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Abstract  27 

Pre-eclampsia is associated with lower serum selenium concentrations and glutathione 28 

peroxidase expression/activity; total thyroid hormones are also lower. Objectives, study 29 

design and main outcome measures: We hypothesised that the placental selenoprotein 30 

deiodinase (D3) will be protected in pre-eclampsia due to the hierarchy of selenoprotein 31 

biosynthesis in selenium deficiency. Venous blood and tissue from three standardised 32 

placental sites were obtained at delivery from 27 normotensive and 23 pre-eclamptic women. 33 

mRNA expression and enzyme activity were assessed for both deiodinases (D2 and D3); 34 

protein expression/localisation was also measured for D3. FT4, FT3 and TSH concentrations 35 

were measured in maternal and umbilical cord blood. Results: No significant differences in 36 

D3 mRNA or protein expression between normotensive and pre-eclamptic pregnancies. 37 

There was a significant effect of sampling site on placental D3 activity only in pre-eclamptic 38 

women (P=0.034; highest activity nearest the cord). A strong correlation between D3 mRNA 39 

expression and enzyme activity existed only in the pre-eclamptic group; further strengthened 40 

when controlling for maternal selenium (P<0.002).  No significant differences were observed 41 

between groups for any of the maternal thyroid hormones; umbilical TSH concentrations 42 

were significantly higher in the pre-eclamptic samples (P<0.001). Conclusions: D3 mRNA 43 

and protein expression appear to be independent of selenium status. Nevertheless, the positive 44 

correlation between D3 mRNA expression and activity evident only in pre-eclampsia, 45 

suggests that in normotensive controls, where selenium is higher, translation is not affected, 46 

but in pre-eclampsia, where selenium is low, enzyme regulation may be altered. The raised 47 

umbilical TSH concentrations in pre-eclampsia may be an adaptive fetal response to 48 

maximise iodide uptake. 49 

Keywords: Placenta, deiodinases, pre-eclampsia, thyroid hormones 50 

 51 
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Introduction 52 

The availability and integration of the trace element selenium into the selenocysteine amino 53 

acid (Sec) is crucial to the enzymatic function of deiodinases (D1, D2 and D3). The 54 

regulation of selenoprotein synthesis is highly selenium-dependent; it has been shown that a 55 

hierarchy exists for the synthesis of different selenoproteins, both via differential mRNA 56 

translation and sensitivity to nonsense-mediated decay with D3 being prioritised [1]. The 57 

placenta is a key site for the activity of many selenoproteins such as the antioxidant 58 

glutathione peroxidase (GPx), iodothyronine deiodinase, and redox signalling thioredoxin 59 

reductase families [2]. Many of these roles appear to be particularly relevant to the aetiology 60 

of the pregnancy-specific condition of pre-eclampsia, a hypertensive disorder of pregnancy 61 

that occurs in ~3% of all pregnancies (de novo proteinuric hypertension), a leading cause of 62 

maternal and perinatal mortality and morbidity worldwide [3]. Placental and maternal 63 

systemic oxidative stress are components of the syndrome [4] and contribute to a generalised 64 

maternal systemic inflammatory activation [5]. Placental ischemia-reperfusion injury has 65 

been implicated in excessive production of reactive oxygen species, which could cause 66 

release of placental factors that mediate the inflammatory responses [6]. We have recently 67 

shown increased maternal and fetal plasma thiobarbituric acid reactive substances (TBARS) 68 

concentrations which were measured as a global marker of oxidative stress in pre-eclampsia 69 

[4]. 70 

 71 

There are three iodothyronine deiodinases, which all utilise Sec at their active site. Deiodinase 72 

types 1 and 2 (D1 and D2) primarily catalyse the removal of an iodine from the outer 73 

