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BACKGROUND AND PURPOSE
Chondrocytes exist within cartilage and serve to maintain the extracellular matrix. It has been postulated that osteoarthritic
(OA) chondrocytes lose the ability to regulate their volume, affecting extracellular matrix production. In previous studies, we
identified expression of epithelial sodium channels (ENaC) in human chondrocytes, but their function remained unknown.
Although ENaC typically has Na+ transport roles, it is also involved in the cell volume regulation of rat hepatocytes. ENaC
is a member of the degenerin (Deg) family, and ENaC/Deg-like channels have a low conductance and high sensitivity to
benzamil. In this study, we investigated whether canine chondrocytes express functional ENaC/Deg-like ion channels and, if
so, what their function may be.

EXPERIMENTAL APPROACH
Canine chondrocytes were harvested from dogs killed for unassociated welfare reasons. We used immunohistochemistry and
patch-clamp electrophysiology to investigate ENaC expression and video microscopy to analyse the effects of pharmacological
inhibition of ENaC/Deg on cell volume regulation.

KEY RESULTS
Immunofluorescence showed that canine chondrocytes expressed ENaC protein. Single-channel recordings demonstrated
expression of a benzamil-sensitive Na+ conductance (9 pS), and whole-cell experiments show this to be approximately
1.5 nS per cell with high selectivity for Na+. Benzamil hyperpolarized chondrocytes by approximately 8 mV with a pD2 8.4.
Chondrocyte regulatory volume decrease (RVI) was inhibited by benzamil (pD2 7.5) but persisted when extracellular Na+ ions
were replaced by Li+.

CONCLUSION AND IMPLICATIONS
Our data suggest that benzamil inhibits RVI by reducing the influx of Na+ ions through ENaC/Deg-like ion channels and
present ENaC/Deg as a possible target for pharmacological modulation of chondrocyte volume.

Abbreviations
AQP, aquaporin; Deg, degenerin; ENaC, epithelial sodium channel; OA, osteoarthritis; RMP, resting membrane
potential; RVD, regulatory volume decrease; RVI, regulatory volume increase

Introduction
Chondrocytes are the cells of cartilage that synthesize and
maintain the substance of cartilage, the extracellular matrix

(Stockwell, 1975). They exist in a unique high-pressure, avas-
cular environment, but chondrocytes can be enzymatically
isolated from cartilage and largely retain phenotype for the
first few passages in culture (Benya and Shaffer, 1982). Recent
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studies have shown that chondrocytes, like other cells,
express a wide variety of ion channels (Barrett-Jolley et al.,
2010) including several species of potassium channel (Wilson
et al., 2004; Mobasheri et al., 2005; 2007; 2010; Clark et al.,
2010b; 2011) and at least two species of chloride channels
(Sugimoto et al., 1996; Tsuga et al., 2002; Funabashi et al.,
2010). Our own studies have also shown immunohistologi-
cally that human chondrocytes express the epithelial sodium
channel (ENaC) (Trujillo et al., 1999). We previously made a
preliminary report of their functional expression in canine
chondrocytes (Lewis et al., 2008), but their function has been,
to date, entirely unknown. ENaC is a low conductance
sodium channel consisting of various combinations of three
subunits: a, b and g (Canessa et al., 1994); and our previous
immunohistochemical experiments identified each of these
in human cartilage (Trujillo et al., 1999). ENaC has the key
pharmacological property of sensitivity to low concentra-
tions of benzamil and amiloride and is the prototypic
member of the ENaC-degenerin (ENaC/Deg) protein family
(Alvarez de la Rosa et al., 2000; Kellenberger and Schild,
2002). The most well characterized function of ENaC is trans-
port of Na+ across epithelial barriers (Alvarez de la Rosa et al.,
2000; Kellenberger and Schild, 2002). As such, ENaC in par-
ticular, is a regulator of sodium homeostasis, modulating
sodium re-absorption in the kidney (Hager et al., 2001) and
sodium absorption from the colon (Kunzelmann and Mall,
2002). However, recent evidence suggests that ENaC has more
diverse functions than this, for example, sodium sensing on
gustatory neurones of the anterior tongue (Staehler et al.,
2008) and neurones in the paraventricular nucleus (Teruyama
et al., 2011). ENaC has also been implicated in mechanotrans-
duction in some organisms (discussed by Martinac, 2004;
Chalfie, 2009). Specifically, ENaC has been shown to be
‘shrink-activated’ in certain cell types (Bohmer et al., 2000;
Bondarava et al., 2009). Of particular interest to us was the
discovery that ENaC has an important (Wehner et al., 2000)
and yet complex (Wehner et al., 2006) role in the cell volume
regulation of rat hepatocytes. Active volume regulation is
a well known physiological response of chondrocytes
(reviewed by Lewis et al., 2011b). Under appropriate condi-
tions, they exhibit both regulatory volume decrease (RVD)
(Bush and Hall, 2001a,b) and regulatory volume increase
(RVI) (Hall et al., 1996; Kerrigan et al., 2006). Typically, in
eukaryotic cells, RVI occurs following exposure to hypertonic
solutions (Hoffmann et al., 2009). Cells first lose water by
osmosis and then shrink; RVI is the process whereby cells
recover their volume by accumulating additional solutes and
then osmotically imbibing water (Hoffmann et al., 2009). In
rat hepatocytes, accumulation of solutes includes influx of
sodium ions through ENaC (Wehner et al., 2000; 2006). Fur-
thermore, since ENaC is a relatively sodium selective ion
channel (Rossier et al., 1994), one would expect that their
activation may lead to membrane depolarization, which
could itself have indirect effects on cell function including
volume regulation (Lewis et al., 2011a).

