and tube radius of 0.1, inside a unit sized vacuum chamber
with wall thickness 0.1 and with axis-symmetry imposed in the y-axis. The variation of the residual
and the components of the equation of motion along the lines y = 0 and x = 0 are shown in figures 4a
and 4b respectively. Both the torus and the vacuum walls have a rescaled density of 1017 and the
system the chameleon parameters used are n = 3 and α = 1012.

is symmetric under rotations around the vertical y-axis. From figure 3d it can be seen that
the strong residual varies by orders of magnitude across the spatial domain. In figure 4 we
show the strong residual alongside the component terms of the equation of motion, along the
x and y-axes. In regions of high density we see that the dominant terms are φ̂−(n+1) and |−ρ̂|.
Meanwhile, in the vacuum regions the dominant terms are φ̂−(n+1) and |α∇2φ̂|. Assuming
a machine precision of 10−14 and an expected (dimensionless) field value of ∼ 10−4, the
expected error on the φ̂−(n+1) is ∼ 107. This demonstrates that the error on equation (2.13)
can be very large, even at machine precision, due to the nonlinear nature of the equation.
We will consider the solutions we find to be accurate if the strong residual is at least one
order of magnitude smaller than the dominant terms in the equation of motion. This can be
seen to be the case in figure 4.

To check the accuracy of the solver in 3D, we can also solve for the chameleon field
around the torus without imposing axis-symmetry. Figure 5 shows the maximum relative
difference between the 2D and 3D solutions across a range of azimuthal angles. From these
plots we see a significant relative error at the discontinuous boundaries of ∼ 60%. We found
this to be a consequence of the 3D mesh not being sufficiently refined at the boundary.
However, due to the scaling relation between boundary precision and cell number, it can
quickly become a computationally expensive calculation to construct better refined meshes in
3D. Nevertheless, away from the boundaries the relative error decreases to percent levels and
the two solutions have a strong agreement. This illustrates that even with a coarser boundary
in 3D, SELCIE can still accurately determine the solution to the equation of motion.

6 Comparison with known field profiles

In this section we will demonstrate that SELCIE can reproduce known solutions of the
chameleon equation of motion. Consequently it also contains a summary of known analytic
solutions and approximations to the chameleon equation of motion.
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(a) (b)

Figure 5. Plots of the maximum relative difference between the 2D and 3D solutions of a torus
inside a vacuum chamber for a range of azimuthal angles. Figure 5a shows the whole domain while
figure 5b shows a small region at the boundary of the source. The torus has a hole of radius 0.05,
tube radius of 0.1 and rescaled density of 1017. The chamber wall has the same density as the torus
and a thickness of 0.1. Both measurements were measured using the chameleon parameters n = 3
and α = 1012.

6.1 Field maximum with no source

We will start by considering the chameleon field profile inside an empty spherical vacuum
chamber. Since we define ρ̂0 = 1 everywhere inside the vacuum chamber, equation (2.16)
then shows that when α� 1 the field’s vacuum Compton wavelength is many orders larger
than the size of the vacuum chamber. The field, therefore, does not have enough space to
reach the value that minimises the effective potential inside the chamber and we can make
the approximation φ̂−(n+1) � ρ̂ in the vacuum region. Applying this approximation to
equation (2.13) and defining a new field related to the original by the rescaling

φ̂(n, ρ̂, α) = α−1/(n+2)ϕ̂(n, ρ̂), (6.1)

we then find that the resulting equation for ϕ̂,

∇̂2ϕ̂ = −ϕ̂−(n+1), (6.2)

is independent of α. The equivalent relation for the n = 1 case was derived in ref. [41].
We see that the chameleon field profiles inside an empty vacuum chamber are all equiv-

alent up to the rescaling in equation (6.1) as long as α� 1.
It was shown in ref. [41] that when n = 1 the value of ϕ̂ at the centre of an empty

vacuum chamber should equal 0.69 (to two significant figures).
Figure 6 shows the profile of ϕ̂ computed with SELCIE for a range of α values, all of

which are much greater than unity. As predicted, ϕ̂ has the same profile inside the vacuum
for the whole range of α values tested, verifying that equation (6.2) holds. The value of ϕ̂ at
the origin was also consistent with the value found in ref. [41].