(phenolic) ring and in so doing convert inactive T4 to T3. Deiodinase type 3 (D3) catalyses the 74 

deiodination of the inner (tyrosyl) ring of both T4 and T3 to produce the inactive products 75 
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reverse T3 (rT3) and 3, 3’-diiodothyronine (T2), respectively [7, 8]. D2 and D3 mRNA and 76 

activity have both been identified in homogenates of human placenta from near the cord 77 

insertion site [9-12]; their activity decreases with gestational age from the end of the first 78 

trimester [10, 11]. D2 is an integral membrane protein found mainly in the endoplasmic 79 

reticulum [13], while D3 is localised in the plasma membrane of the intra-placental cells; the 80 

highest levels of D3 are found in the placenta [12]. In the human feto-placental unit, D3 81 

metabolizes T4 to rT3 throughout pregnancy [14]; only later in pregnancy there is an increase 82 

in T4 to T3 conversion by D1 and D2. Fetal thyroxine-binding globulin (TBG) concentrations 83 

rise to non-pregnant levels by the late 3rd trimester, although remaining lower than 84 

maternal[15]; the fetal T4:TBG ratio is, however, higher at term.  85 

 86 

Placental D3 enzyme activity is 100-400 fold greater than D2 activity and the D3/D2 mRNA 87 

ratio varies from 0.5-50 [10]. Placental D2 mRNA concentrations correlate with neither 88 

protein nor activity rates [10]. Placental D3 activity is unaffected by plasma T4 concentrations 89 

[9, 16] and is controlled by post-transcriptional and post-translational regulation [17] such as 90 

the TGF-β via Smad-dependent pathway [18].  91 

 92 

Total T3 and T4, as well as TBG concentrations in women with pre-eclampsia have been 93 

reported to be lower compared to normotensive pregnant women but TSH concentrations are 94 

higher [19-21]; these changes have also been observed in fetal samples from pre-eclamptic 95 

pregnancies [22]. We have also shown maternal and umbilical venous serum selenium 96 

concentrations to be decreased in pregnancy and to be further reduced in pre-eclamptic 97 

pregnancy [4]. A strong positive relationship exists between GPx activity and serum selenium 98 

concentrations in both maternal plasma and placental tissue and we have reported significant 99 
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reductions in maternal and fetal GPx protein expression and activity in both plasma and 100 

placental tissue [4, 23]. The hierarchal control of selenoproteins appears to exist in selenium 101 

deficient conditions and ranks deiodinases higher than GPxs [24]. Systematic investigation of 102 

the placental deiodinases in relation to pre-eclampsia appears not to have been undertaken. 103 

 104 

We hypothesised that D3 would be preserved in placentae from pre-eclamptic women despite 105 

their lower serum selenium. We also hypothesised that decreased selenium would be 106 

associated with increased TSH due to the role of deiodinases in extrathyroidal production of 107 

T3, to maintain FT3 and FT4 concentrations. 108 

 109 

Methods 110 

Subjects: The investigations were approved by the Nottingham Hospital Ethics Committee; 111 

written, informed consent was obtained from each participant. Pre-eclampsia was defined as a 112 

systolic blood pressure of 140 mm Hg or more and diastolic pressure (Korotkoff V) of 90 mm 113 

Hg or more on 2 occasions after 20 weeks gestation in a previously normotensive woman 114 

together with proteinuria ≥300 mg/L, ≥500 mg/day or ≥2+ on dipstick analysis of midstream 115 

urine (MSU) if 24-hour collection result was not available [25]. The study population 116 

consisted of White European women who had either a normotensive (n=27) or pre-eclamptic 117 

(n=23) pregnancy (Table 1) [4]. Umbilical venous blood samples were obtained from babies 118 

from 24 of the normotensive and 14 pre-eclamptic women. Medical and obstetric histories, 119 

including delivery data, were obtained for each woman. The birthweight centile for each baby 120 

was computed, correcting for gestation age, sex, maternal parity and body mass index (BMI) 121 

[26].  122 
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Sample collection: Venous blood samples were taken from mothers before delivery; where 123 

possible, umbilical venous samples were also taken, immediately after placental delivery. 124 

Samples were taken into chilled tubes with no anticoagulant and the serum fraction stored at –125 