In the present study, we sought to characterize both
protein and functional expression of ENaC/Deg channels and
investigate whether they contribute to the RVI of canine
chondrocytes. We show that ENaC is expressed in our canine
chondrocyte model, that benzamil sensitive ion channel
activity was increased by hypertonic challenge and that these

ENaC/Deg-like channels contribute to the RVI response of
canine chondrocytes.

Methods

Canine cartilage was obtained from stifle and elbow condyles
of skeletally mature, bull terrier-type dogs killed for unrelated
clinical reasons. No animals were harmed for this study.
Chondrocytes were isolated as described previously
(Mobasheri et al., 2010) with type II collagenase. To ensure
preservation of the chondrocyte phenotype, we used freshly
dissociated and up to third passage cells only.

RVI bioassay
Cells were placed in a ‘physiological saline’ (Table 1) solution
including 145 mM Na+ and then moved to an identical solu-
tion except for the addition of 180 mM sucrose. Cells, at first,
shrink as water leaves the cell due to osmosis (Figure 5A
phase ‘I’) and then begin to swell as RVI takes place
(Figure 5A phase ‘II’). Not all cells showed RVI, and so we
used a two ‘run’ protocol. In the first ‘run’, we determined if
RVI occurred by exposure to hypertonic solution. If this cell
did exhibit RVI, we then continued with a second ‘run’
under either control, or treatment conditions. Live cell
imaging was achieved with a Nikon Diaphot microscope
equipped with a Sony ICX098QB high-sensitivity CCD, or
NIKON Eclipse Ti confocal microscope (Nikon Kingston-
Upon-Thames, Surrey, UK). Images were analysed offline
with ImageJ (Abramoff et al., 2004). Volume was calculated
from the 2D surface area (A) of the cell disc by assuming the
cell is approximately spherical as described previously (Walsh
and Zhang, 2005; Takeuchi et al., 2006; Lewis et al., 2011a),
using the following equation:
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Except where stated, data are presented normalized for start-
ing volume (V0) as V/V0, where V is the volume at time t.
Figure 5A shows confocal images verifying that the chondro-
cytes were approximately spherical during volume experi-
ments. (Note that the cells only round up when removed
from the culture vessels for the duration of the functional
experiments, in the immunohistochemistry where they
remain on coverslips, they have a flattened appearance). Cells
were incubated with FM1-43 dye (Invitrogen, Paisley, UK)
before being subjected to the same ‘run’ treatment as
described above.

Electrophysiology
Membrane potentials and whole-cell currents were measured
with the whole-cell patch clamp technique using an Axo-
patch 200A (Molecular Devices, Inc., Sunnyvale, CA), inside-
out single channel recordings were made with an Axopatch
200A (Molecular Devices), but cell-attached patch recordings
were made with an Axopatch 200B (Molecular Devices, Inc.).
Except where stated, data were filtered (1 kHz) using the
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inbuilt amplifier filters and sampled (5 kHz) using DigiData
1200 interface cards (Molecular Devices, Inc.). Voltage proto-
cols were run by the WinEDR and WinWCP programs (John
Dempster, University of Strathclyde). Osmolarity changes
were affected by addition or removal of 180 mM sucrose.

Whole-cell experiments. Patch-pipettes were fabricated from
thick-walled borosilicate glass (outer diameter 1.5 mm, inner
diameter 0.85 mm) with resistance approximately 5 MW
when filled. For resting membrane potential (RMP) measure-
ments, we used the standard physiological saline (Table 1),
matched with a standard high K+ ‘physiological’ intracellular
saline solution (Table 2). To measure the sodium permeability
of the benzamil-sensitive conductance, a voltage-ramp pro-
tocol was used. This consisted of a 4.5 s linear ramp from -80
to +80 mV, repeated at 50 s intervals. Difference currents were
obtained by subtraction of a ramp in the presence of ben-
zamil from that run in vehicle control. Intracellular [Na+] was
varied (see Table 2 for the solutions used), and the reversal
potential (Vrev) of the difference current at each of the [Na]i

used to calculate permeability by fit of a standard variation of
the Goldman Hodgkin Katz equation (Equation 2) and mini-
mizing chi2:

V
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where [Na]o is 145 mM, and [K]o is 5 mM (‘ENac Permeability’
solution, Table 1). R, T and F have the standard definitions. p
is the permeability ratio Na+/K+. [Na]i and [K]i varied between
22 and 150 mM according to the intracellular solution used
(Table 2). Whole-cell currents were also recorded in voltage
clamp mode using physiological saline solutions (Tables 1
and 2).