6.2 Solutions around circular sources

For sufficiently large and dense spherical sources (where the spherical symmetry simplifies
equation (2.11) to an effective 1D problem), the thin-shell solution, outlined in section 2, to
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Figure 6. The rescaled chameleon field as described in equation (6.1) inside an empty vacuum
chamber for various values of α. In each case n = 1 and ρ̂source = 1017. Note that, except when r̂ > 1,
the three curves exactly overlap.

the chameleon equation of motion can be found by making different approximations to the
chameleon equation of motion in three spatial regions. The resulting approximate solution
for the exterior field profile produced by a spherical source of radius R can be written as

φ(r) ≈ −
(

3β
4πMpl

)(∆R
R

)
Mce

−mbg(r−R)

r
+ φbg, (6.3)

where φbg is the value of the field that minimises the effective potential in vacuum, mbg is
the mass of the field in vacuum, Mc is the mass of the source and ∆R is the width of the
thin-shell [10]. This expression is valid for ∆R/R� 1, where

∆R
R

= |φbg − φc|
6βMplΦc

, (6.4)

Φc = Mc/8πM2
plR is the Newtonian potential at the surface of the source and φc minimises

the effective potential inside the source. Equation (6.4) is the condition determining whether
objects are large and dense enough (more specifically objects with a sufficiently high surface
Newtonian potential) to have a thin-shell, ∆R/R� 1, and thus be screened. The field profile
around smaller sources can be found by setting ∆R/R = 1 in equation (6.3).

Approximate analytic solutions can also be found around infinite cylindrical sources.
Assuming the condition mbgR� 1 holds, the analytic solution to the chameleon field around
a cylindrical source is

φ(r) ≈ φbg −
βρcR

2

2Mpl

(
1− S2

R2

)
K0(mbgr), (6.5)

where K0(x) is a modified Bessel function [41]. Here R is the radius of the cylinder, ρc is
the density inside the cylinder, and S is the position of the thin-shell radius given by the
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expression:

4Mplφbg
βρcR2 =

(
1− S2

R2

)(
1− 2γE − 2 ln

(
mbgR

2

))
+ 2S2

R2 ln
(
S

R

)
, (6.6)

where γE is the Euler-Mascheroni constant [41]. We see that only sufficiently large sources
have a non-trivial solution to equation (6.6) and therefore a thin-shell, as was true in the
spherical case.

For ease of comparison with the results of SELCIE we state here the rescaled form of
the spherical and cylindrical solutions, in the sense of section 2. Equation (6.4) describing
the position of the thin-shell inside a spherical object becomes

∆R̂
R̂

= α(1− φ̂c)
ρ̂cR̂2

, (6.7)

where R and ∆R have been rescaled to R̂ = R/L and ∆R̂ = ∆R/L, respectively. Assuming
ρ̂c � 1, from equation (2.15) we see that φ̂c � 1. Applying this to equation (6.7) and
substituting it into a rescaled equation (6.3) gives the rescaled field profile for a spherical
source:

φ̂(r̂) ≈ 1− R̂

r̂
e

−(r̂−R̂)
√

(n+1)
α . (6.8)

For the cylindrical solution, assuming (R−S)/R� 1, in equation (6.6) and substituting
this into a rescaled equation (6.5) gives the relation

φ̂ ≈ 1−
2K0

(
r̂
√

(n+1)
α

)
ln
(

4α
(n+1)R̂2

) . (6.9)

As before, this relation holds for mbgR� 1 which is equivalent to (n+ 1)R̂2 � α.
To verify that SELCIE can reproduce these approximate analytic solutions, we con-

structed a 2D mesh of a circular source of radius R̂ = 0.005 inside a circular vacuum cham-
ber of radius unity. Both spherical and cylindrical cases can be explored using the above 2D
mesh by imposing axis-symmetry (along either the x or y-axis) and translational symmetry
normal to the mesh, respectively. For the values of the corresponding symmetry factors see
section 5.2. In both cases we choose n = 1, α = 0.1 and the source density was set to
ρ̂c = 1017. The analytic and numerical field profiles for both spherical and cylindrical sources
are shown in figure 7. From this plot we see that SELCIE is able to reproduce the analytic
results to within the accuracy of the analytic approximations.