80°C until required. Two full depth placental tissue samples were collected from three 126 

standardised locations between the cord insertion and placental periphery (1 cm from the cord 127 

insertion (Near), 1 cm from the periphery (Outer), and midway between the two (Middle)), 128 

avoiding placental infarcts. The placental samples were taken within 10 minutes of delivery, 129 

membranes removed and the tissue washed in ice cold 1x PBS to remove maternal blood 130 

contamination. One set of samples was snap frozen in liquid nitrogen and stored at -80 oC for 131 

measurement of deiodinase activity and RNA assessment; the other was formalin fixed and 132 

wax-embedded for immunohistochemical analysis. 133 

 134 

Quantitative real-time PCR: Total RNA was extracted from a known amount of placental 135 

tissue (100 mg) using QIAzol lysis reagent (Qiagen, Crawley, UK). RNA concentration and 136 

quality were verified spectrophotometrically, using the Nanodrop ND-1000 (Nanodrop 137 

Technologies, Labtech, Ringmer, UK); all samples had an A260/A280 ratio greater than 1.96 138 

and were stored at −80 °C. RNA (1 µg) was then reverse transcribed using the QuantiTect 139 

Reverse Transcription Kit containing a mix of random primers and Oligo dT (Qiagen, 140 

Crawley, UK) in a Primus 96 advanced gradient thermocycler (Peqlab Ltd, Fareham, UK). 141 

Quantitative real time PCR (7500 FAST thermocycler; Applied Biosystems) was used to 142 

examine the expression of D2 and D3 relative to stably expressed beta -2-microglobulin 143 

(B2M) [27, 28]. Reactions set up in duplicate were carried out in total volume of 20 µl 144 

comprising 10 µl FAST SYBR Green Master Mix (Applied Biosystems), 500nM forward 145 

primer, 500nM reverse primer, nuclease-free water and 1µl cDNA. The PCR programme ran 146 

at 95°C (20s) followed by 40 cycles of 95°C (3s), 60°C (30 s). Melt-curve analysis was 147 
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performed at 95°C - 60°C to confirm the presence of one single product. Two negative 148 

controls were included with each set of samples: (1) no RNA template; (2) RNA provided but 149 

no reverse transcription. The crossing point (CP) values were used for analysis, using a 150 

mathematical model for relative quantification developed by Pfaffl[29]. The relative 151 

expression ratio (R) of the target gene is calculated based on efficiency (E) and the CP 152 

deviation of an unknown sample versus a calibrator, and is expressed in comparison to a 153 

housekeeping gene [29, 30]. Primer sequences for D2 and D3 and for the housekeeping genes 154 

were as previously reported [31]. 155 

 156 

Immunohistochemistry: Immunohistochemical analysis was performed using the Dako 157 

Envision™ visualization system (Dako, Ely, UK) as previously described [23, 32]. D3 158 

antibody (Abcam) was used at 0.5 µg/ml respectively, after determination of optimal 159 

dilutions (data not shown). Rabbit IgG was used in place of the specific antibodies as a 160 

negative control. Cerebral cortex was used as the positive control for the D3 antibody to 161 

verify specificity. A specific antibody for D2 in placentae could not be found and therefore 162 

not assayed. 163 

 164 

D2 and D3 activity assays: The activities of specific deiodinase subtypes were estimated 165 

using methods previously described [33]. Briefly, the placental samples were homogenized in 166 

10 vol 0.1 M phosphate (pH 7.2), 2 mM EDTA and 10 mM dithiothreitol (P100E2D1 buffer). 167 

Protein concentrations were estimated using the Bradford method [34]. D2 activity was 168 

determined by HPLC analysis of the production of radioactive iodide and T3 outer ring-169 

labelled T4, and D3 activity by HPLC analysis of the formation of radioactive T2 and 3'-170 

iodothyronine from outer ring-labeled T3. Deiodination in the presence of placental 171 
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homogenate ( 1 mg protein/ml) was corrected for non-enzymatic deiodination in the absence 172 

of homogenate. 173 

 174 

D2 activity assay: Incubations were carried out for 120 min at 37°C with 1 nM (105 cpm) 175 

[3',5'-125I]T4 in the presence of 1 µM T3 to block D3 and in the absence or presence of 100 176 

nM T4 to saturate D2, in 0.1 ml P100E2D10 buffer. Deiodinase activity was ascribed to D2 if 177 

inhibited by excess unlabeled T4.  178 

 179 

D3 activity assay: Incubations were carried out for 60 min at 37°C with 1 nM (2 x 105 cpm) 180 