Single channel experiments. Patch pipettes were again fabri-
cated from thick-walled borosilicate 1.5 mm (outer diameter),
but resistances were approximately 10 MW when filled. For
inside-out patch experiments, Na+ was high in both the patch
pipettes (extracellular: ‘inside-out patch’, Table 1) and the
bath (intracellular: ‘inside-out patch’, Table 2). For single
channel kinetics, we used cell-attached patch single channel
recording. Sodium ions were replaced by lithium (Li+) in the
patch pipette (extracellular: ‘Lithium solution’ Table 1)
and to nullify the membrane potential, the bath solution
(extracellular: ‘Cell-attached patch bath solution’ Table 1)
contained elevated K+ ions. Since ENaC/Deg channel con-
ductance is so low, it is normal to filter traces heavily before
performing kinetic analysis, typical cut-off frequencies from
previous studies vary from 50 to 500 Hz (Fyfe and Canessa,
1998; Ishikawa et al., 1998). In our study, we digitally
re-filtered the data to 0.5 kHz. Events were then idealized
using segmental K means (SKM) methods (Qin, 2004) using
QuB software (Dr Feng Qin, Dr Lorin Milescu, Fu Qiong,
Chris Nicolai and John Bannen, SUNY, Buffalo, NY). This
method alternates between the Viberti method and param-
eter re-estimation; however, we constrained unitary ampli-
tudes and amplitude distributions to clear periods of
openings and closures. Models were fit to the idealized record
by optimization of maximum interval likelihood (Qin et al.,

1996; 1997). We chose our final model on the basis of signifi-
cant increases of log-likelihood as described by Lema and
Auerbach (2006). The probability density functions (PDFs)
drawn in event frequency histogram graphs, and the respec-
tive time constants quoted are therefore those calculated from
the model’s fitted rate constants. Where open probability (Po)
was measured from patches with more than one channel, it
was calculated as the average of those channels from Po =
I/(Ni) where N is number of channels in the patch (estimated
as the maximum seen open at one time), and i is the mean
unitary amplitude. Conductance was calculated as the slope
of the fit of the IV curves. Ensemble averages were computed
by simply averaging together several raw single channel
traces.

The dose–response curve was fit in Sigmaplot (Systat Soft-
ware, Hounslow, UK) using the following equation, modified
from (Black and Shankley, 1985) and (Barrett-Jolley et al.,
1999). The SEM values quoted are those calculated by the
fitting algorithm.
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R is the response (defined as appropriate in the figure
legend), [c] is the concentration of drug, m the maximum
value, h is the Hill slope and pD2 the negative log of the
midpoint parameter. Statistical tests were performed using
SPSS (SPSS Inc., Chicago, IL), or Minitab (Minitab Ltd, Cov-
entry, UK). Values in text are quoted as mean � SEM (n),
where n is the sample size.

Immunohistochemistry
Primary canine articular chondrocytes were grown in DMEM
on autoclaved coverslips at a density of 3 ¥ 105 cells·mL-1.
They were then fixed in ice-cold methanol for 10 min,
washed and permeabilized with PBS-T and blocked with 10%
BSA in PBS. The cells were then incubated with the primary
antibodies to the a, b and g subunits of ENaC (kind gift from
Dr Cecilia M Canessa, Yale University, New Haven, CT). These
have been used extensively elsewhere (Trujillo et al., 1999;
Rubera et al., 2003; Shakibaei and Mobasheri, 2003; Zhang
et al., 2005). After three washes with PBS-T, the cells were
incubated for 2 h with a goat polyclonal secondary antibody
to rabbit IgG (Fc-specific, affinity-purified, pre-adsorbed) con-
jugated to DyLight® 488 (Abcam, Cambridge, MA, USA;
ab98462) diluted according to the manufacturer’s recommen-
dations (typically diluted 1:200). After extensive washes in
PBS-T, the nuclei were counterstained with propidium iodide
(red fluorescence). The chondrocyte surface antigen, CD44,
and SOX-9 as an indicator of differentiation, were used as
additional controls for chondrocyte phenotype (data not
shown). The negative controls were exposed to non-immune
rabbit IgG and shows red fluorescent nuclear staining only.
The cells were visualized, and digital images were captured
using a Leica DM 5000B epifluorescence imaging system.

Software
Software used for each analysis technique is
described above, but further details are available at
http://pcwww.liv.ac.uk/~rbj/RBJ/software.htm.
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Solutions

Results

Functional expression of ENaC/Deg-like
channels in canine chondrocytes
We began by showing that our isolated canine chondrocytes
expressed positive immunoreactivity for all three subunits of
ENaC (a-ENaC, b-ENaC and g-ENaC; Figure 1A–F). Next, in
potassium-free solutions (‘Inside-out patch’: Tables 1 and 2),
we observed a small ion channel in 60% of patches with a
slope conductance of 9 � 1 pS (n = 5) (Figure 1G, I). This
reversed near to the equilibrium potential for sodium calcu-
lated for these conditions (-4.9 mV) (Figure 1I), and the open
probability (Po) was significantly reduced by the ENaC/Deg
blockers, 10 mM amiloride (Figure 1I) and 100 nM benzamil
(inhibition of 96 � 2%, n = 5 and 56 � 2%, n = 3, respectively;
P � 0.05 in both cases, ANOVA). The kinetics of this low
conductance channel was typical for ENaC channels. To
quantify this, we performed a kinetic analysis. Since ENaC

channels have an unusually high permeability for Li+

(Canessa et al., 1994; Schild et al., 1997; Kellenberger et al.,
1999), we optimized conditions by recording events under
cell-attached patch mode with Li+ included in the pipette as
the charge carrier (‘Lithium solution’: Table 1). Under this
configuration, and with membrane potential of -80 mV, the
unitary currents were <1 pA inward, again typical of ENaC/
Deg channels. Data was idealized and model fitted as
described in the methods. Initially, we found events could
not be satisfactorily fitted with a simple two-state model
(closed–open) but was much better fitted with two open and
two closed states (Figure 2). Best fit rate constants are given in
full in Table 3. These rate constants were used to calculate the
PDFs, mean open and mean closed times in Figure 2.

