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Abstract: CLU, PICALM and CR1 were identified as genetic risk factors for late onset Alzheimer’s disease (AD) in 
two large genome wide association studies (GWAS) published in 2009, but the variants that convey this alteration 
in disease risk, and how the genes relate to AD pathology is yet to be discovered. A next generation sequencing 
(NGS) project was conducted targeting CLU, CR1 and PICALM, in 96 AD samples (8 pools of 12), in an attempt to 
discover rare variants within these AD associated genes. Inclusion of repetitive regions in the design of the SureSe-
lect capture lead to significant issues in alignment of the data, leading to poor specificity and a lower than expected 
depth of coverage. A strong positive correlation (0.964, p<0.001) was seen between NGS and 1000 genome project 
frequency estimates. Of the ~170 “novel” variants detected in the genes, seven SNPs, all of which were present in 
multiple sample pools, were selected for validation by Sanger sequencing. Two SNPs were successfully validated by 
this method, and shown to be genuine variants, while five failed validation. These spurious SNP calls occurred as 
a result of the presence of small indels and mononucleotide repeats, indicating such features should be regarded 
with caution, and validation via an independent method is important for NGS variant calls. 
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Introduction

Late onset Alzheimer’s disease (AD) is a com-
plex disorder with a strong genetic component, 
with heritability estimated to be up to 60-80% 
[1]. ApoE was the only robustly replicated 
genetic risk factor for AD until relatively recently 
[2], when the advent of the Genome Wide 
Association Study (GWAS) allowed researchers 
to test the vast majority of loci in the human 
genome for association with AD in a single 
experiment, without prior assumptions as to 
which might be involved. The publication of the 
first two sufficiently powered, large scale AD 
GWAS [3, 4] in 2009 identified CLU, CR1 and 
PICALM as genetic risk factors for AD, and sub-
sequent to this, another 6 genes (BIN1, ABCA7, 
the MS4A locus, CD33, CD2AP and EPHA1 

[5-7]) have been implicated and replicated 
through further GWAS and meta-analyses. 
However, it remains to be determined how 
these genes are involved in the pathology of AD, 
and which variants convey the alteration in dis-
ease risk. 

In order to begin to address this issue in AD, as 
in numerous other disorders [8-10], extensive 
resources are being invested in Next Generation 
Sequencing (NGS) projects to discover rare, 
potentially causative variants at loci implicated 
by GWAS. Recent advances in technology have 
allowed scientists to generate sequence data to 
an unprecedented scale, with experiments that 
can produce millions of short sequencing reads 
in a single run. However, the data analysis 
methods needed to analyse and interpret the 
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output from these experiments are still in their 
infancy, and at present there is no real “gold 
standard” for handling this data [11]. 

Various methods of target enrichment are avail-
able which allow researchers to hone in on spe-
cific genomic regions of interest [12]. Pooling of 
samples prior to enrichment and sequencing 
maximises the utility of NGS technologies, 
reducing the cost per sample dramatically. This 
enables far more subjects to be included in 
studies than would be feasible with individual 
sequencing or even indexed pooled capture. 
However, there is a trade off between increas-
ing numbers of individuals within a pool, and 
the reliability of SNP calls. Increasing samples 
in a pool decreases coverage per sample, bring-
ing the rate of a singleton SNP within a pool 
closer to the inherently high error rate of NGS 
technologies, whereas with individual sequenc-
ing, variants are present in approximately 50% 
of reads, at a given position. Indeed, when 
utilising a pooling strategy combining the DNA 
of 75 individuals, a validation success rate of 
around 20% was achieved for rare variants, 
compared to an almost 75% successful valida-
tion rate with pools of 12 (data unpublished). 
Estimating the frequencies of variants from 
pooled data is also reportedly unreliable, mak-
ing comparisons between case and control 
allele frequencies for disease association test-
ing problematic [13]. 

Repetitive DNA, which comprises around half of 
the human genome [14], and ranges from short 
stretches of mononucleotide repeats, to large 
segmental duplications, brings significant chal-
lenges for NGS projects. The main area where 
this presents an issue is in mapping short 
sequencing reads to the reference genome, 
since it can lead to reads having multiple poten-
tial alignment locations. Alignment programs 
may deal with the issue by reporting the best 
match only; by discarding all reads that map to 
multiple locations (or >n locations); or by report-
ing all potential alignment locations [14]. None 
of these methods is satisfactory, as data will be 
lost or aligned inaccurately, which may lead to 
erroneous variant calls in downstream anal- 
ysis.