[3'-125I]T3 in the absence or presence of 100 nM T3 to saturate D3 in 0.1 ml P100D2D10 181 

buffer. Deiodinase activity was ascribed to D3 if inhibited by excess unlabeled T3. The 182 

minimum detectable activity for deiodinase assays is (< 0.1fmol/min/mg protein) using this 183 

methodology.  184 

 185 

Thyroid hormone assays: Competitive immunoassays, using direct chemiluminescent 186 

technology were used to measure FT3 and FT4 concentrations; a two-site sandwich 187 

immunoassay for TSH concentrations in serum was used in the ADVIA Centaur system. All 188 

serum samples were analysed in triplicate, with the inter- and intra-assays being less than 5% 189 

and 10%, respectively. The pregnancy-specific reference ranges using this methodology for 190 

the third trimester have been established in a recent study and are as follows, TSH: 0.5-4 191 

mU/L; FT4: 8-14.5 pmol/L and FT3: 2.5-5.5 pmol/L [35].  192 

 193 

Selenium measurements: Maternal and umbilical cord serum selenium concentrations on 194 

these samples were determined by a Varian SpectrAA graphite furnace atomic absorption 195 

spectrophotometer. These data have been previously reported [4]. 196 
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Statistical analysis: All analyses were performed using SPSS for Windows, PASW18.0. 197 

Summary data are presented as means ± SD or median [interquartile range] as appropriate for 198 

their distribution, as determined by the Kolmogorov-Smirnov test. Within subject 199 

comparisons were made using Friedman repeated measures ANOVA, between group analysis 200 

using Mann-Whitney U or Student’s t tests depending on the distribution and Spearman’s 201 

Rank tests were used for correlation analysis. The null hypothesis was rejected where P < 202 

0.05.  203 

204 
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Results 205 

Subjects: Table 1 describes the demographic, obstetric, and pregnancy data of the 50 206 

participants. Both pregnancy groups conceived spontaneously and carried singleton 207 

pregnancies. The normotensive pregnant women gave birth to infants weighing > 2500 g, 208 

delivered at 37 weeks or later.  209 

Selenium concentrations: As previously reported [4], both maternal and umbilical cord serum 210 

selenium concentrations were significantly reduced in the pre-eclamptic compared with the 211 

normotensive group (Table 3). 212 

Expression of mRNA for D2 and D3: Placental mRNA expression normalised to stably 213 

expressed B2M is reported as median value [interquartiles] and values are given for the 214 

middle sampling location; there was no effect of sampling site (P>0.3). D2 mRNA expression 215 

in the normotensive group was 0.23 [0.1-0.77] and in the pre-eclamptic placentae 0.38 [0.19-216 

1.48]. There was no significant difference in expression between the two pregnancy groups 217 

(P=0.14). Placental D3 mRNA expression was also similarly expressed in both study groups 218 

(P=0.50); normotensive pregnancy, 2.8 [0.9-3.9] and pre-eclamptic pregnancy, 1.6 [0.6-4.2]. 219 

However, D3 expression was higher than D2 expression (Figure 1). 220 

 221 

D3 immunohistochemistry: D3 immunostaining was localised to the syncytiotrophoblast with 222 

no difference in expression between the two groups (Figure 2).  223 

 224 

D2 and D3 enzyme activities: D3 enzyme activity was identified in all placentae. Overall, 225 

when comparing groups, the enzyme activity did not differ between normotensive and pre-226 

eclamptic women (P>0.05; Table 2). Placentae from pre-eclamptic women showed a 227 



11 
 

significant positive correlation between D3 activity and mRNA expression for all locations 228 

sampled (Figure 3; P<0.05); this correlation did not exist in the normotensive samples 229 

(P>0.05). However, a significant gradient in activity across the placental bed was evident 230 

only in the normotensive placentae; the highest activity was demonstrated nearest the cord 231 