We next investigated whether constitutive activity of
these channels influenced the cellular membrane potential
(Vm). We used standard physiological saline solutions (extra-
cellular: Table 1, intracellular: Table 2) and measured Vm in
current clamp mode. Control Vm was -13.2 � 3.8 mV, similar

Table 1
Extracellular solutions used during electrophysiology experiments

Extracellular (mM) Na K Ca Cl Mg Cs SO4 MeSO4 Li Glucose HEPES pH 7.4 Vj (mV)

1. Inside-out patch 155 0 4 158 0 0 0 0 0 0 10 NaOH -5.9

2. Lithium solution 0 9 2 151 1 0 0 0 140 0 10 KOH -6

3. Cell-attached patch bath solution 0 115 2 122.2 1.6 0 0 0 0 10 10 KOH

4. Physiological saline 145 5 2 151 1 0 0 0 0 0 10 NaOH -14.4

5. NaMeSO4 155 0 2 4 0 0 0 150 0 0 10 NaOH 0.5

6. ENaC permeability 158 5 2 159 0 0 0 0 0 0 10 NaOH a

Vj values quoted are when matched with the appropriate intracellular solutions (Table 2). Calculations were performed with JpCalc (Barry and
Lynch, 1991). Osmolarity was adjusted in all cases by addition of sucrose as appropriate. Sucrose was chosen to adjust osmolarity so that the
ion concentrations remained unchanged during any given experiment. aVj varied between 0.1 and 4 mV when paired with intracellular
solutions with different sodium concentrations. NB All ion concentrations are the total number of ions in the solution after adjustment of pH
with NaOH or KOH as appropriate.

Table 2
Intracellular solutions used during electrophysiology experiments

Intracellular (mM) Na K Li Ca Cl Mg Cs SO4 MeSO4 Gluconate EGTA BAPTA TEA HEPES pH 7.2

1. Inside-out patch 188 0 0 0 10 0 0 90 0 0 5 0 10 10 NaOH

2. Lithium solution 5 5 140 0 145 0 0 0 0 0 0 0 0 10 NaOH

3. Cell attached patch
bath solutiona

4. Physiological salineb 0 150 0 0 28 1 0 0 0 115 5 0 0 10 KOH

5. NaMeSO4 160 0 0 0 0 0 0 0 150 0 0 5 0 10 NaOH

6. ENaC Permeability c c 0 0 0 0 0 0 0 0 5 0 0 10 NaOH

aNo intracellular solutions in this configuration. bNo intracellular solutions were used for the volume recording experiments since cells were
intact. c[Na] and [K] were varied between 22 and 150 mM in these experiments to determine their relative permeability (see Figure 3). All
ion concentrations are the total number of ions in the solution after adjustment of pH with NaOH or KOH as appropriate.

BJPBenzamil sensitive ion channels in chondrocytes

British Journal of Pharmacology (2013) 168 1584–1596 1587



Figure 1
Immunohistochemistry and patch-clamp recording reveal the presence of ENaC protein expression and a benzamil and amiloride sensitive cation
conductance. Immunofluorescence staining of aENaC (A), bENaC (B) and gENaC (C) in primary cultures of canine articular chondrocytes (first
passage cells, 100¥ objective). Positive immunoreactivity for all subunits was observed although strongest for a- and b-ENaC. The concentration
of the primary antibodies was 1 mg·mL-1 (dilution 1:200). The secondary antibody was a goat polyclonal to rabbit IgG (Fc-specific, affinity purified,
pre-adsorbed) conjugated to DyLight® 488 (Abcam ab98462). After extensive washes in PBS-T, the nuclei were counterstained with propidium
iodide (red fluorescence). Green staining shows the ENaC protein, orange staining is the nuclei and yellow staining is the overlap of the two. (D–F)
The negative control was treated identically, but with the omission of primary IgG and shows the red fluorescent nuclear staining with very little
background green fluorescence (scale bars for A–F: 10 mm). (G–J) Inside-out patch clamp recordings from canine chondrocytes using inside-out
solutions: Tables 1 and 2. (G) Traces of inside-out low conductance single channel activity at the given membrane potentials. The scale bar
horizontal line is 100 ms; vertical line is 500 fA. (H) All-points amplitude histogram for the low conductance channel at -40 mV. (I) Single channel
current–voltage curve for the low conductance channel. Vrev was -1 � 5 mV (n = 5), slope conductance 9 � 1 pS (n = 5). (J) Open probability
(Po) versus time, calculated over successive 0.4 s windows before and during the addition of the ENaC channel inhibitor, amiloride (10 mM). Low
conductance single channel Po was reduced by 96 � 2% (n = 5).
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to previously reported resting membrane potentials in
chondrocytes (Wright et al., 1992, Lewis et al., 2011a). Appli-
cation of 10 mM amiloride caused the Vm to became signifi-
cantly more negative (Figure 3A, 9.5 � 0.8 mV, n = 5).
Addition of 100 nM benzamil (Figure 3B), an even more
specific inhibitor of ENaC (Kellenberger and Schild, 2002;
Alexander et al., 2011), also significantly changed Vm (7.5 �

1.7 mV, n = 5 hyperpolarization, P � 0.05 ANOVA). These
effects were reversible and dose-related (Figure 3A–C).

