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Abstract

Coordinate based meta-analysis (CBMA) is widely used to find regions of consistent activation across fMRI studies that have
been selected for their functional relevance to a given hypothesis. Only reported coordinates (foci), and a model of their
spatial uncertainty, are used in the analysis. Results are clusters of foci where multiple studies have reported in the same
spatial region, indicating functional relevance. There are several published methods that perform the analysis in a voxel-wise
manner, resulting in around 105 statistical tests, and considerable emphasis placed on controlling the risk of type 1
statistical error. Here we address this issue by dramatically reducing the number of tests, and by introducing a new false
discovery rate control: the false cluster discovery rate (FCDR). FCDR is particularly interpretable and relevant to the results of
CBMA, controlling the type 1 error by limiting the proportion of clusters that are expected under the null hypothesis. We
also introduce a data diagnostic scheme to help ensure quality of the analysis, and demonstrate its use in the example
studies. We show that we control the false clusters better than the widely used ALE method by performing numerical
experiments, and that our clustering scheme results in more complete reporting of structures relevant to the functional
task.
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Introduction

Reports of functional neuroimaging studies summarise locations

of significant activation or deactivation related to specific tasks.

These almost always include coordinates (foci) in Talairach [1] or

in Montreal Neurological Institute (MNI) space. Similar studies

are often performed independently by different centres, and

coordinate based meta-analysis (CBMA) of such studies has been

developed with the aim of combining the results and performing

statistical inference on them [2–12]. The output of these meta-

analyses is a set of voxel clusters located where studies commonly

report activation. The clusters then indicate which brain structures

are involved in the specific task.

Possibly the most widely known of the CBMA methods are the

kernel density analysis (KDA) [10] and the activation likelihood

estimate (ALE) [13]. The KDA method models spatial uncertainty

of each focus by a uniform sphere of specified radius (,10 mm).

The ALE method models the uncertainty with a Gaussian function

with full width half max (FWHM) ,10 mm. KDA seeks clusters of

significantly high density of reported foci. The ALE method

estimates the probability that there is a focus in any given voxel.

The union of probabilities (the ALE) over all reported foci then

reflects the probability that there is at least one focus within a

voxel, and clusters of significantly high ALE are tested for.

Both KDA and ALE methods have undergone evolutionary

development. They have recently shifted towards emphasis on

study [8,9], rather than the individual foci, preventing individual

studies having excessive influence. A further development recog-

nises the possible relationship between foci reported within study

[5,9].

Recently the signed differential mapping (SDM) method for

CBMA of neuroimaging data has been introduced [11], and

incorporates features from both the KDA and ALE methods. This

was originally devised for analysis of grey matter changes, and was

required to account for both increases and decreases in grey

matter density. The method has recently been updated to allow

the inclusion of extra statistical parametric maps in the analysis

[12]. Much of the focus of this method is on strict inclusion criteria

for studies.

The KDA, ALE, and SDM methods perform voxel-wise

analysis. While the recent changes to the ALE method have

relatively minor impact [8], it has been shown that different

approaches to type 1 error control of the high number of statistical

tests (testing in every voxel, so ,105 tests) involved can have a

major impact [6]. Originally the ALE method simply specified a

conservative level for rejecting the null hypothesis [13]; the SDM

method also employs a conservative threshold [11]. Later, control
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of the false discovery rate (FDR) [14] was imposed [6]. However,

control of the FDR may be problematical when the tests are not

independent [14], which they are not for this problem [4].

Furthermore, testing of individual voxels has been shown to be

inappropriate in voxel-wise fMRI analysis, with tests that consider

the topological features of clusters of voxels being preferred

[15,16]. Consequently, an empirical cluster level control has

recently been introduced, whereby the size of significant clusters

computed under a randomisation of the foci is used; clusters are

declared significant only if large compared to those observed

under randomisation [4]. The KDA method uses a conservative

family wise error rate (FWER) control; this has less power than

FDR [17], but fewer false positives. In the updated MKDA

method, a cluster size threshold is also imposed, which is similar to

that used with the ALE method.

Here we detail a new algorithm for coordinate based meta-

analysis of functional neuroimaging studies that: (1) tackles the

issue with large numbers of statistical tests and type 1 error control,

(2) uses a new clustering algorithm to give more complete

reporting of the results, and (3) includes a diagnostic tool to

highlight potential problems with the data. Our method is based

on the ALE algorithm, which is implemented in the freely

available GingerALE (http://brainmap.org/ale) software; but also

has some features in common with the KDA method. The most

apparent differences are that we truncate the Gaussian functions

to contain only 95% of their mass, so they have a reduced sphere

of influence similar to the KDA/MKDA method. Furthermore,

we perform hypothesis testing only at the reported foci, rather than

at each voxel, reducing the number of statistical tests performed

(,102) dramatically. For these reasons we call our method

LocalALE. Consequently it is computationally feasible to generate

and store many complete experiments under our null hypothesis

and analyse the resulting p-values. We can then control the FDR

whilst directly taking account of the dependences between the

multiple tests. Another new feature of our algorithm is the

clustering scheme, which is important both for reporting of the

meta-analysis results, and for our new type 1 error control scheme:

false cluster discovery rate (FCDR) control. We estimate the

expected number of significant clusters within the null generated

experiments to control the FCDR, which is directly relevant to the

results, and is more interpretable than FDR; it is a similar principle

to FDR, but applied to clusters, rather than tests. The use of

FCDR in a voxel-wise CBMA would be computationally very

intensive, since it would require storage and processing of many

(thousands) images. Similar control mechanisms have previously

been described for controlling false positive results applicable to

functional MRI [15,16].

