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Abstract

The trade-off between signal-to-noise ratio (SNR) and spatial specificity governs the choice of
spatial resolution in magnetic resonance imaging (MRI); diffusion-weighted (DW) MRI is no
exception. Images of lower resolution have higher signal to noise ratio, but also more partial
volume artifacts. We present a data-fusion approach for tackling this trade-off by combining DW
MRI data acquired both at high and low spatial resolution. We combine all data into a single
Bayesian model to estimate the underlying fiber patterns and diffusion parameters. The proposed
model, therefore, combines the benefits of each acquisition. We show that fiber crossings at the
highest spatial resolution can be inferred more robustly and accurately using such a model
compared to a simpler model that operates only on high-resolution data, when both approaches are
matched for acquisition time.
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[. Introduction

WHITE matter tractography has been amongst the most commonly-used applications of
diffusion-weighted (DW) magnetic resonance imaging (MRI), allowing the study of brain
structural connectivity [1]-[3]. A challenging problem in tractography is the resolution of
complex fiber patterns, such as fiber crossings; this has drawn a lot of attention over the
recent years (see [4] for a review). A plethora of methods have been proposed that rely on
different sampling patterns of g-space, the Fourier-conjugate space of the 3D diffusion
displacements.

All the proposed techniques follow a standard, natural choice for approaching the problem;
utilizing a dataset acquired at a single spatial resolution. Therefore, they inherently have the
limitations imposed by the associated spatial resolution grid. The trade-off between reduced
signal-to-noise ratio (SNR) and increased spatial specificity governs the choice of spatial
resolution in magnetic resonance imaging [5]. Benefits from improvements in either of those
parameters have been shown. For instance, high SNR values are beneficial for robust
estimation of tissue microstructure properties from the DW MRI signal, e.g., [6]-[9]. On the
other hand, high spatial resolution reduces partial volume effects and allows exquisite tissue
details to be revealed, as has been shown from postmortem acquisitions [10]. Thus, an
approach that combines multiple spatial resolutions could intuitively combine the benefits.
We introduce and explore here a novel framework for combining multiple spatial resolutions
during fiber orientation estimation.

The methods proposed so far utilize a single spatial resolution and can be categorized
according to their g-space sampling patterns. Single-shell, high-angular resolution diffusion
imaging (HARDI) methods utilize acquisitions that sample, relatively densely, a single
sphere in g-space. Parametric [11]-[14] or nonparametric approaches [6], [15]-[19] exist
that either estimate directly the dominant fiber orientations within each voxel or reconstruct
orientation distribution functions (ODFs) on the sphere. A different group of methods use a
more generic g-space sampling, in the form of multiple concentric spheres [20]-[22] or a
Cartesian grid [23], [24] (collectively termed here as multishell). These methods aim to
tackle the trade-off between increased angular specificity and reduced SNR, as we move
away from the centre of g-space in diffusion MRI. They have been shown to be more
sensitive than the single-shell approaches in revealing detailed features of the underlying
fiber pattern [17], [22], [25].

Our proposed framework is different in spirit than the above approaches. We assume that an
object has been scanned at different spatial resolutions; the high-resolution acquisitions offer
spatial specificity, but low SNR, while the low-resolution ones offer much higher SNR, but
are more prone to partial volume. We combine all resolutions into a single Bayesian model
to estimate the underlying fiber patterns at the highest of the available resolutions. The
motivation comes from the fact that the same fiber pattern will be imaged differently at
different resolutions. By unifying the information across resolutions we combine features
offered by each acquisition and tackle the trade-off between increased spatial specificity and
reduced SNR.
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The RubiX (Resolutions Unified for Bayesian Inference of Crossings) generative model
represents a data-fusion framework, where data from all resolutions are combined through a
spatial and a local model. Priors on the model parameters impose some spatial regularization
constraints that assist model identifiability when the high resolution data are of very low
SNR. The generative model is inverted using Markov-Chain Monte-Carlo (MCMC) and the
posterior distribution of the parameters is estimated. We show that fiber crossings at the
highest spatial resolution can be inferred more robustly compared to an approach that uses
only high-resolution data, when both approaches are matched for acquisition time.

[l. Methods

A. Overview of the Rubix Generative Model

Let us assume that an object has been scanned at two different spatial resolutions. The aim is
to construct a model that utilizes both datasets and estimates parameters at the highest

spatial resolution. Let Y= {ylxéw} be the set of all measurements at a low-resolution grid,
across all voxels X = 1: K and diffusion-sensitizing directions} M= 1: M_g. Similarly,

let Yy = {yf,’f} be the set of measurements at a high-resolution grid, across all voxels x=1:
Knr and directions m =1 : Myg. Then, the mechanism can be understood through the
graphical generative model of Fig. 1(a). The graph shows that the data at both resolutions
are generated by a model parameterized by whg, a set of voxel-wise parameters at the higher
resolution grid. These parameters are restricted by the prior hyper-parameters . Different
noise levels g and baseline signals S0 are used for each acquisition.

We treat wyg as the set of parameters of local models that generate the predicted DW signal

ST at each voxel x of the high-resolution grid. Assuming that the two spatial grids are

registered to each other, we can apply a partial volume model to relate these parameters to
the predicted signal Sfé” at the low-resolution grid. The partial volume model that predicts
the signal for a voxel Xis

K
XM _ kM
SLR —Z(Z};S m (1)
k=1

with index & describing the K'HR voxels that intersect voxel .X; each with a volume fraction
ay. The above model predicts that the signal at a LR voxel X and direction Mis a weighted
sum of the signals predicted at the intersected HR voxels. It can be used in conjunction with
a local model at the high-resolution voxels to relate parameters wyr to both LR and HR
measurements.

The above model assumes that all timing parameters (echo time TE, repetition time TR) are
the same for the LR and HR acquisitions. A more flexible representation of the data would
be

SXM K SkM

LR HR
=Y sl @
SOi(R = SO;‘IR

with S0’s being the baseline signals without diffusion-weighting at each acquisition. The
above model predicts that the signal attenuation at a LR voxel X'and direction Mis a

1we include in this set of “diffusion-sensitized” signals all measurements acquired at a given spatial resolution, both at 6= 0 and 6#
0 s/mm2. Note that the former will be only a small fraction of the whole set.
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weighted sum of the signal attenuations predicted at the intersected HR voxels. This is an
approximation that allows greater flexibility in the datasets to be combined without having
to consider T1 and T2-related effects. It is valid under the assumption of relative constant
proton density and relaxation times across a small neighborhood of KHR voxels and will be
used in this study.