Given the current high error rates of NGS tech-
nologies and issues achieving accurate align-
ment, particularly around repetitive regions 
[14], validation of putative variants detected in 

NGS data via an independent method is 
important. 

An NGS project was conducted targeting CLU, 
CR1 and PICALM, in 96 AD patients, in an 
attempt to discover rare variants within these 
genes. A subset of SNPs from this NGS data 
were selected for validation via Sanger 
sequencing [15] to explore some of the poten-
tial issues mentioned above. 

Materials and methods

NGS

All subjects gave informed consent to be includ-
ed in the study, which was granted approval by 
the local Ethics Committee. 96 AD samples 
were obtained from two UK centres – The 
University of Nottingham Brain Bank and 
Manchester Brain Bank (48.4% female, 51.6% 
male; mean age at onset 70.4 years, standard 
deviation 11.77). ApoE alleles; ε2 - 5.7%; ε3 - 
63.5%; ε4 - 30.8%). Both of these resources 
comprise part of the ARUK brain bank, which 
has been used in such projects as the GWAS 
that first implicated CLU and PICALM in AD risk 
[3]. This quantity of samples gave 80% power 
to detect variants with minor allele frequencies 
(MAF) down to 0.85%, based on the equation 
n=log(1-p)/log(1-MAF) where n is the number of 
chromosomes, p is power, and MAF is minor 
allele frequency. Whole genomic DNA was com-
bined into 8 equimolar pools of 12 samples. 
Individual DNA samples were assessed for 
quality using agarose gel electrophoresis, with 
samples showing signs of degradation rejected 
from the study. The Invitrogen Quant-iTTM dsDNA 
Broad Range Assay Kit (Life TechnologiesTM, 
NY) was used to quantify the DNA concentra-
tions to allow for accurate pooling. Enrichment 
of the genomic regions of interest (CLU, PICALM 
and CR1, totalling 292kb) was performed using 
Agilent’s Sure Select XT Custom kit (Agilent 
Technologies, CA). SureSelect baits were 
designed to capture the whole gene (introns 
and exons), using 5x tiling, without repeat 
masking. Design of baits with and without the 
repeat masker made it possible to ascertain 
the proportion of each region that would not be 
targeted, were the repeat masker utilised; 
effectively the proportion of repetitive DNA in 
the region, although the masking method used 
is arguably over conservative. The region to be 
sequenced was also extended to include flank-
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ing regions demonstrating notable conserva-
tion across vertebrate species (areas >100bp 
showing at least 70% sequence identity 
between man, macaque, dog and mouse), up to 
a maximum of 5kb from the genes, using the 
ECR browser (http://ecrbrowser.dcode.org/) 
[16]. Sequencing was conducted on Illumina’s 
GAIIx (Illumina Inc. CA), with one pool per lane 
on a flow cell producing 38bp single-end reads. 
Both of these processes were conducted by 
Source Bioscience (http://www.sourcebiosci-
ence.com/), following manufacturer’s protoc- 
ols.

Data analysis

Alignment of the sequence data was performed 
using BFAST v0.6.5a (Blat-like Fast Accurate 
Search Tool - http://bfast.sourceforge.net 
[17]), following the protocol in the program’s 
manual with default settings for short single-
end Illumina sequencing reads, to hg19 [18]. 
The quality of the alignment was assessed 
using SamStat [19]. SAMTools [20] v1.17 was 
used for basic file manipulation. Integrative 
Genomics Viewer [21] (IGV) v2.0 was used to 
visualise the aligned sequencing reads. 

CRISP [22] v5, a program specifically designed 
for variant calling in NGS data from pooled 
samples, was used to identify SNPs and small 
indels, following the program’s manual, with 
default settings. 

Basic annotation of the polymorphisms called 
by CRISP was conducted using Ensembl’s 
Variant Effect Predictor [23] (VEP, accessed 
November 2011), which provided information 
on where the variants lie in relation to the major 
transcripts of each gene and whether these 
were novel or had been documented in dbSNP.

Only variants which did not have known co-
located variants (as determined by the VEP) 
were taken forward to further analysis. To mini-
mise the chance of pursuing false positive vari-
ants, an additional filtering step was applied: 
variants which featured in less than 4% of the 
total number of reads in the pool in which they 
occurred were disregarded, since on average a 
singleton variant in a pool of 12 individuals (24 
chromosomes) would be expected to be pres-
ent in 4.2% of the reads. 