To determine the sodium permeability of the benzamil-
sensitive current (relative to K+), we switched to whole-cell
voltage clamp. With the standard physiological solutions and
at a holding potential of -15 mV, application of 1 mM ben-
zamil blocked a small constitutive inward current and
resulted in an outward current deflection (mean conductance
1.5 � 0.4 nS, n = 9, Figure 3). Whole-cell voltage ramps were
then run in the presence and absence of benzamil, using four
different intracellular sodium concentrations optimized for

Figure 2
Kinetic analysis of the low conductance cation channel. Kinetic analysis of the ENaC/Deg-like low conductance was performed under cell-attached
patch conditions. Li+ was included in the patch-pipette and served as the charge carrier (Solutions: Table 1). (A) Upper panel, the SKM idealized
record from this trace (see Methods). Lower panel, raw single channel trace at -80 mV, baseline corrected. (B) An example patch closed-time
distribution superimposed with a bi-exponential PDF calculated from panel D: (t1, area): 5.9 ms, 0.83, (t2, area): 94.5 ms, 0.17. Mean: 21.0 ms.
(C) An example open-time distribution, again fit with a bi-exponential PDF calculated from panel D: (t1, area): 3.1 ms, 0.5, (t2, area): 26.5 ms,
0.46. Mean: 13.8 ms. (D) Schematic of our best fit kinetic model, full data in text (Table 3). Throughout this figure, red is used to denote closed
states, and blue denotes open state.

Table 3
Forward and backward microscopic rate constants for the low
conductance channel in ‘lithium solution’ (Table 1), mean of four
experiments

From To K (s-1)

SEMState 1 State 2 Mean

Closed (2) Open (3) 183.4 21.8

Open (3) Closed (2) 203.8 5.1

Closed (2) Closed (1) 19.3 3.0

Closed (1) Closed (2) 14.6 3.7

Open (3) Open (4) 41.7 17.0

Open (4) Open (3) 38.6 9.8

State numbers are in parenthesis (see model in Figure 2).
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recording ENaC currents (22, 66, 110 and 150 mM). Subtrac-
tion of the whole-cell currents in the presence of benzamil
from those recorded in vehicle gave the benzamil difference
currents shown in Figure 3F. Difference currents at four dif-
ferent intracellular sodium concentrations were obtained

(Figure 3F, G), and the reversal potentials for these followed
the calculated changes in Na+ equilibrium potential
(Figure 3G).

Finally, we investigated whether ENaC/Deg channel activ-
ity contributed to canine chondrocyte RVI. In cell-attached

Figure 3
Whole-cell patch clamp shows the presence of a sodium conductance characteristic of ENaC. (A and B) Whole-cell current clamp recordings of
a canine chondrocyte in ‘physiological saline solutions’ (Tables 1 and 2, including 145 mM external NaCl). Application of either amiloride (A) or
benzamil (B) reversibly hyperpolarize the membrane. Mean values given in the text. (C) Comparison of the effect of amiloride and benzamil on
membrane potential in a number of experiments such as those shown in panels A and B. Data are fitted with Equation 3, where R is the change
in membrane potential (dVm). Hill slope (h) was constrained to unity, m for amiloride was -13 � 1.2 mV and pD2 = 5.5 � 0.1, for benzamil m
was -8.2 � 0.3 mV and pD2 = 8.4 � 0.07 (benzamil from eight cells, amiloride each point, three to five cells). (D) Representative whole-cell voltage
ramps in ‘ENaC permeability’ solutions (Tables 1 and 2). The current traces shown illustrate a recording in control and then 1 mM benzamil
solution. The resulting difference currents for each combination of solutions is shown in panel F. (E) Representative continuous whole-cell voltage
clamp recordings as a chondrocyte is superfused with 1 mM benzamil. The small constitutive inward current is blocked resulting in an increase in
outward current corresponding to a mean total whole-cell conductance of 1.5 � 0.4 nS (n = 9). (F) Mean benzamil difference currents with 22
(49), 66 (13), 110 (6) and 150 (7) mM intracellular sodium (calculated Na equilibrium potential in mV) are shown (n = 14). (G) Mean Vrev plotted
against intracellular sodium concentration. The smooth line represents a fit to Equation 2 with P (PNa/PK) of 24.
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patch experiments (protocols as above), with Li+ as the charge
carrier (‘Lithium solution’: Table 1), we found that increasing
bath/extracellular osmotic pressure with addition of 180 mM
sucrose activated ENaC channels (Figure 4), significantly
increasing the open probability of the ENaC/Deg-like
channel (from 0.27 � 0.05 to 0.54 � 0.07, n = 10, P � 0.05,
paired t-test). In volume recording experiments, we found
hypertonic challenge first led to shrinkage, but that within
20 min, volume recovered in approximately 50% of cells.
Such volume recovery is termed RVI, and only cells that
exhibited RVI under control conditions were used in the
following experiments. In cells exhibiting RVI, volume recov-
ered to 92 � 4%, n = 8 (Figure 5B). The ability of these cells to
undergo RVI was maintained when the extracellular Na+ was
completely replaced by Li+ (Figure 5D), suggesting a Li+-
permeable channel is involved. In Li+ solutions, cells exhib-
ited slightly less shrinkage; this was still statistically
significant shrinkage to 74 � 3%, P < 0.001 and within
20 min of maximum shrinkage returned to 94 � 2% of start-
ing volume. RVI was inhibited by benzamil with a PD2 of 7.5
(see Figure 5 for details).