The partial volume models assume arbitrary low and high resolutions to be combined. For
simplicity of illustration and implementation, we will assume from now on an integer
volume ratio of LR and HR voxels. This implies ay = 1/Kand that each HR voxel x
intersects only one LR voxel .X; or that K HR voxels fit perfectly within one LR voxel
(voxel sizes of 3 x 3 x 3mm3 and 1.5 x 1.5 x 1.5 mm?3 for instance).

B. Local Model

C. Bayesian

The ball & stick model [7], [12] is used to model the DW signal at every HR voxel x. The
model parameters of all voxels x give the set wyr. The signal after the application of the m"
diffusion-sensitizing gradient with direction g,, and b value b, is modelled as

N
SIm=50%, [(1 - ’E] fn) exp (=bnd)

®)
+ éfn exp (—bmd(givn)z)]

with d'the apparent diffusivity and 7, [0,1] the volume fraction of the anisotropic
compartment with orientation v,, = [sind,c0s¢, sing,sing, cosé,]’, 8, [0,7]and ¢, [O,
27).

Inference

Since we have assumed dependence only between a LR voxel X and the set of KHR voxels
that X is intersected by, the generative model of the data Y= (YfR, {YﬁR}) given all the

parameters Q= ({wﬁR} , {UﬁR} , {S Ofm} oS OfR), k=1: Kcan be expressed by the
following likelihood function (the superscript X is assumed and will be omitted from now
on):

P(Y|1Q)

K
P I1 P(Y 1)
MLR m - KMHR o (4)
=11 p ()] nne (1),

Using the partial volume (2) and the local models (3) and under the assumption of additive,
zero-mean, Gaussian noise, we have

Pl) o (sit.02)

LR’ 7 LR

pimie) ~ . (shos). ©

HR’ ~ HR

Inference on the parameters Q of this model, given the data, can be performed individually
for each LR voxel X (and its intersecting HR voxels {x}), as the voxels are assumed to be
independent. We follow the formalism of [7], [12] to construct a random-walk, Metropolis—
Hastings sampler and compute the posterior distribution of the model parameters. Using
Bayes’ theorem: AQ|Y) AY|Q) AQ), where AQ) is the unconditional prior distribution
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of the model parameters. If the prior is conditional on hyper-prior parameters ¢ (as shown
in Fig. 1), then

P(Q,%)Y)x PYIQPQZ)P(¥), with
P(QE)P(E)« P(o,)P(S0,) P (Gow)P(E)P(%,)
s P(o-k )P(SO"' )P(@"’ X%, ) ©)
Xkl;[l( HR ’ P

HR

P (d"'|%) P (Fﬂ%,)) )

In the previous equation, P (%) is the conditional prior of the parameters of interest Q on
hyperparameters ¢ and P () is the unconditional prior of the hyperparameters. Conditional
priors are employed for the set of orientation parameters (© ®), the diffusivities dand the
volume fractions F (we use capital letters to denote the set of all A/orientations (6, ¢,) and
all volume fractions £, within an HR voxel k). These priors are explicitly described in the
following sections. For the o and SO parameters, unconditional priors are chosen, so that
they have the smallest possible influence on the posterior distribution

P(S0,) ~ % (0,00) and P(S0,,)~ % (0,00). (7)

As we are not interested in estimating the o parameters, reference (uninformative) priors are
used so that they can be integrated out. See Appendix A for the derivations.

The conditional priors are chosen to indirectly unify orientation, volume fraction and
diffusivity estimates across the two spatial resolutions. They are imposed on parameters of
the local models. The hyper-parameters of these priors are common to all HR voxels {x¥}
intersected by the LR voxel Xand are also estimated from the data. Therefore, they mostly
reflect fiber patterns as depicted at LR and the data at the low-resolution grid. The model
allows the values of these hyper-parameters to further propagate as constraints on the
estimation of the model parameters at the high-resolution grid. Fig. 1(b) shows a simplistic
sketch of the two ways data influence parameter estimation: either directly or indirectly
through the conditional priors. The indirect path promotes an identifiable and spatially
coherent solution, particularly useful when the HR data are highly contaminated by noise.
The direct path is described by the likelihood function. In the following sections, we briefly
describe each of the conditional priors.

D. Conditional Prior on Orientations

We use a mixture of L Watson distributions [26], each with an unknown mode g, and
concentration kj, as a prior on each modelled fiber orientation v = (6, ¢)

P (6. ¢l0.0) =P (6,¢l{w,«})
< in (@) o) @

wi

The term sin(6) is the Jacobian determinant of the transformation (8, ¢) —»v. The
normalization constants are ¢y = 4/ F1(1/2;3/2; k), with 1/ being the confluent
hypergeometric function of the first kind. Since they depend on the unknown hyper-
parameters kj, they cannot be omitted from the prior calculation. We have used the
approximation described in [27] to compute this function. For the hyper-parameters, we
have used uniform, noninformative priors
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L
P(%o.0) :ll__llP(Kl)P(/ll) with

9)
P(x) ~% (0,00) and sz)~02/(y2).

Notice that by imposing a uniform hyper-prior on the concentrations &, we effectively
impose a 1/k; prior on the dispersions. Therefore, small dispersion values are a priori
encouraged.

E. Conditional Prior on Diffusivities

For the diffusivities, we use a Normal distribution centred around an unknown mean @, and
standard deviation dj;. As before, these hyper-parameters are common to all HR voxels x,
intersected by the LR voxel X. This prior encourages spatial continuity of the diffusivity
values. The Normal prior is truncated, as only positive diffusivity values are allowed. Then,
for the diffusivity %> 0:

P(d"%s) =P(dMdp.dy) o« N (d.d2)  with

P(y) ~T(mys) and P(dy)~% (©0.&). ™

The prior for the hyper-parameter g, can be an informative Gamma distribution to
encourage diffusivity values with physical meaning. The yparameter controls how strict
the spatial continuity constraint will be. We have used y,,=y;=0.001and = 0.01 in this
study.

F. Conditional Prior on Volume Fractions

For the anisotropic volume fractions, two different prior types are employed. The first is of
the automatic relevance determination (ARD) type [28], as in [7]. Priors of this type
penalize a priorithe inclusion of extra compartments in the local model. Extra complexity is
allowed only if it is strongly supported by the data. We impose an ARD prior on the volume

fractions of the secondary fiber compartments #*, » > 2. ARD priors can therefore be used to
automatically detect fiber crossings.