(Friedman-Repeated Measures; P=0.034; Table 2). Mode of delivery or birthweights had no 232 

influence on D3 activities. To ensure observed differences in D3 activity and expression were 233 

not related to gestational age at delivery, we also compared these data with normotensive 234 

controls only for the 11 pre-eclamptic pregnancies who were delivered at ≥ 37 weeks’ 235 

gestation. The comparison remained statistically significantly different (P>0.1 for both D3 236 

activity and expression). D2 activity was undetectable in these samples.  237 

 238 

Thyroid hormone results: One normotensive control woman had elevated maternal TSH 239 

concentrations and elevated umbilical FT3; these anomalies were not associated with 240 

clinically identified thyroid disorder and so were retained in the analysis.  241 

 242 

No significant differences were seen between normotensive and pre-eclampsia samples for 243 

any of maternal TSH, FT4 or FT3 concentrations (Table 3; P>0.1for all). Umbilical venous 244 

TSH concentrations were significantly higher in the pre-eclamptic compared to the 245 

normotensive samples (Table 3; P<0.001) but umbilical venous FT4 and FT3 concentrations 246 

did not differ significantly. Mode of delivery had no influence on these levels. To ensure 247 

observed differences in umbilical venous TSH concentrations were not related to gestational 248 

age at delivery, we also compared these data with controls only for the 11 babies from pre-249 

eclamptic pregnancies who were delivered at ≥ 37 weeks’ gestation. The comparison 250 

remained statistically significantly different (P = 0.008). In addition, inverse relationships 251 
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were seen between umbilical venous TSH concentrations with our previously measured [4] 252 

umbilical venous TBARS concentration (r = -0.60; R2 = 0.40; P=0.03) and plasma GPx 253 

activities (r = -0.57; R2 = 0.23; P=0.04) in the pre-eclamptic samples only. Maternal TSH and 254 

FT4 were significantly lower and FT3 significantly higher than in matched umbilical samples 255 

(Table 3) in both normotensive and pre-eclamptic samples (P < 0.05 for all groups). There 256 

was no association between maternal or umbilical selenium concentration and 257 

simultaneously-measured TSH.  258 

Deiodinases and Selenium: There was no direct association between mRNA and protein 259 

expression or activity of either deiodinase enzyme and maternal or fetal serum selenium 260 

concentrations.  261 

262 
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Discussion 263 

We have shown the presence of mRNA and protein D3 in term placenta, which is in 264 

agreement with previous studies [10-12]. Our original hypothesis was that there would be 265 

preferential utilisation of selenium by the iodothyronine deiodinases in pre-eclampsia. Our 266 

novel data support this hypothesis, since although there was no effect of pre-eclampsia on 267 

deiodinase mRNA or protein expression, there was a pre-eclampsia-related effect in relation 268 

to the selenoprotein D3 activity in the presence of significantly reduced serum selenium 269 

concentrations in both mother and fetus. Plasma FT3 and FT4 were similar in normotensive 270 

and pre-eclamptic women and their fetuses. The placental D2 activity, known to be at least 271 

100 fold lower than D3 activity, was below the limits of detection in this study [9, 11].  272 

 273 

Interestingly, a differential distribution of D3 activity was observed across the placental bed 274 

with highest activity near the cord insertion. However this gradient was seen only in 275 

placentae from normotensive pregnancies suggesting a possible blunting of D3 regulation in 276 

pre-eclampsia. We have previously reported gradients in enzyme activity across the placental 277 

bed in GPxs and Angiotensin converting enzyme [23, 36] as have others relating to gene 278 

expression [37] . This may relate to the lower tissue oxygenation at the periphery of the 279 

placenta, the central region being well-oxygenated owing to the direction of the maternal 280 

blood flow [38].  281 

 282 

The regulation of D3 activity and expression is tightly controlled on a tissue-specific and 283 

even cellular level in a precise spatio-temporal manner [39]. D3 effects on thyroid hormone 284 

signalling occur via two routes according to oxygen availability [40]. When oxygen is 285 

adequate, D3 is moved from its site of synthesis in the endoplasmic reticulum to the Golgi 286 
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body and plasma membrane. However, when oxygen tension is low, D3 is redirected to the 287 

nucleus to be physically closer to the thyroid hormone receptor-mediated gene transcriptional 288 

control as demonstrated in human neuroblastoma cell line [40].  289 

 290 

In colon cancer cells, D3 has been shown to be a direct transcriptional target for a complex 291 

including β-catenin [41] a key molecule in the Wnt signalling pathway which interacts with 292 