6.3 Solutions around ellipsoidal sources

In ref. [21] a similar approach to that outlined in section 6.2 was taken to determine an
approximate analytic solution for the chameleon field around an ellipsoidal source using the
coordinate system:

x = a
√

(ξ2 − 1)(1− η2) cos (φ),

y = a
√

(ξ2 − 1)(1− η2) sin (φ),
z = aξη.

(6.10)
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Figure 7. The calculated field profiles for the spherical and cylindrical cases against the approximate
analytic solutions. For both cases, n = 1, α = 0.1, ρ̂source = 1017, and the source radius was set to
0.005.

In these coordinates, a is the distance from the ellipse’s foci to the origin, η is analogous to an
angular coordinate (−1 ≤ η ≤ +1), ξ is analogous to a radial coordinate (1 ≤ ξ <∞), and φ
is the azimuthal angle (0 ≤ φ ≤ 2π). Outside a screened ellipsoidal source the approximate
analytic solution for a chameleon field is

φ(ξ, η) = φbg −
a2βρc
3Mpl

[
ξ0(ξ2

0 − 1)− ξc(ξ2
c − 1)

](
Q0(ξ)− P2(η)Q2(ξ)

)
, (6.11)

where ξ0 defines the surface of the ellipse, φbg is the background value of the field and Pi
& Qj are Legendre functions of the first and second kind respectively. The position of the
interior surface of the thin-shell ξc is defined by:

6MPl
a2βρc

φbg + (ξ2
c − 1)

{
1 + 2ξcQ0(ξc)

}
= (ξ2

0 − 1)
{
1 + 2ξ0Q0(ξ0)

}
. (6.12)

Making the approximation δξ = ξ0 − ξc � ξ0 and rescaling the equations as described in
section 2, this constraint becomes

δξ = 3αφ̂bg
â2(3ξ2

0 − 1)Q0(ξ0)
� ξ0, (6.13)

where â = a/L, and equation (6.11) becomes

φ̂(ξ, η) = φ̂bg

(
1− Q0(ξ)− P2(η)Q2(ξ)

Q0(ξ0)

)
. (6.14)

To test this solution against the field profile found by SELCIE around an elipsoidal
source, we first constructed a mesh of an ellipse inside a unit radius vacuum chamber with a
wall thickness of 0.1. The value of ξ0 for this ellipse was allowed to vary while the value of a
was set such that for any ξ0 the volume was set to that of a sphere of radius 0.005. Taking
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(a) ξ0 = 1.01 (b) ξ0 = 1.25

(c) ξ0 = 1.50 (d) ξ0 = 1.75

Figure 8. Comparison between the chameleon field profiles calculated by SELCIE around an elliptical
source of uniform density and the approximate analytic solution shown in equation (6.14) for various
values of ξ0. The parameters used were n = 1 and α = 103.

ρc = 1017, n = 1 and α = 103 the chameleon field inside the chamber was calculated using
SELCIE for various values of ξ0. These results are compared to equation (6.14) in figure 8.
Close to the surface the analytic result appears to break down as the value of the field is
negative. Away from the surface, however, the results from SELCIE agree with the analytic
results with ∼ 1% relative error. Given that this is only an approximate analytic solution,
we consider our results to be in good agreement.