N
A second type of prior is imposed on the total anisotropic volume fractions (fsk:anlf’];),
as a spatial continuity constraint. Similar to the conditional prior on the diffusivities, this is a
Normal distribution centred around an unknown mean 7 s, and standard deviation £ s
(again truncated Normal, as only positive values are allowed). The hyper-parameters are
common to all HR voxels xX, intersected by the LR voxel X. Such a prior encourages the
total anisotropic volume fraction to change slowly across HR voxels. In summary, the

conditional prior for the volume fractions f* n=1...Nis

N
P(FNG,) o< P(fslfss f5,) PCAD | [P ()
n=2

with
1

P(ff)~w©.1), P(f) 7
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P fsnfss) ~ N (fsmfs2)
P(fs,) ~Be(Br.Br) v
P(fs,) ~% (0, ef).

The prior for the hyper-parameter 75, can be an informative Beta distribution, bell-shaped
in [0,1] for B¢> 1. The gparameter controls how strict the spatial continuity constraint will
be. We have used fg,=2and ,=0.1.

G. Simulations

A simulated phantom with two crossing bundles (Fig. 2) was used to evaluate the
performance of RubiX. The two bundles were embedded within isotropic background. The
phantom included two slices with the elevation angle of the orientations being 0° for the first
and 10° for the second slice (to aid visualization only the first slice is shown in Fig. 2). That
ensured that orientations within 3D voxel neighborhoods were not replicated and were
changing in all dimensions. Once the geometries were defined, data were obtained at two
different spatial resolution grids (3 x 3 x 3 mm3 and mm 1.5 x 1.5 x 1.5 mm3) with a
volume ratio W g = 8 Vyr, so that each LR voxel contained 8 HR voxels. The signal at each
HR voxel was simulated using the ball & stick model [12] with &= 0.001 mm/s? and total
anisotropic volume fraction fs=3 f= 0.6 ({ = £ = 0.3 at crossings) for the anisotropic
regions. For the isotropic background, the signal from the ball compartment was used (fs=
0). The signal from groups of HR voxels was averaged to give the noise-free signal ata LR
voxel. To simulate Rician noise, zero-mean Gaussian signal was added in quadrature. For a

given SNR level Z at high resolution, an SNR level of 8%/ V2 was used for the low
resolution grid (see Appendix B).

RubiX was compared against the ball & stick model applied on data generated at the high
resolution grid. As each method considers different datasets, we matched their total
acquisition time to make the comparisons fair. For single-shot diffusion EPI, the repetition
time (TR) increases almost linearly with the number of slices. Assuming that we keep the
field of view constant across resolutions and we increase slice thickness from HR to LR by a
factor of &, we are able to acquire 2 times more LR measurements in a given amount of
time. If M, measurements are considered for the ball & stick at the high resolution grid, we
can parcellate the scanning time for RubiX, using Myr and M| g measurements, at HR and
LR respectively, such that M, +M, .,/ % =M,. In our specific example, where Z’=2, we used
Muyr = Mg = 120 and M, = 180. Despite Myr and M, r being equal, the actual diffusion-
sensitizing gradient directions were not the same for the two acquisitions.

Two sets of 174 and 114 directions were generated according to [29], so that any subset of
the first Mdirections is isotropic. Six = 0s/mm?2 measurement points were interspersed to
each set, giving a total of 180 and 120 measurements. Data at the HR and LR were
generated using the first and second set respectively. The ball & stick model was applied to
the full HR dataset of 180 measurements, using the “bedpostX” toolbox [7] in FSL [30].
RubiX was applied to the first 120 HR measurements of the first set and the 120 LR
measurements of the second set.

H. In Vivo MRI Data

A healthy male subject was scanned in a Siemens Trio 3T clinical imaging system. Two
diffusion-weighted acquisitions (single-shot EPI) were performed at different spatial
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resolutions. For the HR acquisition, the acquisition matrix was 128x128 with in-plane
resolution 1.5 x 1.5 mm?2 and 1.5 mm slice thickness (TE = 105 ms?, TR = 11800 ms, 6/8
partial Fourier, FOV = 192 x 192 mm?2, 70 slices). Diffusion weighting was applied in 174
evenly spaced directions (generated as described in Simulations) with #= 1000 s/mm2. For
the LR acquisition, the FOV was kept the same, and the in-plane resolution was decreased to
3 x 3mm? and 3 mm slice thickness (TE=86 ms, TR=4400 ms, 6/8 partial Fourier, FOV =
192 x 192 mm?, 35 slices). Diffusion weighting was applied in 114 evenly spaced directions
with 5= 1000 s/mm?2. The bandwidth/pixel was kept the same for both acquisitions, so that
distortions were of the same magnitude. Six volumes with no diffusion-weighting (6= 0s/
mm?2) were acquired at each resolution, interspersed throughout the duration of the scans,
giving a total of M, =180 and M r = 120 measurements.

We calculated the SNR of the 5= 0 s/mm?, for each of the two acquisitions. We used the
two-ROI approach with the correction factors suggested in [31]. A tissue ROI was drawn in
the midbody of the corpus callosum, where SNR measurements were performed. The LR
and HR datasets had SNRs of roughly 50 and 8, respectively. The relative ratio is slightly

higher than 8/ V2 that has been used for the simulations, reflecting the effect of ignoring TE
differences in the simulated datasets (i.e., simulation predictions reflect a more conservative
scenario).

Each dataset was corrected for distortions using the following procedure. The susceptibility-
induced distortions were corrected by acquiring extra data with reversed phase-encoding
direction and applying the method of [32]. For each acquisition, the six &= 0 volumes were
acquired twice with reversed phase-encoding directions. The susceptibility induced off-
resonance field was calculated from these pairs. This field was fed into a Gaussian process
predictor [33] that additionally estimated the eddy-current induced field and the subject
movement for each volume of the dataset. The susceptibility induced field, the eddy current
induced field and the subject movement was combined into a single transform for each
volume and the resampling was performed using spline interpolation and Jacobian
modulation. After distortion correction, the LR was registered to the HR dataset using a
rigid body transformation and spline-based interpolation.