E-cadherin. Both mRNA and protein expression of β-catenin are down regulated in the term 293 

placenta in a similar fashion to E-cadherin expression [42]. In pre-eclampsia however, E-294 

cadherin expression is elevated [43], whilst the expression of the zinc finger transcription 295 

factor Snail, which controls E-cadherin, is reduced in the placental periphery [44]. The 296 

perturbation of complex signalling networks within the placenta may contribute to the 297 

blunting of D3 regulation in pre-eclampsia.  298 

 299 

The lack of direct relationship between selenium deficiency and thyroid function concurs 300 

with the current knowledge of the hierarchal control of selenoprotein expression in such 301 

deficient conditions [24]. Endocrine tissues are well adapted to maintain selenoprotein 302 

expression when selenium supply is limited and the deiodinases are maintained at the 303 

expense of GPxs, which are quickly lost [45, 46]. 304 

 305 

Our results support that maternal thyroid function, based on maternal TSH, FT3 and FT4 306 

concentrations, did not alter in pre-eclamptic women compared to normotensive pregnant 307 

controls; this is consistent with others [47]. The thyroid hormones fell within the pregnancy 308 

reference ranges for this methodology [35] and were comparable with other studies [19, 48]. 309 
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No significant differences were observed in umbilical venous FT3 and FT4 concentrations 310 

between the normotensive and pre-eclampsia groups; also consistent with other studies [49, 311 

50]. However, a significant increase in TSH concentrations in the babies born to pre-312 

eclamptic mothers compared to those babies born to normotensive women was observed. It 313 

has been suggested that the raised umbilical venous TSH concentrations in pre-eclampsia 314 

may reflect an adaptive response by the fetus to maximise iodide uptake, thereby maintaining 315 

normal levels of FT3 and FT4 [20]. Furthermore, the raised TSH concentrations may also be 316 

a consequence of increased hypoxia placed on these babies due to the inadequate placentation 317 

[49], although the exact mechanism has still to be elucidated. Interestingly, the novel inverse 318 

relationships seen between umbilical venous TSH concentrations with our previously 319 

measured umbilical venous TBARS concentration and plasma GPx activities in the pre-320 

eclamptic samples only indicate that higher TSH concentrations in the pre-eclamptic fetuses 321 

are associated with increased the oxidative stress conditions. 322 

 323 

This study illustrates that under the selenium deficiency seen in these pre-eclamptic women, 324 

the thyroid hormone homeostasis remains largely unchanged though there appear to be subtle 325 

differences in enzyme activity dependent on placental location, as well as in the translation 326 

between mRNA expression and protein activity. Future studies with larger cohorts will focus 327 

in the relationships of the fetal TSH with markers of both oxidative stress and the GPxs. 328 

 329 
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 465 

Figure Legends 466 

Figure 1: (A) D2 and (B) D3 mRNA expression across placental sampling sites normalised 467 

to housekeeper gene B2M. The values of both deiodinases are shown to the same scale to 468 

emphasise their relative differences in expression.  469 

Figure 2: Placental D3 expression in (A) positive tissue control – cerebral cortex (B) 470 

negative control – IgG – placenta (C) Normotensive placenta (D) pre-eclamptic placenta; 471 

magnification x200 (arrows indicate syncytiotrophoblasts). 472 
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Figure 3: The relationship between the D3 mRNA expression and the D3 enzyme activity 473 

with both parameters tested across the 3 locations between A) normotensive and B) pre-474 

eclamptic samples. Significant positive correlations were seen only in the pre-eclamptic 475 

samples (normotensive R2 - outer: 0.02; middle: 0.009; near: 0.003; P>0.05 for all, pre-476 

eclampsia R2 – outer: 0.253, P=0.015; middle: 0.377, P=0.001; near: 0.253, P=0.034). 477 