6.4 Analytic solutions for NFW galaxy cluster halos

In the previous subsections we have discussed solutions to the chameleon equation of motion
around dense sources, with clearly defined surfaces, inside a vacuum chamber. In this sec-
tion we will demonstrate that SELCIE can also provide accurate chameleon field profiles for
continuous density distributions. An important example of such a system, of relevance to a
number of observational tests, is galaxy clusters. These are the largest gravitationally bound
systems in the universe. The ability to measure cluster masses in a variety of ways (X-ray
surface brightness, the Sunyaev-Zeldovich effect, weak lensing and other methods [42–44])
makes clusters invaluable when studying and testing gravity on cosmological scales. In addi-
tion, galaxy clusters are known to have a complicated density distribution, which will need
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to be evaluated when testing for screened models such as the chameleon. These features
have been employed in astrophysical fifth force searches, producing strong constraints on
chameleon gravity and other models [45–52].

It has been shown that the underlying density distribution on galaxy and galaxy cluster
scales is well-approximated by the Navarro-Frenk-White (NFW) profile [53]. After rescaling,
this profile can be written as

ρ̂(r) = ρ̂s

r̂ (1 + r̂)2 , (6.15)

where the radial coordinate has been rescaled by the scale radius of the cluster rs, such that
r̂ = r/rs, and the density has been rescaled by the cosmological critical density ρc such that
ρ̂ = ρ/ρc and ρ̂s = ρs/ρc. The NFW profile of equation (6.15) diverges as r̂ → 0, so we also
introduce a core radius, r̂cut, so that for ρ̂ (r̂ < r̂cut) = ρ̂ (r̂cut).

There is no exact analytical solution for a chameleon field profile within and around
a spherical NFW halo. However, as in the previous subsections, an approximate analytic
solution can be obtained by using a piecewise approach as shown in ref. [45]. Applying the
rescaling outlined in section 2, this solution can be written as

φ̂(r̂) =


φ̂s
[
r̂ (1 + r̂)2

] 1
n+1 r̂ ≤ r̂c

φ̂0

(
1− r̂c

r̂

)
+ ρ̂s
α

1
r̂

ln
(1 + r̂c

1 + r̂

)
r̂ ≥ r̂c,

(6.16)

where φ̂s = φ̂min(ρ̂s), as defined by equation (2.15), φ̂0 is the field value at spatial infinity (or
at the boundary of the numerical simulation), and r̂c is the transition scale. For distances
less than r̂c the potential and matter terms dominate over the gradient term and so the field
takes the value that minimises the effective potential as given by equation (2.15). For scales
larger than r̂c the field takes values away from this minimum as the potential term becomes
subdominant to the gradient and matter terms. The transition scale is r̂c ≈ (ρ̂s/αφ̂0) − 1
where, in both this expression and equation (6.16), it has been assumed that ρ̂s � 1 and
therefore φ̂s � 1.

We compared equation (6.16) against solutions calculated using SELCIE for the cases
when rc is much larger than the domain size and for r̂c � 1. These results are plotted in
figure 9. In both cases the calculated and analytic results have a strong agreement, with
sub-percentage relative error. However, we should mention here that due to the before
mentioned cutoff that was introduced to the density profile, the assumption that the field
traces the minimum of the effective potential near the origin can be broken. This can be seen
in figure 9b where the analytic solution predicts the field would tend to zero at the origin
but the calculated field tends to some larger value instead.

6.5 Solutions around Legendre polynomial shapes

As another comparison to work in the literature, we attempted to reproduce the results from
ref. [54]. This paper attempted to use a Picard nonlinear solving method with the FEM
to solve the chameleon field around irregularly shaped sources. In this sense, SELCIE can
be viewed as a continuation of this work. Ref. [54] aimed to investigate what shapes would
optimise experimental searches for the chameleon field by maximising the resulting fifth force.
Specifically, the shapes tested were constructed using Legendre functions, Pi (cos θ), as a basis
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(a) (b)

Figure 9. Plots comparing the field profile calculated by SELCIE with the expected analytic solution
in the regime: a) rc � 1

(
α = 10−9), b) rc � 1

(
α = 109). In both cases the rescaled critical density

was set to ρs = 106.