Similar to the simulations, the ball & stick model was applied to the full HR dataset of 180
measurements. RubiX was applied to the first 120 HR measurements of the full set and the
120 LR measurements. Notice that acquisition time was matched for both models. V=2
fiber compartments were used for both models and L = 4 orientation prior modes for RubiX
(unless otherwise stated). The MCMC samples were thinned by keeping one sample every
forty. A burn-in MCMC period of 3000 and 5000 iterations was used for the ball & stick and
RubiX, respectively. For RubiX, a longer burn-in period was utilized, as an order of
magnitude more parameters are included in this model compared to the ball & stick. We
tried burn-in periods of up to 50 000 iterations, with the results being identical.

A. Simulations

A qualitative comparison of the ball & stick model with different versions of the RubiX
model was first performed (Fig. 2). All models were applied to datasets that were matched
for acquisition time. Specifically, the ball & stick model was applied to 180 measurements
all at high-resolution. The RubiX models were applied to a combination of 120
measurements at HR and 120 measurements at LR. The simpler RubiX model includes only
the conditional prior on the orientation parameters with L = 4 modes. The model denoted as
RubiX_priors included also conditional priors on the anisotropic volume fraction fsand the
diffusivity d. For all models, /=2 fiber compartments were included. In Fig. 2, the modes
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of the posterior distribution of the orientations are plotted in each voxel. For the results
presented at the bottom, ARD priors have been utilized on the volume fractions £, to enable
“automatic” detection of crossing regions.

We can observe that the RubiX models always perform better in finding plausible and
coherent orientations throughout the crossing. If the “automatic” crossing fiber detection is
further desired (Fig. 2, bottom row), the inclusion of priors on the nuisance parameters £
and d'is beneficial in correctly identifying the crossing region. Figs. 3 and 4 quantify these
improvements. Histograms of the orientation errors in the crossing region for the different
models are shown in Fig. 3(a). For all SNR levels, RubiX performs clearly better, giving
even at SNR = 7.5 a mean error of less than 10°. Interestingly, the ball & stick model
exhibits a similar performance only for SNR = 12.5 (compare for instance the blue
histogram at SNR = 12.5 to the green histogram at SNR = 7.5). This implies that, for this
simulated example, the model that utilizes only the high spatial resolution data needs
roughly three times more scanning time to achieve a similar performance as RubiX.

Fig. 3(b) summarizes the histogram information by presenting errorbars (mean error + st.
dev.) for the crossing and single-fiber regions. RubiX is superior in all cases, but the benefit
in using it is particularly evident at the crossing.

Other aspects of the RubiX performance are quantified in Fig. 4. Panel (a) shows errorbar
plots of the 95% cones of orientational uncertainty [34]. These are representative of how
wide the estimated orientation distributions are. RubiX again performs better in reducing the
uncertainty, giving more precise estimates than the ball & stick model. Panels (a) and (b)
further illustrate the effect of the conditional priors on the nuisance parameters. The
orientational uncertainty becomes smaller when these priors are included into the RubiX
model (red versus green curves). More importantly, however, they seem beneficial for the
performance of the automatic crossing detection through the ARD priors. Panel (b) shows
the improved sensitivity of RubiX when these priors are employed, allowing an almost
100% detection of crossing voxels, even at an SNR of 7.5 (see also Fig. 2). This
improvement is not against specificity. Even if there is a slight increase of false positives
(dashed lines) with RubiX_priors, these are kept at very low levels (< 3%) for all models.
Even in the cases, though, where multiple fiber compartments are identified in single-fiber
regions, these mostly have an orientation commensurate to the ground truth.

For the RubiX simulations so far, we have fixed the number of modes of the orientation
prior L = 4. Why in the first place do we need such a prior? In the event of very noisy HR
data, orientation patterns cannot be localized within each HR voxel using the LR data alone.
The orientation prior imposes a constraint on the solution space, by requiring a priori that
the estimated HR orientations are close to the modes of this prior [see Fig. 1(b)]. This
constraint is driven by the data, as both the modes and the dispersion around them are
estimated during the model inversion (even if small dispersion values are encouraged by the
respective hyper-prior). In general, we expect that the modes of the prior reflect the
predominant orientations in an LR voxel. The number of modes effectively determines how
strict such a prior constraint is. For instance, by using one mode, we a priori require that all
estimated orientations are concentrated around this mode. More modes give less spatial
regularization constraints, but also more hyper-parameters to estimate from the data. In Fig.
4(c), we illustrate the effect of changing the number of modes L, from zero to eight, on the
orientation errors. For two modes we get the smallest errors, which increase with L. For the
extreme case of L = 8, the performance is very similar to the case with L = 0, reflecting the
difficulty of the model to infer so many parameters from the data. We chose L = 4 as a good
compromise between estimation accuracy and softness of the constraint.
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We should point out that the orientation prior is not necessary to obtain improvements over
the ball & stick estimates. The mean orientation error in the crossing region for RubiX with
0 modes (i.e., no orientation prior) is 16.75°, while for the ball & stick model 21.25°.
However, the utilization of such a prior gives more accurate and precise estimates [Fig.

4(c)].

We examined the accuracy of RubiX in estimating model parameters other than the
orientations. Fig. 4(d) shows the performance of all methods in resolving the diffusivity ¢
and the volume fractions fin the more complex crossing region. As expected, the RubiX
estimates are more accurate on average, with the inclusion of the conditional priors on the
nuisance parameters increasing the precision, as well.

Apart from the increased sensitivity in detecting crossings, due to the enhanced SNR of the
low-resolution grid, RubiX should in principle benefit from the spatial specificity offered by
the high-resolution grid. We therefore examined whether it offers similar localization
performance compared to a method that performs directly on the HR grid. To test that, we
simulated complex fiber patterns that all result in an apparent “crossing” profile when
imaged at low resolution (Fig. 5); an orthogonal crossing (a), a “sandwich” crossing (b), and
a “kissing” fiber scenario (c). Notice that the LR signal obtained from patterns (a) and (b)
would be exactly the same. RubiX utilizes the extra SNR to robustly resolve the fiber
crossing in (a), much better than the ball & stick model that uses more (but noisy) HR data.
At the same time, it performs equally well in localizing the tracts in cases (b) and (c),
without estimating fictitious crossings (as would be suggested by the LR data alone).

B. In Vivo Data

Similar to simulations, RubiX was applied to HR and LR data (120 measurements for each
resolution) and was compared against the ball & stick model applied to the full HR dataset
(180 measurements). Fig. 6 presents the mean estimated orientations of two fiber
compartments for different models. The ARD prior on the volume fractions was turned off
for all models, in order to illustrate the effect of RubiX on the estimated orientations alone.
A second orientation is shown only for voxels with % > 5%.