Materials and Methods

The spatial distribution for reported foci
The ith focus from study j is located at rij and has associated with

it a spatial distribution.

Pij rð Þ~wjexp {
Dr{rij D2

2s2

� �
, ð1Þ

which is Gaussian with standard deviation s. The weight term wj

normalises the function appropriately, and allows the contribution

of each study to be weighted independently, as suggested by [9].

We use

wj~

0 if Dr{rij D§2:8s
vjffiffiffiffiffiffi

2p
p 3

s3
if Dr{rij Dv2:8s

8<
: ð2Þ

This function truncates the spatial distribution to 95% of its mass

(2.8s), and weights its value by nj. One suggested weighting is an

appropriately normalised square root of the number of subjects in

the study [9]; the studies with larger numbers of subjects are

generally considered more robust. However, other factors, such as

the significance of the activation or the volume of the activation

are also important; unfortunately these are often reported in an

inconsistent way. In this study we do not include any weighting

factors.

The Spatial Distribution for a Single Study
This function describes the spatial uncertainty for all foci from a

single study.

MAj rð Þ~max iPij rð Þ: ð3Þ

The MA relates only to the nearest focus to point r, and was

introduced as the modelled activation (MA) in the ALE method

[8].

The ALE
The ALE is a function of the MA values [5],

ALE rð Þ~1{Pj 1{MAj rð Þ
� �

: ð4Þ

This is the test statistic we will use in our hypothesis tests. High

values indicate a consistent activation across studies.

Testing for Statistically Significant Clusters of Foci
Pseudo code for the meta-analysis algorithm is given in

appendix S1.

It is hypothesised that the studies are related by task/stimulus

such that foci are reported more consistently across studies in

regions that are important to the task/stimulus. It is these

consistently reported regions that are of interest in CBMA, and the

ALE is the measure of this consistency; higher ALE values being

indicative of more consistent reporting. For hypothesis testing a

null distribution of ALE values is needed. The null distribution for

CBMA might be obtained by measuring the ALE in experiments

using reported foci from studies that are not related by task/

stimulus; with the constraints that the number of foci in each study

and the number of studies in the experiments are kept the same.

However, this may not be practical. By assuming that the foci are

independent and uniformly distributed throughout either the grey

matter (GM) only as suggested in [4,9], or throughout the whole

brain (WB), a Monte Carlo simulation can be used to computa-

tionally generate a null distribution [9]. While this assumption is

not strictly valid, it does provide a quantitative scheme for

assessing significance in CBMA, and been employed in the various

algorithms [9,13]. However, the distribution of ALE values

directly depends on the distribution of MA values. In some studies

foci are reported such that they overlap (are separated by a

distance ,2.8s) spatially to form clusters, and this affects the MA

distribution. In common with the most recent versions of the ALE
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and MKDA methods, we recognise that within study overlapping

foci can form meaningful clusters that should be preserved under

randomisation [5,9]; the aim being to preserve the distribution of

MA values.

Our randomisation algorithm is similar to that reported in [9].

Overlapping clusters of foci within the observed studies are

identified and for each such cluster (i) the centroid (Ri), the mean

distance (di) of the within-cluster foci from the centroid, and

variance of that distance (Si), are computed. Each cluster centroid

is then randomised to a voxel in the mask (GM or WB) with

uniform probability. Each focus (j) that forms part of cluster i is

then randomly located at a distance dij*N t di,Sið Þ (N t is a

Figure 1. The MA values (red overlay) show the clustering of foci reported within a single experiment; 15 clusters and 71 foci. A
scatter plot showing the distribution of (non-zero only) MA values for this experiment depicts: the original MA distribution (circle marker), the MA
distribution on randomisation of the clusters (- marker) with error bars (standard deviation), and the distribution after independent randomisation of
the foci (triangle marker). The randomisation of the clusters preserves, on average, the observed distribution as required. The distribution of the MA
values on randomising the foci independently has a higher frequency of low MA values as expected.
doi:10.1371/journal.pone.0070143.g001

Figure 2. The random foci experiment, involving randomisations of the face perception experiment. Shown are the numbers of clusters
found for each random experiment. This experiment examines the frequency of false cluster discovery in the absence significant clustering.
doi:10.1371/journal.pone.0070143.g002
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truncated Normal distribution such that Ddij Dƒ2Si to cut off the

long tails of the distribution) from the centroid, in a random

direction eij (random vector with uniform probability density on a

sphere of radius 1). For this to be a valid randomisation two

constraints must be met: 1) the foci should all fall within the mask,

and 2) no two centroids (l & m) must be closer than

dl+dm+Si+Sm+2.8s avoid significant overlapping of the foci when

randomised; although with few reported foci per study, overlap-

ping is a relatively rare event even without this constraint. If the

randomisation is not valid, it is repeated until the two constraints

are met. Again this randomisation of foci is not ideal, but provides

a quantitative way of gauging the significances in CBMA that

depends directly on the studies included in the analysis.