The Genome Analysis Tool Kit (GATK) [24]
v1.1.10 was used to perform local realignment 

around known indels and base quality score 
recalibration [25], using variant data from 
dbSNP 134, on the complete data for each of 
the genes. Both processes were run following 
the default protocol documented on the GATK 
online user guides. CRISP was then re-run on 
the realigned, recalibrated data.

Sanger validation

PCR primers were designed to amplify a region 
including at least 100bp either side of the posi-
tion of interest (SNPs listed in Table 1) using 
Primer3 [26] v0.4.0 (http://frodo.wi.mit.edu/). 
Specificity for each primer pair was checked 
using UCSC’s [27]; Virtual PCR function (http://
genome.ucsc.edu/cgi-bin/hgPcr), and the prim-
er binding sites were determined to be free of 
known polymorphisms using NGRL Manche- 
ster’s SNPCheck v2.1 (https://ngrl.manches-
ter.ac.uk/SNPCheckV2/snpcheck.htm). PCR 
optimisation and amplifications were complet-
ed following standard laboratory protocol (reac-
tion mix: 1xPCR buffer (Roche Diagnostics 
Corp., IN); 200µM dNTPs (Fermentas); 1µM of 
each primer (Eurogentec Biologics, Belgium); 1 
unit Taq DNA Polymerase (Roche, Diagnostics 
Corp., IN); plus molecular grade water up to a 
final volume of 30µl. Primer concentrations 
were halved for 8:27466924 and doubled for 
1:207690803 after optimisation. Thermal 
cycling conditions used were 94°C for two min-
utes; 30 cycles of 94°C for 30 seconds, appro-
priate annealing temperature for 1 minute, 
72°C for 1 minute; and finally 72°C for 7 min-
utes). Primer sequences and annealing tem-
peratures are shown in Supplementary Table 1. 
Sequencing was conducted using PCR primers 
with Applied Biosystems BigDye Terminator 
v3.1 chemistry, run on the ABI 3130xl (Applied 
Biosystems, CA). Chromas Lite v2.01 (http://
www.technelysium.com.au/chromas_lite.html) 
was used to visualise electropherograms which 
were assessed by eye to determine genotype. 
In each case, one pool of samples (12 individu-
als) was Sanger sequenced. The pool to be 
sequenced was selected based on having the 
highest proportion of alternative reads at the 
position of interest. 

Tabix [28] was used to obtain variant informa-
tion from 1000 genomes [29] release 
20110521 and an in-house compiled Perl 
script was used to extract information of inter-
est (variants and European population frequen-
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cy data) from this. SPSS v16 was used to calcu-
late correlation coefficients between CRISP and 
1000 genomes frequency data.

Results

Following alignment with BFAST of the ~350 
million reads obtained from the NGS run, the 
average coverage per individual across the 
three genes was 17.4x (18.1x, 21.5x and 13.9x 
for CLU, PICALM and CR1 respectively). 
Sequencing characteristics from the experi-
ment are shown in Table 2.

The number of variants detected by CRISP in 
each of the genes is summarised in Table 3, 
both before and after realignment and recali-
bration of the data with GATK. The table also 
shows the number of common (MAF >5%) SNPs 
listed within dbSNP 134 in the targeted regions, 
and how many of these were detected within 
our data (in each case this remained the same 
pre- and post- GATK). As a positive control, the 
CRISP output was compared with variants 
which had a MAF between 0.85-1% in the 1000 

genomes project EUR population data (i.e. the 
minimum MAF the study had 80% power to 
find). Six of the thirteen variants received par-
ticularly poor coverage in our data (<10x per 
individual). Of the remaining seven, four were 
successfully identified in our data, demonstrat-
ing the capability of this method to detect vari-
ants in this range of MAF. The final three 
appeared to be non-variant sites in our 96 
samples. 

In order to ascertain the accuracy of the fre-
quency estimates from CRISP, MAF estimates 
(based on percentage of alternative reads – a 
surrogate for MAF) from CRISP for all of the 
SNPs called in the three genes were compared 
with MAFs from the 1000 genomes project 
(European population). A strong, significant 
positive correlation was observed between 
datasets (Spearman Correlation Coefficien- 
t=0.964, p=<0.001).