Fig. 6(a) shows a coronal perspective of an area around the centrum semiovale (green
arrow). We can observe that the ball & stick estimates are relatively noisy in recovering the
crossing of bundles in the pyramidal tract (mostly superior-inferior orientation) and in the
callosal tracts (mostly medial-lateral orientation). Both versions of RubiX are more
successful in reconstructing a coherent crossing, with the inclusion of priors on the nuisance
parameters being beneficial. RubiX estimates seem better in other areas, as well. The
crossings at the internal capsule between the pyramidal tract and thalamocortical projections
or the external capsule are much noiser with the ball & stick model.

A similar picture is illustrated in Fig. 6(b), at the crossing between the transverse pontine
fibers and the corticospinal tract (shown encircled). RubiX models resolve much better this
orthogonal crossing, with the estimates clearly suggesting the orientations of the two
bundles.

Apart from the increased spatial coherence, precision of the RubiX estimates is also
improved compared to the ball & stick model. Fig. 7 shows histograms of the 95% cones of
orientation uncertainty across all white matter voxels. A white matter mask was obtained
using an automatic segmentation of a T1-weighted anatomical scan (“Fast” toolbox in FSL)
[35]. Such a mask is not perfect and in our case contained subcortical gray matter regions.
Therefore, we further performed a mask erosion to exclude such regions and white/gray
matter interfaces. Focusing on the core of white matter, histograms for the principal fiber
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orientation v, appear unimodal. For the secondary fiber orientation v,, the histograms are
bimodal, with the second peak representing white matter voxels where a second fiber is not
strongly supported by the data.

Fig. 7 shows how the uncertainty changes with different models and different numbers of
orientation prior modes L in the RubiX model. For all cases, RubiX histograms attain their
peak at a smaller value, suggesting that the estimated orientation uncertainty is smaller in
white matter. When L = 2 modes are used the mean WM uncertainty in v4 and v, drops by
22% and 19% for RubiX compared to the ball & stick model. For L = 4, the decrease is of
the order of 11% and 9%. Furthermore, for L = 2, RubiX found more WM voxels having
lower uncertainty on the secondary orientation, suggesting more crossings detected more
precisely. However, this is not the case for L = 4, suggesting that this /n vivo dataset does
not strongly support as many modes in the orientation prior.

Figs. 8 and 9 present RubiX estimates for other parameters of the model. Fig. 8 shows maps
of the total anisotropic volume fraction Fsand the diffusivity d As we can observe, the
incorporation of the conditional priors on the nuisance parameters fsand @, lead to
smoother spatial maps, as expected. However, edges are preserved. In Fig. 9, we present
maps of the estimated hyperparameters s, dj,, and (4. These correspond to modes of the
different conditional priors and are estimated at the LR grid. Notice that these maps are used
to a priori constrain the respective HR parameters, for instance £sand d'shown in the last
column of Fig. 8.

We further tested the performance of RubiX models, when the “automatic” crossing
detection is turned on, using the ARD priors on the volume fractions 4. Fig. 10 illustrates a
coronal perspective of the mean orientations estimated through different models. As
expected from the results on the simulated phantom, the conditional prior on the nuisance
parameters fsand d'is beneficial for increasing the number of detected crossings (last
column of Fig. 10). A few crossing examples are indicated by the green arrows, at the
centrum semiovale and the pons.

C. Spatial Specificity of Rubix Estimates

So far, we have illustrated the benefits gained from the multi-resolution RubiX approach.
However a fundamental question remains to be explored. Even if RubiX model parameters
are estimated at the highest of the spatial resolutions, do we recover the spatial specificity
offered by such a HR grid? Or are the estimates somewhat biased by the lower resolution
measurements? To examine this, we explored how orientation estimates change within
different subgroups of HR voxels. As shown in Fig. 11(a), we considered a first subgroup
G 4 consisting of HR voxels intersected by the same LR voxel. When running RubiX, the
estimates at these voxels are obtained using the same model fit. We further considered a
second subgroup G gthat consists of HR voxels intersected by different LR voxels (there are
eight such subgroups in our example). The estimates at these voxels are obtained by eight
independent RubiX model fits. In the presence of biases, we expect that the orientation
similarity in G 4 is consistently larger than the similarity in Gz (or that the orientation
dissimilarity in G 4 is smaller than in G g).

We utilized the white matter orientation estimates from a whole-brain RubiX analysis to
explore this issue. Given that two orientations are estimated in each voxel, we assessed the
dissimilarity between two voxels, by considering the angles illustrated at the bottom of Fig.
11(a). If vy, vo, and rq, ro are respectively the mean orientation estimates of the two voxels,
we calculated the dissimilarity A, considering in each voxel only the orientations with a
volume fraction > 5%. If two orientations were supported for both voxels, then the
dissimilarity was A = min(5y, /), with £, = max(an1, az2) and S = max(ai, a»1). If one of
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the voxels had only one orientation supported, then A = min(a1, aq2). For all other cases A

= 3. Then, for a voxel cwithin a subgroup G, the dissimilarity A7, was the mean of the
dissimilarities of cwith all the other voxels in G. For each voxel in white matter, we

computed the difference between the dissimilarities AZA and AZB. Fig. 11(b) shows
histograms of these differences for different models. To aid visualization and assess the
symmetricity of the histograms, we present the positive differences (red lines) and the
absolute value of the negative differences (blue dashed lines). In the absence of any bias, we
expect that the red and blue lines overlap.

As we can observe, the histograms appear almost perfectly symmetric for the ball & stick
model, which operates directly on the high resolution dataset. For RubiX models, we can
observe some asymmetry, with the negative branch of the histogram being slightly wider.
This suggests that the orientation dissimilarity in subgroups G g is consistently higher than
the one in subgroups G 4. However, for the cases where ARD is off (top histograms) and
where ARD is on (bottom histograms), the bias is in the order of 1.5 and 2 degrees on
average.