Discussion

In this work, we show that canine chondrocytes express
ENaC subunit protein and exhibit single channel activity
electrophysiologically and pharmacologically, characteristic
of ENaC/Deg channels. Block of these channels significantly
alters membrane potential and reduces RVI following osmotic
shrinkage.

Identification of ENaC protein and
ENaC/Deg-like single channel activity
Several previous studies have demonstrated that isolated
chondrocytes exhibit a characteristically differentiated phe-
notype for the first few passages in culture (Benya and Shaffer,
1982). ENaC protein expression (Trujillo et al., 1999) and
RNA transcription (Karlsson et al., 2010) have previously
been shown in human chondrocytes. We used reliable and
well-tested antibodies that have been used in numerous
studies of ENaC (Trujillo et al., 1999; Rubera et al., 2003; Shak-
ibaei and Mobasheri, 2003; Zhang et al., 2005) and found
positive immunoreactivity for all three ENaC subunits in
canine chondrocytes. Immunostaining did not appear
limited to the membrane. There could be several technical
reasons for this without need to infer that the majority of
protein was cytoplasmic. For immunohistochemical analysis,
cells were grown on coverslips and thus morphologically very
flat and photographed with epifluorescence (not confocal).
These conditions make it difficult to distinguish between
membrane and cytoplasmic staining. Second, the standard
methods we adopted for fixation/permeabilization vigorously
disrupted the membrane with both methanol and detergent.
Similar patterns of whole-cell staining have been observed
with many membrane ion channels antibodies including
those directed against ENaC (Trujillo et al., 1999; Mobasheri
et al., 2004; Sauter et al., 2006; Teruyama et al., 2012). Our
patch-clamp data show ion channels with physiology and
pharmacology consistent with that of ENaC/Deg channels.
First, at the single channel level, our measured reversal poten-
tial was suggestive of selective Na+ permeability (Smith and
Benos, 1991; Garty and Palmer, 1997), and this was supported
by explicit calculation of the permeability ratio PNa/PK value.
In our calculation of permeability ratio, we find that the
change in Vrev is rather flat at intracellular Na+ ([Na]i) concen-
trations between 60 and 150 mM, but Vrev rises steeply as [Na]i

falls below 60 mM. This suggests that at the benzamil con-
centrations used here (1 mM, much greater than our calcu-
lated benzamil EC50) there may be a contamination of the
ENaC/Deg conductance with a non-specific cation conduct-
ance. This would lead to an underestimate of the permeabil-
ity ratio. Despite this, we calculate a high selectivity for
sodium (24:1), very similar to that expected for ENaC (Alex-
ander et al., 2011). Furthermore, these channels had the low
conductance that is a key feature of ENaC/Deg channels and
ENaC in particular (Kellenberger and Schild, 2002). The value
of ENaC single channel conductance depends very much on
the subunit composition and the conditions (Kellenberger
and Schild, 2002), but our measured value of 9pS lies will
within the previously reported range (Canessa et al., 1994;
Waldmann et al., 1995; Awayda et al., 1996; Fyfe and Canessa,
1998; Ishikawa et al., 1998; Caldwell et al., 2005). In any set of