To compute p-values the ALE value for each reported focus is

first computed using equations (3) and (4). Now ALE(ri) is the ALE

of focus i; note we have now dropped the study index for

simplicity. In the jth randomisation the ith focus is randomised to

location vij and the ALE value is ALE(vij). The p-value of the kth

focus is then

pk~

P
ij I ALE rkð ÞƒALE vij

� �� �
Nf |NR

, ð5Þ

where the sum is over the total number of foci (Nf) in the

experiment and the number of randomisations (NR), and I(E) is an

indicator function that is 1 if E is true and 0 otherwise.

Controlling the False Discovery Rate and False Cluster
Discovery Rate

Control of type 1 statistical error in neuroimaging is of huge

importance, and the adaptive FDR control (BH-FDR) introduced

by Benjamini and Hochberg [14] is often employed. The scheme

estimates the number of falsely rejected hypotheses from N

independent tests of level a as aN. It then attempts to find the test

level where this estimate is at most some small percentage (say 5%)

of the number of rejections. There are, however, problems when

applied to voxel-wise analysis or fMRI. Firstly the tests in

neighbouring voxels are not independent. Secondly, it is not the

voxels themselves, but rather clusters of voxels, that should ideally

be controlled [15,16]. Here we detail an FDR method where the

numbers of false rejections are estimated directly from many

realisations of the experiment generated under the null hypothesis;

solving the issue with independence. We then go on to generalise

the method to the control of false clusters.

In LocalALE hypothesis tests are performed only at the foci,

rather than at every voxel. Consequently, many (NE) randomised

(as described above) experiments can be generated under the null

hypothesis computationally feasible requirements; these will be

Figure 3. Overlap measures for face perception experiment (a), and the pain stimulus experiment (b).
doi:10.1371/journal.pone.0070143.g003
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called null experiments to distinguish them from the observed

experiment, which consists of the studies included in the meta-

analysis. If the lth focus in the mth null experiment is located at rlm,

then its p-value plm is estimated by.
plm~

P
ij I ALE rlmð ÞƒALE vij

� �� �
Nf |NR

, ð6Þ

Table 1. Face perception results; significant results from GingerALE compared to those in LocalALE.

Structure Talairach x, y, z Studies

GingerALE
cluster vol.
(mm3)

LocalALE
GM mask

LocalALE
WB mask

FDR FCDR FDR FCDR

Left Cerebrum, Amygdala 218.1, 27.4, 28.4 8 2544 0.0051* 0.014* 0.0052* 0.013*

Right Cerebrum, Amygdala 18.6, 26.5, 210.9 5 1456 0.0053* 0.014* 0.00055* 0.013*

Left Cerebrum, Fusiform Gyrus, BA 37 238.8, 248.7, 216.7 9 2648 0.0051* 0.014* 0.0052* 0.013*

Right Cerebrum, Fusiform Gyrus, BA 37 36.9, 249.4, 215.0 8 3504M 0.0051* 0.014* 0.0052* 0.013*

Right Cerebrum, Parahippocampal Gyrus, BA 36 35.4, 234.8, 213.8 4 3504M 0.0059* 0.015* 0.0062* 0.015*

Left Cerebrum, Fusiform Gyrus, BA 19 237.5, 272.5, 212.9 7 2320 0.0051* 0.014* 0.0052* 0.013*

Right Cerebrum, Fusiform Gyrus, BA 19 39.6, 271.1, 29.6 6 1744 0.040* 0.081 0.067 0.13

Left Cerebrum, Lingual Gyrus, BA 17 214.2, -93.6, 210.4 3 760 0.0064* 0.015* 0.0068* 0.015*

Left Cerebrum, Inferior Frontal Gyrus, BA 45 248.7, 29.2, 6.0 3 656 0.0085* 0.021* 0.0090* 0.021*

Left Cerebrum, Medial Frontal Gyrus, BA 32 20.7, 9.6, 47.4 3 696 0.015* 0.015* 0.015* 0.032*

Left Cerebrum, Precentral Gyrus, BA 44 248.7, 9.2, 8.8 2 2 0.040* 0.080 0.043* 0.095

Right Cerebrum, Insula, BA 13 34.4, 19.2, 7.4 3 440 0.042* 0.084 0.045* 0.091

Left Cerebellum, Declive 222.1, 278.1, 216.8 3 2 0.046* 0.09 0.049* 0.094

Right Cerebrum,. Superior Parietal, Lobule. BA 7 28.0, 255.2, 40.2 2 736 0.071 0.12 0.072 0.13

Right Cerebrum,.Middle Frontal Gyru,.BA 46 42.4, 38.3, 20.9 2 384 2 2 2 2

Right Cerebrum,.Inferior Frontal Gyrus,.BA 45 47.0, 25.4, 17.5 2 456 2 2 2 2

LocalALE results are given as estimated FDR and FCDR rates for each significant cluster found. LocalALE results obtained using the whole brain (WB) and grey matter
masks (GM) are given for comparison. Significant results in LocalALE are indicated by *. A ‘–’ indicates that that the cluster is not found. Cluster volume is as reported by
GingerALE, and merged clusters are indicated by superscript M.
doi:10.1371/journal.pone.0070143.t001