From these results, RubiX estimates appear to have less spatial specificity than the one
offered by the high resolution grid. What spatial specificity then does RubiX recover? To
answer this, we compared the orientation dissimilarity histograms of RubiX (as shown in
Fig. 11) with respective histograms from the ball & stick model fitted to smoothed versions
of the HR data. Smoothing was confined within the subgroups G 4 of HR voxels [Fig.
11(a)], by setting the signal at each voxel equal to a weighted average of the signal of the
voxels within the subgroup. Weights were defined according to the chosen smoothing
extent. As shown in Fig. 12(a), the smoothing extent (which was kept the same for all
dimensions) defined the contribution of the neighbors. The relative volumes of the gray-
shaded regions determined the weights. A large smoothing extent results to larger weights
and thus more spatial smoothing. We considered six smoothing extents (1/6 to 6/6—
fractions of the voxel dimensions), with 6/6 meaning equal weights for all neighbors (i.e.,
signal at each voxel was simply the arithmetic mean of the signals within the subgroup). For
each smoothed dataset, orientations were estimated using the ball & stick model.

Fig. 12(b) shows that the RubiX histogram (red) is slightly less symmetric and with fatter
tails than the ball & stick one (blue); however, it is much more symmetric than any of the
smoothed datasets. Even a smoothing extent of 1/6 (0.25 mm) introduces twice as much
bias, on average. These results verify that although the spatial specificity of RubiX estimates
is not exactly the one offered by the high resolution grid, it is extremely close to.

D. Accuracy of In Vivo Orientation Estimates

RubiX has been shown in simulations to improve accuracy of orientation estimates
compared to the ball & stick model. To assess accuracy of /n vivo estimates, a ground-truth
high-resolution dataset is needed. This would, however, require very long acquisition times.
Therefore, we performed a cross-validation test to address this question.

The full 180 measurement, high-resolution dataset was divided into two datasets, one with
120 and one with 60 measurements. We ran the ball & stick model on these datasets and
used the estimates from the 120-measurement one as “ground-truth.” The accuracy of the
60-measurement ball & stick estimates was then compared to the accuracy of the RubiX
estimates obtained from 40 HR (subset of these 60) and 40 LR measurements (i.e., ball &
stick and RubiX datasets were matched for acquisition time). Note that whilst the 120-
measurement dataset is a very noisy estimate of ground truth, these data are a result of twice
the acquisition time as the 60-measurement ball & stick or the RubiX analyses. Note also
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that, given the “ground truth,” the ball & stick model starts this comparison with an
advantage. First, the same model is used to get the ground-truth estimates. Second, we have
shown that RubiX (Fig. 12) does not fully recover the spatial specificity of the high-
resolution grid. Therefore, the ground truth for RubiX should be orientation estimates at a
slightly lower spatial resolution.

Despite these disadvantages, the RubiX estimates agree more on average with the “ground-
truth” estimates than the ball & stick ones. For an ROI that included the bilateral crossing
between the corpus callosum and the superior longitudinal fasciculus, within the centrum
semiovale, the mean orientation error was 12.81 for RubiX and 15.64 for the ball & stick
model. Furthermore, RubiX identified 74% of the voxels that contained a crossing,
according to the “ground-truth.” The ball & stick model identified 61% of the crossing
voxels.

V. Discussion

We have presented a model that simultaneously considers diffusion-weighted MRI data
acquired at multiple spatial resolutions to infer fiber orientations. RubiX combines the
spatial specificity and SNR benefits of the high and low-resolution grids, respectively, to
estimate more robustly orientations at the highest of the available resolutions. In simulations
and /n vivo human brain data, RubiX has been shown to estimate crossing patterns more
accurately and with less uncertainty compared to a model that utilizes only high-resolution
data, matched for acquisition time with the multi-resolution protocol. For the /n vivo data,
RubiX estimates agree more with our prior anatomical knowledge for regions such as the
centrum semiovale and the pons. The current study illustrates the value of spending some of
the acquisition time for collecting data at a lower (than desired) spatial resolution, rather
than collecting more, but noisier data only at high resolution.

The RubiX framework combines a local model for predicting the signal at the HR grid and a
partial volume model for making LR predictions. Conditional priors are also utilized on
some of the parameters (orientations, volume fractions and diffusivity). The priors reduce
identifiability issues, when the high resolution data have very poor SNR, at the expense of
some spatial regularization. Priors on the nuisance parameters fsand d, in particular, assist
the selection of the supported-by-the-data complexity through the ARD (Fig. 2, Fig. 4(b),
and Fig. 10). As shown in the results, they are not essential for improving performance
compared to the single-resolution, ball & stick model, but they do increase robustness and
spatial coherence. This is particularly true for the orientation prior, as shown in Fig. 4(c).
RubiX estimates without any orientation prior (O modes) are more accurate than the ball &
stick estimates [Fig. 3(b)]. However, the prior improves significantly both accuracy and
precision in this simple simulation.

An important feature of all these priors is that they are specified by hyper-parameters of the
model, which are directly estimated from the data. As the hyper-parameters are common to
subgroups of HR voxels, intersected by a single LR voxel, their values are mostly influenced
by the way fiber patterns are depicted at LR. At the same time, they act as constraints on the
parameters defined on the HR grid [Fig. 1(b)].

Attempts have been recently made for reconstructing high-resolution (HR) DWI, by
combining a set of low-resolution (LR) images. In [36], the authors proposed a method for
super-resolution DWI using multiple anisotropic and orthogonal LR acquisitions. The
reconstruction was based on a generative model of the acquired low-resolution volumes
from the unknown high-resolution ones to be estimated. A similar approach was recently
presented in [37], but the combined LR volumes could have arbitrary slice-encoding
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directions (not necessarily orthogonal). As before, the proposed model resolved a HR
volume for a specific diffusion-sensitizing gradient from a set of a LR acquisitions of the
same gradient orientation. Following a different perspective, [38] produced very high spatial
resolution images of track density (TD), using the reconstructed curves of white matter
tractography. Even if the resolution of the acquired data is not changed, utilizing the spatial
information encoded by the tractography curves results in postprocessed, increased-
resolution TD images. The method effectively performed a rebinning of the spatial
distribution of curves into a finer scale.

All these super-resolution approaches utilize LR acquisitions and attempt to enhance the
spatial resolution. Our proposed framework is different in spirit and aim. We actually
combine both high and low spatial resolutions into a single data-fusion analysis to estimate
microstructural features at the highest of the available resolutions. An alternative to our
Bayesian approach might use scale-space theory [39]-[41] on the image space or k-space
directly. Bayesian theory, however, allowed more flexibility in our context as well as direct
uncertainty quantification of the model parameter estimates.