a0 a1 a2 a3
δg

g

∣∣∣∣
P

[10−11] δg

g

∣∣∣∣
S

[10−11]

0.82 0.02 0.85 3.94 4.82 2.25
0.97 0.59 0.03 3.99 4.68 2.24
1.34 0.18 0.41 2.89 4.52 2.26
1.47 0.19 0.27 2.63 4.47 2.29
2.00 0.00 0.00 0.00 1.73 2.24

Table 1. Table of fifth forces measured from ref. [21] (labelled as P ) compared to results produced
from SELCIE (labelled as S). The ai values correspond to the Legendre coefficients used to define
the shapes in [21].

such that shapes are defined

R (cos θ) =
3∑
i=0

aiPi (cos θ) , (6.17)

where ai are the coefficients of the shape. The shapes were placed in a vacuum chamber
of radius 15 cm and wall thickness of 3 cms. The fifth force was measured for a distance of
5mms from the surface of the source. The wall and source density were both set to 1 g/cm3

while the vacuum density was 10−17 g/cm3. The remaining parameters used were: n = 1,
M = Mpl/β = 1018 GeV and Λ = 10−12 GeV. Using SELCIE we reconstructed this setup
for each Legendre polynomial shape tested in ref. [54]. The densities were rescaled by the
vacuum value stated above and the length scale L was set to the chamber radius. The value
of α was calculated using equation (2.14) to be 6.1158 × 1018. Our results are presented
alongside the original results from ref. [54] in table 1.

From this table we see that our results are in disagreement with the previous results.
In fact, both the individual values and the increase in the fifth force from the spherical
case (bottom row) disagree. However, due to the extensive testing we have performed on
SELCIE, we are confident in its results and believe there is an error in the calculation of the
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results reported in ref. [54]. The new results for these shapes, found with SELCIE, could be
interpreted as implying that optimising the shape may not yield as large an increase to the
fifth force as previously suggested in ref. [54]. However, since we are not confident in the
previous results, we also have no reason to believe that the Legendre coefficients listed are the
optimum values. It is still possible that for some choice of coefficients there is a significant
increase to the fifth force compared to the spherical case.

7 Conclusion

In this work we have introduced SELCIE as a tool to help study the chameleon field. Cur-
rently SELCIE solves the static chameleon equation of motion in the form of equation (2.13).
Using SELCIE the chameleon field equation can be solved for highly non-symmetric systems
constructed by the user. This can therefore be used to find solutions for systems which lack
an analytic solution and to optimise existing experiments used to detect the chameleon field.

We have demonstrated the reliability of SELCIE to reproduce approximate analytic re-
sults from the literature for a variety of sources and density profiles; however, its functionality
is much broader than this. For example, density distributions from N-body simulations or
galaxy halo profiles can be easily inputted into SELCIE to find the corresponding chameleon
profile and fifth force, enabling precision tests of the chameleon model on cosmological scales.

In a separate work, ref. [52], SELCIE has already been used to test the viability of
detecting a chameleon signal through observations of galaxy cluster halos. In future work
we plan to use SELCIE with a genetic algorithm to find experimental configurations which
optimise the possibility of detecting a chameleon fifth force. This optimisation algorithm
could be used, for example, to extend the reach of current and future experiments that
search for chameleon fifth forces with atom interferometry [33, 34, 41, 55, 56], ultra-cold
neutrons [57–62], torsion balances [63–65], Casimir experiments [66–70] or opto-mechanical
sensors [71–74].

We intend to continue to develop and extend SELCIE in the future to generalise the
methodology to work with alternative forms of the chameleon model and other screened
scalar fields such as the symmetron. We also plan to extend the code to allow the density
profile and the field to evolve in time. Throughout the literature the chameleon field is
assumed static,2 and so it would be of interest to study what effects a dynamic system has
on the field. This could lead to strengthening constraints by re-evaluating known systems
(e.g. Earth-Moon system) or by developing new experiments that utilise dynamical systems.
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