Figure 4. ALE images and statistically significant clusters found on meta-analysis of the face perception data using LocalALE (red)
and GingerALE (blue). In column 1 the left images are ALE values computed using LocalALE, and the right ALE values from GingerALE. Column 2
shows results using FDR control, and column 3 FCDR control. In columns 2–4, the left images show the ALE computed using only significant foci,
while the results of the respective clustering algorithms are shown on the right.
doi:10.1371/journal.pone.0070143.g004
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in exactly the same way as the p-values are estimated for the

observed foci. The expected number of false positives for any level

a of test, is then

Ea~

P
lm I plmƒað Þ
Nf |NE

: ð7Þ

If the null is rejected Ra times in the observed experiment, then

the FDR is controlled at a level c by maximising a such that Ea/Ra

# c, with a#c. Typically, for example, the FDR is controlled at

5%, so a would be maximised, but at most 0.05, such that the

expected number of false positives, Ea, is at most 5% of the total

number of rejected hypotheses Ra.

Intuitively, controlling at the cluster level makes considerable

sense, as ultimately it is the significant clusters that form the results.

In the ALE [4] and MKDA [9] methods, a randomisation

procedure is performed and a distribution for the size (number of

voxels) of any resulting clusters is generated. The distribution is

then used to set a minimum cluster size threshold in the meta-

analysis; combined with either FWER or FDR. Here, rather than

restricting results to large clusters, FDR is generalised to FCDR

control; control of the expected proportion of clusters that are

false. The process is exactly analogous to FDR. The p-value is

computed for each focus in the null experiments using equation (6)

and, for a level a of test, the expected number of falsely significant

clusters estimated and compared to the number of clusters

declared significant in the observed data; the number of significant

clusters is counted using the algorithm detailed in appendix S1.

Typically the FCDR is controlled at 5%, so a would be

maximised, but at most 0.05, such that the expected number of

false clusters is at most 5% of the total number of clusters from the

observed experiment.

Reporting the Results
The results of the meta-analysis are reported in two ways.

Equations 1–4 are used to compute an image of ALE values using

only the foci declared significant by the analysis. The ALE of the

focus with the smallest p-value, but which is not significant, is used

to threshold the ALE image. A cluster report is also generated,

which consists of the ALE weighted (by the ALE at each focus in

the cluster) centroid for each cluster of significant foci and the

nearest GM Talairach structure to the centroid, indicating which

Talairach structures are important to the task.

Study Diagnostics: Study Overlap Score
Much of meta-analysis methodology concerns the study

inclusion criteria. It is vital to include all studies that test

appropriate hypotheses in an appropriate manner. On the other

hand it is vital to exclude studies where some methodological

problem makes the results in some way inappropriate for the

analysis. Furthermore, the act of extracting data for the meta-

analysis is often laborious, and can be prone to human error. After

a study has met the inclusion criteria, it is prudent to check that it

appears commensurate with the other studies. An indication that it

is not is useful for diagnostic purposes, and helps pinpoint studies

that should be scrutinised further. Data errors can then be fixed,

and, if justifiable, studies excluded.

How commensurate each study is with all others is quantified by

measuring the overlap of foci between studies. The ALE is

computed for each focus within a study, and then averaged. Then

each focus within that study is independently randomised, with

uniform probability to a voxel in the mask, and the mean ALE

recomputed. This is repeated for each study 1000 times, and the

proportion of times the mean ALE in the observed study is greater

than that under randomisation estimated. A proportion close to

one indicates that the study reports foci in similar locations to the

other studies. A small proportion indicates overlap that is similar to

Figure 5. Number of false clusters arising from randomisation of the non-significant foci only in the pain perception data; foci
involved in statistically significant clusters found by LocalALE (FCDR) are not randomised. This experiment examines the frequency of
false cluster discovery in the presence of known significant clustering.
doi:10.1371/journal.pone.0070143.g005
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randomised foci, and that the study should be scrutinised further,

and any data extraction errors fixed.

Experiments
Experiments involving numerically simulated data, and real

study data, were performed. Comparisons of results from

LocalALE and the latest version of GingerALE [8] were made.

We set GingerALE to use its most conservative FDR method [6],

controlling at a level of 0.05. Furthermore, we set the lower

volume threshold for a significant cluster at 360 mm3 (45 voxels, as

used in [4]). In LocalALE, we used a WB Talairach mask to

generate the null samples (although we also compare with the GM

mask), FWHM of the foci was 10 mm, no weighting was applied,

and FDR and FCDR were controlled at a level of 0.05.

Convergent results were obtained using 10000 permutations for

hypothesis testing, and two thousand null studies generated for

FDR or FCDR control; increasing these numbers did not change

the experiment outcome.

The WB mask is the Colin Talairach image obtained from the

brainmap.org website. For the GM mask we performed affine

registration of the ICBM 452 T1 structural atlas (http://www.loni.

ucla.edu/ICBM/Downloads/Downloads_452T1.shtml) to the

Talairach image. The registration parameters were then applied

to the GM tissue class image only, and subsequently a threshold

applied to the image to leave only the bulk grey matter.

All Coordinates Used were in Talairach Space.