Given the fusion of LR and HR data, a natural question arises on the spatial specificity of
the RubiX estimates; even if the parameters of interest are defined on the high-resolution
grid. Simple simulations illustrated the localization features of RubiX and the ability of the
model to estimate robustly different fiber patterns that are described by similar LR data (Fig.
5). We also performed extensive tests to address this question using /in vivo data (Figs. 11,
12). We found that the spatial specificity of RubiX estimates is not exactly the one of the
high resolution grid, as there is a small bias of increased similarity introduced within
subgroups of HR voxels. However, it is very close to the HR spatial specificity. Smoothing
of the HR data with extents as small as 1/6 of the voxel dimensions introduces twice as
much bias.

For the RubiX analyses presented in this study, we utilized the same number of
measurements at each spatial resolution. Too few datapoints at the high resolution will
impose identifiability issues and reduce the spatial specificity of the estimates. On the other
hand, too few datapoints at the low resolution will hardly offer any advantage compared to a
single-resolution method. We chose a middle-ground solution for this trade-off, but clearly
an optimized parcellation of the data acquisition time requires a separate study.

The current local model (Section 11-A) is of mono-exponential decay in g-space and is used
to make predictions for both LR and HR measurements. Therefore, it is only valid for cases
where the b value is kept the same for both spatial resolutions. In our /n vivo dataset the b
value was kept low (1000 s/mm?). As an increase in both the value and the spatial resolution
will dramatically reduce the SNR, a better choice for a multi-resolution protocol would be to
scan at a low 4 value and high spatial resolution and at a high 4 value and low spatial
resolution. Such protocols cannot be accommodated by the current local model. However,
the model recently introduced by [22] could be used instead. Such a model assumes a
continuous distribution of diffusivities, therefore exhibiting multi-exponential decay. We
anticipate that such an extension will increase sensitivity particularly to three-way crossings.
With the current low-5 dataset, RubiX significantly decreased noise artifacts compared to
the ball & stick model, when both ran with A//= 3, but utilizing the volume fraction ARD
priors allowed only very few third fibers to be strongly supported by the data.

Another assumption of the current local model is that the apparent diffusivity remains
relatively constant for the different echo times (TE) employed in the two combined
acquisitions. Even if a change in diffusivity is theoretically expected with a change in TE,
this has been shown to be in the order of 1%-2% [42] for the TEs employed here, making
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the above assumption reasonable. Notice that the local model of [22] discussed above could
remedy this issue as well, when TE differences are larger.

The local models mentioned so far can capture within-voxel crossing patterns. Resolving
fiber crossings is important for tractography [7], but more complicated fiber patterns still
pose problems to tracking algorithms [3]. Therefore, other local models that capture more
complex fiber patterns can be utilized within RubiX, such as models that capture within-
voxel fiber dispersion [8], [43]. Such models are more sensitive to noise and are expected to
benefit from the multi-resolution framework. Furthermore, it should be noted that the local
model used in this study may not be appropriate for gray matter, as recently showed in [43].
The estimated diffusivities and volume fractions, particularly, may be much less accurate
compared to respective estimates in white matter.

A limitation of the current RubiX implementation is the utilization of a Gaussian noise
model. This will reduce the accuracy of the estimates, particularly in cases of very low SNR
at the highest of the resolutions. Incorporation of a Rician noise model would, however, be
straightforward within the presented framework. Accuracy is expected to increase in the
expense of increased computation time. However, we do not expect the effects on the
performance from such a change to be dramatic, as shown by our simulations (where Rician
noise was added to the data).

Another requirement of the current RubiX implementation is that the spatial resolution grids
have integer volume fractions. This allowed a relatively simple MCMC implementation.
Model fits in subgroups of few voxels could be performed independently allowing faster
MCMC convergence, and also faster computation through parallelization (approximately 9 h
on 30 nodes of a CPU cluster for a subject). An implementation that would permit arbitrary
spatial resolutions to be combined could simply follow the same principles and models.
However, it would make parallelization challenging and was therefore out of the scope of
this study.
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Appendix A: Integrating Out Noise Parameters

The likelihood function described in (4) depends on A r and APqg terms. For each of these
terms, the parameters o, r and ong can be integrated out respectively. Assume the precision
parameters 7= 1/02, instead, and reference priors AT) = 1/1. These priors have the smallest
possible influence on the posterior distribution [44]. Then

PLR (YLR |Q) :f((;oPLR (YLR |Q7 TI‘R) P (TI‘R) dTLR * (12)

Substituting above with a multivariate Normal and the reference prior and using the identity
[o 1" e dr=T (a) /b", we get
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1MLR Mg /2
PIR(YIR'Q)OC A ( K_Sﬁ) (13)
=1
where the parameter space Q' = Q — {c}. Similarly for Yyr
1MHR ) - HR/2
k ’ km km
PHR (YHng)OC EZ(yHR _SHR) (14)
m=1

Appendix B: SNR at Different Spatial Resolutions

The signal to noise ratio decreases as spatial resolution increases. According to [5], for a
general 3-D acquisition

N.N,N,
SNR o V (15)

read

with Vbeing the voxel volume, Njthe number of k-space measurements in direction 7and
BWeaq is the bandwidth in the readout direction.

For a 2-D acquisition, as in diffusion EPI, this can be rewritten as

NN, NN, N,
SNR o V -V =V (16)
BWcad N.B Wpixel B Wpixel

with BWjixel the bandwidth per pixel. When the spatial resolution increases by keeping a
constant field of view and increasing the matrix size, the SNR change will depend on the
change in Vand A, (assuming that Bjixel, and thus distortions, are kept constant). For
instance, increasing the spatial resolution from 3 x 3 x 3mm3to 1.5 x 1.5 x 1.5 mm? by

doubling the matrix size in each dimension will cause an SNR drop of 8/ V2,
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Fig. 1.

() RubiX graphical model illustrates how datasets Y at both resolution grids are generated
by a set of model parameters wyg specified at the high resolution grid. The model
incorporates different noise levels o and baseline levels SO for each grid. A group of prior
hyperparameters ¢ influence the data generation at both resolutions. Notice that during the
inversion of this model, all parameters w, S0, 0 and ¥ are treated as unknowns estimated
from the measured Y xr and Y r. (b) Simplistic graphical sketch that shows how the
orientation conditional priors 4 ¢ are estimated from the data and influence subsequently
the estimation of parameters at the HR. As the priors are common to subgroups of AHR
voxels intersected by the same LR voxel X; they are influenced more by the way fiber
patterns are depicted at LR.
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Fig. 2.