Figure 4
The ENaC/Deg-like channel is activated by exposure to hypertonic
solutions. (A) Cells were initially equilibrated in 309mOsm and then
switched to 489mOsm as indicated by the bar. Osmolarity was
increased with addition of sucrose. An ensemble average of single
channel activity is shown (n = 9 patches); the mean increase in
current was 4.67 � 1.7 pA (n = 8, P � 0.05), and this increase was
not seen in the presence of 1 mm benzamil. (B) Representative
section taken from one of the 309mOsm records averaged in panel
A. (C) Representative section taken from one of the 489mOsm
records averaged in panel A.
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Figure 5
RVI is retained in lithium, but sensitive to low concentrations of benzamil. (A) Confocal images showing changes of cell volume with time. The top
panels show the chondrocyte from above (X–Y plane), and the lower panels show the reconstructed cell view from the side (Z–X plane). In order
to capture relatively rapid volume changes, scan resolution was set to a low value (31 Z layers per time slice). These images were necessary to verify
that cells were approximately spherical (please see Methods: Equation 1). 60¥ objective scale bar 20 mm. (B) Under control conditions, when cells
are incubated in 309mOsm physiological saline (Table 1) then exposed to hypertonic solutions (489mOsm), they first shrink passively as water leaves
the cell via osmosis (marked ‘I’). They then swell through the process of RVI, eventually returning to the starting volume (RVI indicated by ‘II’).
Osmolarity was increased with addition of sucrose. Not all cells underwent RVI. We use a two-exposure protocol. Only those cells that exhibited RVI
on the first exposure to hypertonic challenge were then used for these experiments. The second exposure either contained benzamil or further
control vehicle solution, mean of eight cells. (C) The same protocol as that used in panel B, but with the presence of 100 nM benzamil; RVI is inhibited.
Mean of five cells. (D) RVI protocol with extracellular Na+ replaced by Li+. For (B) to (D) solid filled markers indicate data points and the solid line (and
y-axis on the right) indicates the osmolarity. (E) Concentration inhibition curve for inhibition of RVI by benzamil. Five cells per concentration. Data
are represented as fractional recovery from the theoretical maximum shrinkage (0.63 = 309/489) and fit with Equation 3, where R is fractional
recovery, m was 0.84 � 0.2, h is 3.5 � 0.9 and pD2 =7.5 � 0.01. (F) Schematic of our working model for RVI, with phases ‘I’ and ‘II’ indicated.
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electrophysiological experiments on native cells (unlike a
recombinant expression system), there is the possibility of
mixed populations of channels. In this study, however, the
single channel properties, together with the pharmacological
profile of these channels (high sensitivity to amiloride and
benzamil), are strongly suggestive of the principle compo-
nent of the low conductance cation channel being ENaC.
Acid-sensing channels, specifically ASIC1a (Yuan et al.,
2010b), are the only other members of the ENaC/Deg family
we are aware of, which have been shown to be present in
mammalian chondrocytes. Whilst amiloride (Waldmann
et al., 1997; Yuan et al., 2010a) and benzamil (Waldmann
et al., 1997) can inhibit these channels at sufficient concen-
tration, benzamil IC50 for ASIC1a (Waldmann et al., 1997) is
approximately 1000¥ that of the value we calculated for inhi-
bition of the ENaC/Deg channel in this study (benzamil dVm

EC50, calculated from the fitted pD2 is equivalent to approxi-
mately 4 nM). We found that the inhibition of inside-out
patch clamp recorded events were apparently less sensitive to
benzamil inhibition than the membrane potential, which
would be consistent with an external binding site for ENaC
inhibition (Schild et al., 1997). The identity of the low con-
ductance cation channel studied in the present study is there-
fore highly likely to be ENaC.

The single channel kinetic properties we measured were
similar, but not identical, to those of ENaC in other cell types;
resting open probability was somewhat lower than reported
for ENaC in Xenopus laevis oocytes (Fyfe and Canessa, 1998),
but similar to that seen in rat cortical collecting tubules
(Palmer and Frindt, 1986). Some previous studies found a
satisfactory fit with a single open and closed state (Palmer and
Frindt, 1986), however, we achieved a much better fit with
two open and two closed sates. Palmer and Frindt (1986), for
example, saw virtually no short events at all, whereas we
saw many. That these differences represent differences in
filtering/fitting algorithms is unlikely, but more likely to
reflect different subunit expression between systems (Fyfe
and Canessa, 1998). Kellenberger et al. (2002) used similar
filtering conditions to us and also adopted a four-state model
to describe their bS518C point mutant ENaC channels. They
did not calculate model rate constants, but their mean open
and closed states were both considerably shorter than those
we observed. The absolute rate constants presented in our
schema (Figure 2D) should be viewed with some caution,
since single channel kinetic studies with a 9pS channel are
likely to be more greatly affected by noise than larger chan-
nels. In order to have sufficient signal to noise ratio to
perform the study of these very small channels, we had to
digitally re-filter the data to 0.5 kHz, rather lower than would
usually be desirable for a single channel kinetic analysis
study. Whilst the Qin algorithms (Qin, 2004) we used take
this into account, it seems logical that the accuracy is less
than for a larger channel.

Role of benzamil-sensitive ion channels in
volume control
When cells capable of RVI are exposed to hypertonic solu-
tions, three processes take place: first, cells shrink as water
leaves the cell along its osmotic gradient; second, the shrink-
age in some way activates an influx of ions; and third, water

re-enters the cell along this new osmotic gradient until equi-
librium is restored (reviewed by Hoffmann et al., 2009). The
second and third processes occur in parallel and comprise RVI
(‘II’ in Figure 5A). Whilst the water fluxes are generally
accepted to be conducted by aquaporin ‘water channels’,
there is little consensus as to the nature of the shrink-
activated influx of ions. It seems likely that it is different from
cell type to cell type. ENaC/Deg has previously been shown to
be an important component of RVI in rat hepatocytes
(Wehner et al., 2000; 2006).