Experiment 1. Testing the randomisation of foci. To test our

randomisation procedure we extract data from a thermal pain

stimulus study (from experiment 5), which reports 71 foci that

overlap to form 15 clusters. We calculate the MA for each voxel of

the GM mask using equation 2. We obtain the distribution of MA

values for the observed data, then randomise the foci as described

in the methods section. We then re-compute the distribution of

MA values and average over 100 independent randomisations.

The two distributions are then compared. We expect the

distributions to be similar, on average, if our cluster preserving

randomisation algorithm works as required. For comparison we

also compute the distribution of MA values for foci randomised

independently.

Experiment 2. Random experiments. We aimed to examine

the frequency of obtaining false clusters using a randomised set of

foci as a test of type 1 error control. We used the face perception

experiment reported in [4], which has 19 studies looking at brain

activation evoked by visually presented faces, and 173 foci; these

data were specifically chosen since they allow us to perform cluster

level control within GingerALE using the lower cluster size

threshold of 45 voxels (360 mm3), as reported in [4]. The foci were

randomised independently throughout the GM mask, and meta-

analysis performed, 1000 times. We estimated the frequency of

obtaining false clusters using LocalALE on controlling the FDR,

FCDR, and BH-FDR. One hundred of these randomised

experiments were also performed using GingerALE for compar-

ison.

Experiment 3. Face perception. We repeat the face percep-

tion experiment reported in [4]. We examine the diagnostic

overlap scores, and perform meta-analysis on the data. Reports of

significant clusters found by GingerALE and LocalALE are given.

Study data was downloaded from the brainmap database using

Sleuth (http://www.brainmap.org/sleuth/) [18–20].

Experiment 4. Randomising non-significant foci from the

face perception experiment. Foci in the face perception data are

randomised independently and with uniform probability, except

for those that contribute to the significant clusters obtained by

LocalALE using FCDR; allowing us to examine the false positive

control in the presence of known significant clusters. We then

perform meta-analysis on the new set of foci, using GingerALE

and LocalALE, to observe if new significant clusters occur out of

the randomisation. We expect the original clusters to be present

still and few new clusters if the false positives are well controlled.

We run the experiment 1000 times using LocalALE, and 100

times using GingerALE, and produce a histogram of the number

of extra significant clusters detected.

Experiment 5. Meta-analysis of thermal pain stimulation in

healthy volunteers. To compare the algorithms in a larger

Table 2. Studies included in the thermal pain stimulus meta-
analysis.

Experiments included: author, year No subjects No of Foci

KONG ET AL 2006 16 13

VILLEMURE ET AL 2009 14 19

BORSOOK ET AL 2008 12 6

PELTZ ET AL 2011A/B 11 22/18

BORNHOVD ET AL 2002 9 18

BROOKS ET AL 2005A/B/C 14 15/13/8

BOLY ET AL 2007A/B 24 20/7

DERBYSHIRE ET AL 2009 12 6

DUBE ET AL 2009 12 43

DUNCKLEY ET AL 2005A/B 10 19/8

HELMCHEN ET AL 2008A/B 14 5/71

BINGEL ET AL 2002 14 12

STRIGO ET AL 2003 7 28

TSENG ET AL 2010A/B 12 25/31

APKARIAN ET AL 2000 7 3

BECERRA ET AL 2001A/B 8 31/50

DAVIS ET AL 2002 7 19

TRACEY ET AL 2000A 6 13/12

VELDHUIJEN ET AL 2009A/B 10 10/10

BINGEL ET AL 2006 19 20

BINGEL ET AL 2007 20 21

WEICH ET AL 2010 16 25

REMY ET AL 2003 12 7

MOBASCHER ET AL 2010 32 17

BALIKI ET AL 2006 11 16

GUNDEL ET AL 2008 13 13

DUCREUX ET AL 2006 6 25

ALBUQUERQUE ETAL 2006 8 10

MAIHOFNER & HANDWERKER 2005 12 11

SEIFERT ET AL 2008 14 6

SEIFERT & MAIHOFNER 2007 12 19

BROOKS 2002A/B 18 12/11

VALET 2004 7 18

BECERRA 1999 6 16

BALIKI 2010 16 17

SHUKLA 2011 10 12

ROBERTS 2008 10 17

MAIHOFNER 2006 14 18

doi:10.1371/journal.pone.0070143.t002
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experiment, we perform meta-analysis of thermal pain stimulation,

which has been widely studied using fMRI. Extensive functional

activation is observed with pain stimulus, so this experiment allows

us to test our clustering scheme, which makes use of Dijkstra’s

shortest path algorithm [21], given in appendix S1.

A search for fMRI studies of experimental thermal-induced pain

in healthy people was performed through standard literature

databases (ScienceDirect, and PubMed). We used the keywords

fMRI and thermal or pain. The references of these articles were

then assessed for additional studies that could be considered for

inclusion. We excluded single-subject reports, studies using a-

priori region of interest (ROI) based analyses, and studies that

reported only a restricted field of view. Only activation foci were

included. Thirty eight articles were retained, with a total of 49

experiments including 616 subjects and 816 foci. If the pain

stimulus was applied on the left, reported foci were reflected about

x = 0. Reports of significant clusters found by GingerALE and

LocalALE are given. We also examine the diagnostic overlap

scores for this data.

To test the sensitivity of FCDR to the clustering algorithm, we

also analyse the pain data using a simplified clustering scheme; we

used the same algorithm detailed in appendix S1 except for the

constraints on the ALE, which were removed.