Estimated fiber orientations for a simulated phantom using different methods (from left to
right): the ball & stick model, the RubiX model and the RubiX model with conditional
priors on the Fsand d parameters. The phantom contains two curving bundles that cross,
embedded within isotropic background. For each voxel, two orientations are estimated and
the mode of the respective posterior distribution has been plotted. Orientation estimates are
superimposed on the fsvalues, the total anisotropic volume fraction of each voxel. At the
top row, only secondary orientations (colored in blue) with volume fraction % > 5% are
shown. For the results presented at the bottom row, an ARD prior has been applied to 5,
driving it to zero when a secondary fiber is not supported by the data. The SNR at the HR
grid was 7.5 and &= 1000 s/mm? for both grids.
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Fig. 3.

(a) Normalized histograms of orientation errors (in degrees) at the crossing region of the
phantom. The fiber orientations estimated using different methods (ARD for volume
fractions is off) are compared to the ground truth orientations for different SNR levels. SNR
is of the HR grid. (b) Errorbars showing the mean (xstandard deviation) of orientation errors
at the crossing and the single-fiber region of the phantom, as a function of the HR SNR. 6=
1000 s/mm? was used for both grids of the RubiX dataset.
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Fig. 4.

(a) Cones of uncertainty (95%) of the estimated orientations at the crossing and single-fiber
region of the phantom, using different methods, as a function of the HR SNR. Vertical axis
is in degrees. (b) Effectiveness of the ARD prior on the volume fractions to detect crossings.
Solid lines correspond to the % of correctly resolved crossings. Dashed lines correspond to
false positives, crossings identified in the single-fiber region. (c) The effect of the number of
modes L of the RubiX conditional prior on the orientations. Errorbars indicate the mean
(xstandard deviation) orientation error (in degrees). SNR of the HR data was 7.5. (d)
Diffusivity and volume fraction estimates at the crossing region, as a function of the HR
SNR. Errorbars represent the mean (xstandard deviation) of the estimates. For the volume
fraction values, the mean of # and % in the crossing region is reported. The ground-truth
values are depicted by the dashed black lines.
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Fig. 5.

Localization of different fiber configurations using RubiX. (a) Orthogonal crossing. (b)
“Sandwich” crossing. (c) Fiber kissing. In each voxel, samples from the posterior
distribution of the orientations have been plotted to illustrate the uncertainty associated with
each estimated orientation. Notice that (a) and (b) will give the same LR data. The SNR of
the HR data was 7.5 and &= 1000 s/mm? for both resolutions. An ARD prior has been
applied to 5, for automatically detecting fiber crossings.
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RubiX_priors

Fig. 6.

Coronal views of mean estimated orientations of two fiber compartments for different
models (from left to right): The ball & stick model, the RubiX model with orientation
conditional priors and the RubiX model with orientation, volume fraction (7)) and diffusivity
(d) conditional priors. (a) Area close to the centrum semiovale (green arrow). (b) Region
around the orthogonal crossing between the corticospinal tract and the transverse pontine
fibers (shown encircled). The orientation vectors are superimposed on the £; maps, estimated
by each method. A second orientation vector is shown in blue only for voxels where % >
5%.
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Fig. 7.

Normalized histograms of 95% cones of orientation uncertainty in white matter, using
different models. Voxels have been selected using an eroded WM mask, segmented from a
T1-weighted anatomical scan. The two columns correspond to uncertainty on the principle
v4 and secondary v fiber orientation, respectively. Each row corresponds to different RubiX
models with different number L of orientation prior modes. No ARD priors were used for
the volume fractions. The dashed lines aid visualization and illustrate the values at which
each histogram attains its first peak.
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Fig. 8.

Maps of anisotropic volume fractions and diffusivities estimated using different models.
Including the conditional priors on the nuisance parameters Fsand din RubiX leads to edge-
preserving spatial smoothing. At each voxel, the mean of the respective estimated posterior
distribution has been plotted.
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Fig. 9.

Estimated hyper-parameters from RubiX, when conditional priors are utilized in the model.
From left to right: mean of the Normal prior imposed on the sum of anisotropic volume
fractions, mean of the Normal prior imposed on the diffusivities and one of the modes of the
orientation prior. As these parameters influence the group of HR voxels that are intersected
by each LR voxel, they are estimated at the low-resolution grid. Notice that a posterior
distribution for each of these parameters is estimated. The maps present the means of these
distributions. For 1, the mean dyadic vector is plotted, RGB color-coded and modulated by
the corresponding 7 s, value.
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Fig. 10.

Coronal views of mean estimated orientations of two fiber compartments for different
models (from left to right): The ball & stick model, the RubiX model with orientation
conditional priors and the RubiX model with orientation, volume fraction (7s) and
diffusivity (d) conditional priors. For all models an ARD prior was employed for 5. The
orientation vectors are superimposed on the £smaps, estimated by each method. A second
orientation vector is shown in blue only for voxels where 7 > 0.05.
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Fig. 11.

(a) Top: Subgroups of HR voxels used to assess orientation dissimilarity. The high-
resolution grid is depicted using the black lines, while the low-resolution grid is shown in
blue. For a voxel ¢, we define G 4, containing all the HR voxels intersected by the same LR
one and G g that contains neighboring HR voxels, intersected by different LR voxels.
Bottom: Angles used to assess dissimilarity between the two orientation estimates of two
voxels. (b) Normalized histograms of orientation dissimilarity differences (in degrees)
between subgroups G 4 and G g. To aid visualization, positive differences are shown in red
and the absolute values of the negative differences are shown in blue. Differences are
computed across WM.
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Fig. 12.

(a) Spatial smoothing was performed within subgroups G 4 of HR voxels, intersected by the
same LR voxel. The smoothing was performed using a weighted average of the signals
within the subgroup, with the weights for each voxel defined by the smoothing extent. The
smoothing extent (fraction of the voxel dimensions) defined the contributions of the
neighbors and the weights were proportional to the relative volumes of the contributed
(gray-shaded) regions. (b) Normalized histograms of orientation dissimilarity differences (in
degrees) between subgroups G 4 and G g. Red corresponds to RubiX estimates and blue to
ball & stick. The histograms depicted by black and gray colors correspond to ball & stick
estimates from smoothed datasets. Dissimilarity differences are computed across WM. All
models had an ARD prior for £. For RubiX, the priors on the nuisance parameters (7, @)
were also utilized.
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