However, despite the importance of volume regulation to
chondrocytes, there have been only a few previous studies on
RVI in chondrocytes themselves. Activity of the Na+-K+-2Cl--
membrane transporter (NKCC) appears to be involved both
in chondrocytes (Kerrigan et al., 2006; Bush et al., 2010) and
the related C-20/A4 cell line (Qusous et al., 2011), but the
Na+-Ca2+ exchanger (NCX) is also implicated, since its block
prevents Ca2+ ion changes in response to hypertonic chal-
lenge (Sanchez and Wilkins, 2004). We certainly do not rule
out a contribution of these transporters to volume control,
but since benzamil inhibits RVI at well below the concentra-
tion required to block NCX, our data are also consistent with
a central role for ENaC/Deg. The fact that the EC50 for ben-
zamil block of RVI was 3- to 10-fold greater than for block of
the ion channel conductance would support a small contri-
bution from a non-ENaC, but benzamil-sensitive conduct-
ance. Our working hypothesis is that volume control is a
complex process that requires a number of ion channels and
transporters to both maintain an appropriate membrane
potential and electrochemical gradient to support volume
control. Since chondrocytes exhibit both RVD (K+ efflux) and
RVI (Na+ influx), one would anticipate that optimal RMP
would be midway between EK and ENa. This is consistent with
the values we, and others, have found previously (Wright
et al., 1992; Lewis et al., 2011a) and in the present study
(-13 mV). One would expect EK for a chondrocyte to be
around -80 mV and ENa to be greater than +90 mV (extracel-
lular Na+ > 200 mM, Urban et al., 1993), thus driving forces
for K+ efflux and Na+ influx are approximately 70 and 100 mV
respectively. Therefore, interestingly, whilst the ENaC/Deg
channels have a low conductance, in terms of RVI, there is a
huge driving potential for Na+ influx.

There are therefore at least three ways in which ENaC/Deg
block could affect volume regulation: (i) The level of the
membrane potential has a strong influence on volume
control (Lewis et al., 2011a), and so by hyperpolarizing the
cell, ENaC/Deg block could result in a reduced driving force
for a hypothetical anionic osmolyte channel. In our experi-
ments, RVI was blocked by 100 nM benzamil, however,
which only hyperpolarized the membrane by 8 mV so this
would seem unlikely. (ii) ENaC/Deg could be essential for
maintaining the electrochemical gradient, and its block could
indirectly result in a change such that volume regulation is
no longer possible. (iii) ENaC/Deg could open in response to
mechanostimulation and allow sufficient Na+ ion entry to
drive RVI. To investigate this possibility, we measured ENaC/
Deg channel activity in cell-attached patch mode whilst
applying hypertonic saline. Channel activity increased mark-
edly supporting this third alternative mechanism. The
mechanism of the opening of ENaC/Deg channels in
response to hypertonic solution remains to be determined.
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This could again be a direct ‘shrink’ activation of the chan-
nels as previously reported for the ENaC/Deg-like channels in
macrophages (Gamper et al., 2000), or the opening in
response to a change of intracellular concentration following
the cell’s response to the hypertonic solutions. Activity of
ENaC/Deg is well known to be sensitive to the ionic environ-
ment (Anantharam et al., 2006).

Functional significance of volume control
in chondrocytes
A number of cell and molecular changes have been shown to
take place in cartilage during onset of osteoarthritis (OA).
These changes are complex but include changes in proteogly-
can content (Venn and Maroudas, 1977; Brocklehurst et al.,
1984), loss of collagen (Maroudas, 1976; Venn and Marou-
das, 1977), increases in water content (Bollet and Nance,
1966; Mankin and Thrasher, 1975; Brocklehurst et al., 1984;
Grushko et al., 1989; Chou et al., 2009) (decreases in osmo-
larity) and swelling of the chondrocytes themselves (Jones
et al., 1999; Bush and Hall, 2003). The sequence of these
changes is unknown. However, a decrease in osmolarity does
lead to increased vulnerability of chondrocytes to physical
damage (Bush et al., 2005). Furthermore, chondrocytes from
OA cartilage exhibit poor RVD (Jones et al., 1999), and so it
has been suggested that inappropriate increases in chondro-
cyte volume may contribute to the progression of osteoar-
thritis (Bush and Hall, 2003). Transgenic deletion of TRPV4,
an ion channel critical to volume control in chondrocytes,
also predisposes chondrocytes to physical damage (Clark
et al., 2010a). Since chondrocytes have robust systems in
place to control cellular volume following changes of osmo-
larity, it seems unlikely that the increase in cellular volume
of OA chondrocytes is a simple result of increased cartilage
water content. Another possibility is that the changes which
take place in cartilage include changes in ion channel expres-
sion per se. A number of such changes have been reported; a
recent transcriptomic analysis showed a total of three ion
channels transcript levels increased in chondrocytes from
OA cartilage KCNMA1 (large Ca2+-activated potassium
channel), KCNN4 (small/intermediated Ca2+-activated potas-
sium channel) and TMEM16A (a Ca2+-activated chloride
channel) (Karlsson et al., 2010; Lewis et al., 2011b). They also
observed a very significant decrease in the transcript abun-
dance of SCNN1A (ENaC a-subunit) (ibid). This observation
supports the observation of decreased a-ENaC protein
expression previously observed in OA chondrocytes (Trujillo
et al., 1999). Whether these changes, or changes in other as
yet unidentified ion channels lead to progression of OA, or
results from it, remains to be determined. Future studies on
models of cartilage degeneration and OA will be necessary to
examine whether pharmacological intervention in the proc-
esses of chondrocyte volume regulation can influence the
progression of OA.
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