Results

Testing the Randomisation Algorithm
Figure 1 depicts the MA values (overlaid) and clustering

within study is clearly evident. The distribution of MA values

(.0 only) is shown on the histogram, along with the distribution

when the foci have been randomised. When the foci are

randomised to preserve within experiment clusters, as described

in the methods section, the MA distribution is conserved on

average. Randomising the foci independently and with uniform

probability through the mask increases the frequency of low MA

values as the foci spread out more. The percentage of voxels

with zero MA (not shown) is 76% for the observed foci, a

similar 77% on average when randomised to preserve clusters,

and a lower 68% on average when randomised independently.

Without preserving the clustering, the distribution of MA values

would result in increased ALE values, and result in a more

conservative method.

Random experiments
Figure 2 reports the number of significant clusters on analysing

the randomised foci experiments using LocalALE and Ginger-

ALE. No significant clusters were reported in any of the 1000

experiments using FCDR, while BH-FDR and FDR found

significant clusters in only a small percentage of experiments.

GingerALE, on the other hand, reports a median of 3 significant

clusters per experiment, with an average size of 575 mm3 (72

voxels).

Face perception
Figure 3a shows the results of the overlap measure, used for

diagnostic purposes. While many of the studies overlap with values

close to 1, there are outliers. Platek ’06 [22] has results recorded as

Table 3. Pain stimulus results; significant results from GingerALE compared to those in LocalALE.

Structure Talairach x, y, z Studies

Ginger ALE
Cluster volume
(mm3) LocalALE WB mask

FDR FCDR

Right Cerebrum, Claustrum 31.5, 10.7, 4.7 37 70528M 0.0021* 0.009*

Right Cerebrum, Thalamus, Medial Dorsal Nucleus 8.2, 215.2, 5.9 29 70528M 0.0021* 0.009*

Left Cerebrum, Thalamus, Ventral Lateral Nucleus 210.0, 213.4, 4.8 31 70528M 0.0021* 0.009*

Left Cerebrum, Insula, BA 13 238.2, 4.0, 8.1 33 70528M 0.0021* 0.009*

Left Cerebrum, Claustrum 233.2, 15.7, 2.6 29 70528M 0.0021* 0.009*

Right Cerebrum, Inferior Parietal Lobule, BA 40 53.4, 229.5, 23.6 31 70528M 0.0021* 0.009*

Left Cerebrum, Insula, BA 13 237.8, 214.8, 11.3 23 70528M 0.0021* 0.009*

Left Cerebrum, Inferior Parietal Lobule, BA 40 252.3, 226.1, 23.9 33 70528M 0.0021* 0.009*

Right Cerebrum, Insula, BA 13 36.3, 216.8, 12.9 17 70528M 0.0021* 0.009*

Right Cerebrum, Inferior Parietal Lobule, BA 40 37.7, 248.5, 43.2 14 70528M 0.0064* 0.065

Right Cerebrum, Inferior Frontal Gyrus, BA 46 43.6, 36.7, 11.5 9 70528M 0.0075* 0.075

Left Cerebrum, Cingulate Gyrus, BA 32 21.3, 9.5, 39.0 38 12896 0.0021* 0.009*

Right Cerebellum, Cerebellar Tonsil 30.7, 251.0, 230.6 14 2192 0.0021* 0.009*

Right Cerebrum, Middle Frontal Gyrus, BA 10 34.2, 43.9, 24.4 10 1632 0.0043* 0.039*

Right Cerebrum, Middle Frontal Gyrus, BA 9 36.6, 29.8, 30.7 10 0.016* 0.16

Right Cerebrum, Inferior Frontal Gyrus, BA 9 47.7, 4.1, 26.8 13 1600 0.0044* 0.039*

Left Cerebrum, Middle Frontal Gyrus, BA 10 236.1, 39.5, 15.8 15 1224 0.0044* 0.039*

Left Cerebrum, Medial Frontal Gyrus, BA 6 20.2, 210.3, 56.0 8 2 0.0092* 0.90

Left Cerebrum, Precentral Gyrus, BA 6 239.8, 27.9, 54.1 6 2 0.030* 0.31

Left Cerebrum,Superior Parietal Lobule, BA 7 223.5, 245.7, 60.3 7 2 0.035* 0.35

LocalALE results are given as estimated FDR and FCDR rates for each significant cluster found. Significant results in LocalALE are indicated by *. A ‘–’ indicates that that
the cluster is not found. Cluster volume is as reported by GingerALE, and merged clusters are indicated by superscript M.
doi:10.1371/journal.pone.0070143.t003
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MNI coordintates in the brainmap database, but they are actually

Talairach coordinates; on correcting this, the overlap increased

from 0.80 to 0.94. Braver ‘01 [23] was designed to study working

and long term memory tasks only in the prefrontal cortex;

inclusion of this study is possibly inappropriate since it does not

consider the whole brain, unlike the other studies in the analysis.

Other apparent outliers are most likely due to experimental design

subtlety, or because the overlap estimate is noisy where few foci

are reported.

Figure 4 shows the clusters found using FDR and FCDR control

(LocalALE) and FDR control (GingerALE) at a level of 0.05; the

Talairach regions involved are reported in table 1. There is little

difference using the WB or the GM mask in LocalALE. LocalALE

controlled by FDR produced extra clusters that were not found by

GingerALE, and vice-versa. These discrepant clusters were either

quite small (GingerALE) or only just significant and involving few

experiments (LocalALE). FCDR control resulted in fewest clusters,

and did not find any of the discrepant clusters.

Figure 5 shows the frequency of finding false clusters when the

significant foci, by FCDR, are kept while the other foci are

randomised independently and with uniform probability through-

out the mask. All methods detect the preserved clusters. FCDR

controlled the false clusters best here.

Thermal Pain Stimulus Data
Figure 3b shows the results of the overlap measure, used for

diagnostic purposes. While many of the studies overlap with values

close to 1, there are outliers. Borsook et al. (overlap score 0.53)

used MNI space for analysis, but coordinates were subsequently

adjusted to an MRI atlas of the human cerebellum. Remy et al.

(overlap score 0.61) performed an experiment to study how pain

modulates brain activity during the performance of a semantic

cognitive task; while the paper reports pain as a main effect, on

closer scrutiny the experiment was never performed with painful

stimulus in isolation of the cognitive task. Both of these studies

were excluded from further analysis.

Figure 6 shows the clusters found using FDR and FCDR control

(LocalALE) and FDR control (GingerALE) at a level of 0.05; the

Talairach regions involved are reported in table 2. There is

extensive clustering with this dataset, and many anatomical

structures involved (table 3). From figure 6 it is clear there are

distinct regions with high ALE values where the density of

experiments reporting foci is high. Our new clustering algorithm is

able to detect these regions, while GingerALE merges multiple

clusters. Consequently the cluster report from LocalALE is most

complete and informative.

Figure 7 shows how modifying the clustering algorithm such

that it is independent of the ALE values at each focus modifies the

Figure 6. ALE images and statistically significant clusters found on meta-analysis of the thermal pain stimulus data using LocalALE
(red) and GingerALE (blue). In column 1 the left images are the ALE values computed using LocalALE, and the right ALE values from GingerALE.
Column 2 shows results using FDR control, and column 3 FCDR control. In columns 2–4, the left images show the ALE computed using only
significant foci, while the results of the respective clustering algorithms are shown on the right.
doi:10.1371/journal.pone.0070143.g006
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clusters. Nevertheless, the FCDR algorithm has still given very

similar results. This suggests that FCDR is quite robust to the

specifics of the clustering scheme used.

Discussion

We have developed a new algorithm for performing coordinate

based meta-analysis of fMRI studies that have a particular task

type in common. The results are clusters located within brain

structures that are important to the task. We have tackled one of

the major issues with previously reported CBMA methods: type 1

statistical error control. To achieve this it was necessary to develop

a new clustering algorithm, which allows clusters to be counted

appropriately. The clustering algorithm also produces more

complete reports of the meta-analysis results. We have also

detailed a diagnostic tool, which is essential to ensure the quality of

the analysis.

Our method borrows heavily from the ALE method, but instead

of a Gaussian function describing the uncertainty in location for

each foci, a truncated Gaussian is used. Nevertheless, the ALE

values computed by LocalALE are almost identical to those

produced by GingerALE (figures 4 & 6). This is important since

the ALE is the test statistic used for meta-analysis. Instead of

testing for significantly high ALE in each voxel, we test only at the

foci. Consequently complete experiments can be generated under

the null hypothesis, stored, and processed; a task that would be

very computationally demanding for a voxel-wise analysis.

Computational hypothesis testing is performed by randomising

the foci and iterating to generate a null distribution of ALE values.

The randomisation is required to preserve the distribution of MA

values in the observed data. Our method of randomising is

different to that employed in the ALE and MKDA methods, but

does preserve the MA on average as required (see figure 1).

Clusters of significant foci form the results, and our algorithm can

detect structure within the ALE that is important for complete

reporting; rather than detecting connected voxel clusters, which

can result in cluster merging (see table 3 and figure 6). Because we

can efficiently store and process many realisations of the

experimental data generated under the null, we can analyse the

p-values and use them directly to control the type 1 statistical

error. We can therefore control the FDR, despite tests not being

independent. Most importantly we can count the number of

clusters and control the directly relevant FCDR.

We have performed several experiments to compare results

from LocalALE to the much used ALE algorithm [8] incorporated

in GingerALE; keeping the processing options as close as possible.

We expected to see very few significant results from the

randomised foci experiment; the numbers of false clusters found is

depicted in figure 2. For this data BH-FDR and FDR control

resulted in false clusters in a small fraction of experiments, while

FCDR found none in 1000 experiments. GingerALE produced a

median of 3 clusters per experiment, with an average size of 72

voxels (575 mm3). This is considerably larger than the suggested

45 voxel threshold suggested in [4]. These results suggest that, in

the absence of consistent study data, the rate of false clusters is

controlled best using FCDR, and that the many tests involved in a

voxel-wise analysis may lead to increased false positive findings.

Diagnostic analysis (figure 3a and 3b) highlighted the impor-

tance of data checking. In the face perception experiment, of those

with outlying overlap scores one study was found to be recorded

incorrectly in the BrainMap.org; MNI coordinates recorded

instead of Talairach. Another study tested a working and long

term memory hypothesis, utilising face images, that may not have

been functionally relevant. The overlap score revealed two

outlying studies in the pain data, and these were removed from

further analysis; one transformed coordinates from MNI to a

different coordinate system, and while the other reported pain as a

main effect it was combined with a cognitive task.

LocalALE produced similar results to GingerALE with the face

perception data (figure 4). The use of a WB mask or GM mask

made little overall difference to the results. There were several

extra clusters declared significant by GingerALE but not

LocalALE, and vice-versa using the FDR option in LocalALE

(Table 1). All clusters found using FCDR were also found by FDR

(LocalALE) and by GingerALE. Clusters found exclusively by

GingerALE, were smaller than the average size found in the

randomised foci experiment, and could be false positives. Those

found significant by LocalALE but not GingerALE were only

marginally significant at a FDR of 0.05, contained few experi-

ments, and were not significant by FCDR; the use of FDR would

in this case result in significant clusters even though a high

proportion of those clusters are expected to be false.

To examine the control of false positive clusters in the presence

of known true clusters, we generated randomised foci experiments

from the face perception data, with the significant clusters found

using FCDR preserved (foci involved in those clusters not

randomised). For each of 1000 generated experiments we counted

extra clusters beyond the original 9 (reported in table 1) using

LocalALE. We also counted extra clusters in 100 of these

experiments with GingerALE. The face perception data was ideal

since we could employ cluster level control in GingerALE, and

because any extra clusters were easily identifiable amongst the 9

true clusters. Figure 5 shows that FCDR performs best, as extra

clusters are generated from the random foci in only 10% of the

Figure 7. Clusters obtained with the pain data using the
clustering algorithm described in appendix S1 (left), and also
using a simplified algorithm that ignores the ALE (right). While
the clustering is different, the significant regions are very similar.
doi:10.1371/journal.pone.0070143.g007
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experiments. Contrast this with the results from GingerALE,

which produced false clusters in over half of the experiments.

We tested our clustering algorithm by performing a meta-

analysis of thermal pain stimulus in healthy volunteer subjects.

Pain stimulus has been shown to produce extensive activation on

fMRI. Figure 6 shows the ALE image of significant foci, and the

clusters resulting from the analyses. LocalALE has found many

more clusters than GingerALE (Table 3). Looking at the ALE

images in figure 6, it is clear that there are distinct regions of high

ALE, where the density of studies reporting foci is at a peak. Even

though these regions merge, the magnitude of the ALE helps

LocalALE to separate them into different clusters; along with the

requirement that the foci must overlap to form clusters in

LocalALE. By contrast GingerALE simply finds connected

significant voxels, which in the pain analysis has merged, for

example, left and right insula, and the left and right Thalamus,

into just one cluster (see Table 3).

Clustering is clearly important for FCDR control, and it is

essential for correct reporting of structures involved in the

functional task. To test whether the results of FCDR were

particularly sensitive to the details of the clustering scheme, we

modified the algorithm such that it did not use the ALE to form

clusters (see figure 7). While the clustering is quite different, the

regions found to be significant by FCDR are very similar. This is

likely because the clustering is modified both for the observed

experiment and the null experiments. Therefore, the exact details

of the algorithm used to detect clusters do not seem to substantially

change the type 1 error control imposed by FCDR.

Testing only at the foci might limit the ability of LocalALE to

resolve the shape of the significant clusters compared to voxel-wise

analyses performed by other methods, since the foci are (relatively)

sparse compared to the voxels. However, our results show that

clusters tend to form in the same anatomical structures and even

share shape features with those generated by the ALE algorithm.

A Monte Carlo simulation is performed to estimate the p-values:

the probability that the observed ALE is greater than, or equal to,

the ALE values observed under the null hypothesis. To obtain

converged estimates, many randomisations must be performed;

the latest version of the ALE algorithm considers every possible

randomisation, so the p-values are analytic and precise. We found

that 10000 randomisations produced sufficiently converged p-

values such that repeating the analysis, with different randomisa-

tions, did not change the results. A limitation of coordinate based

meta-analysis in general is that it is unlikely to be able to reproduce

exactly the results of pooled image based meta-analysis [12,24]. To

perform a meta-analysis closer to such schemes using the reported

foci might require details, for example Z scores at the foci, that are

not reported in a standard way. More importantly the null

hypothesis, that the studies are not related by task/stimulus, is not

strictly reflected in the null used to perform the Monte Carlo

simulations used in CBMA. Nevertheless, a vast amount of

coordinate based data is readily accessible, and CBMA is currently

the accepted way to analyse it quantitatively.

Conclusions

LocalALE tackles one of the major issues with the previously

published CBMA algorithms, the multiple testing problem. As a

direct consequence of our approach, we are able to control the

intuitive False Cluster Discovery Rate, which relates directly to the

results (clusters) of the meta-analysis; unlike schemes that control

tests on voxels or foci. In comparison to the widely used ALE

algorithm, LocalALE detects relatively few false positives. We

demonstrated that checking the suitability of each study is

essential, as mistakes are easily made with the data. We also

detailed a clustering algorithm that provides a more complete

report of significant results than the ALE algorithm. LocalALE is

available to use freely as part of NeuROI (http://www.

nottingham.ac.uk/scs/divisions/clinicalneurology/software/neuroi.

aspx).
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