The seven SNPs selected for Sanger Validation 
were chosen on the basis of having no co-locat-
ed variant (as determined by Ensembl’s VEP) 

Figure 1. Sequence context of spurious SNPs called next to mononucleotide repeats, which failed validation by 
Sanger sequencing. The SNP shown in bold is the variant Sanger sequencing was designed to validate. Variants 
shown below the sequence are all present in dbSNP. A: False C/A variant call within CLU at position 8:27466924 
(8:27466910-27466925 shown). B: Spurious T/A SNP call in CLU at 8:27473743 (8:27473741-27473756 shown). 
C: False positive SNP call at position 11:85668102 within PICALM (11:85668090-85668104 shown). *Other vari-
ants called by CRISP.
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Table 1. Information on SNPs for sanger sequencing validation
Gene

Chr Coordinate Alleles Frequency  
Alternative Calls

Fold Coverage  
per individual Location in gene* rs number Inclusion  

in project
CLU 8 27452179 G/T 0.07 23.69 3.5kb downstream  Targeted

8 27452243 A/T 0.05 24.13 3.5kb downstream  Incidental

8 27466924 C/A 0.11 17.89 Intron 2  Targeted

8 27473743 T/A 0.19 18.11 1.5kb upstream  Targeted
PICALM 11 85668102 G/A 0.11 16.74 1.5kb downstream  Targeted

11 85668163 G/A 0.27 19.11 1.5kb downstream rs622110 Incidental

11 85692077 C/T 0.05 22.90 Intron 18 rs139710547 Targeted

11 85692181 A/C 0.63 18.46 Exon 18 (synonymous) rs76719109 Incidental

11 85774424 T/G 0.24 16.41 Intron 2  Targeted

11 85774562 T/G 0.46 18.55 Intron 2 rs3016786 Incidental
CR1 1 207690803 T/C 0.07 19.57 Intron 4 rs144047769 Targeted

1 207690871 G/C 0.19 18.40 Intron 4 rs10863358 Incidental
Information on all of the SNPs for which validation by Sanger sequencing was attempted. Coordinates stated give genomic position in hg19. *Relative to CLU transcript ENST0000031-
6403, PICALM transcript ENST00000447890, CR1 transcript ENST00000367049. Distances stated are approximate.

Table 2. Sequence characteristics

Gene Size of region 
targeted

Reads mapped to 
region (all pools)

% Reads mapped 
with quality >30*

Average  
coverage

% Target region >10x  
coverage per individual

% Target region >20x  
coverage per individual

% Repetitive DNA  
within targeted region

CLU 24.4kb 1115695 94.7 18.1 72.3 27.1 34
PICALM 118.3kb 6437215 93.7 21.5 82.5 49.0 34
CR1 149.2kb 5252304 67.6 13.9 53.7 29.4 48
Details of sequence characteristics from the NGS project, including information on the targeted region (region size, and the proportion of that region that would not have been tar-
geted if the repeat masker was utilised in the experimental design); the number and quality of reads mapped; average coverage; and the proportion of the region with >10x and >20x 
coverage per individual. *>30 is the maximum quality score category using the SamStat tool.
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Table 3. Variants detected in NGS data

Gene Total Variants Total SNPs  
(pre-GATK)

Total SNPs  
(post-GATK)

Total Indels  
(pre-GATK)

Total Indels  
(post-GATK) Novel Variants* Common (>5%)  

dbSNPs found (out of)

CLU 99 79 76 20 25 17 20 (20)

PICALM 541 428 414 113 116 100 117 (117)

CR1 291 253 248 38 48 34 70 (75)
Number of variants (SNPs and indels) called from the NGS data by CRISP in each of the genes, the effect GATK had on these numbers, and how many common SNPs documented 
within the gene regions were found in our dataset. *As determined by Ensembl’s VEP.

Table 4. Validated SNPs

Chr Coordinate Alleles
Alternative Allele Call 
Frequency (CRISP -  
all pools) 

1000  
genomes  
MAF (EUR)

Alternative Allele Call  
Frequency (CRISP -  
sequenced pool)

Alternative Alleles 
(Sanger - sequenced 
pool)

Alternative Allele  
Frequency (Sanger  
– sequenced pool)

11 85668163 G/A 0.268 0.244 0.707 10 0.417

11 85692077 C/T 0.046 0.016 0.103 3 0.125

11 85692181 A/C 0.632 0.583 0.929 19 0.792

11 85774562 T/G 0.460 0.422 0.362 10 0.417

1 207690803 T/C 0.067 0.021 0.333 3 0.125

1 207690871 G/C 0.194 0.214 0.050 4 0.167
SNPs which were successfully validated by Sanger sequencing. The number of alternative alleles within the pool sequenced facilitated the determination of the genuine MAF within 
that pool (assuming Sanger results reflect true allelic counts). This was then compared to the alternative allele call frequency from the same pool in CRISP, giving a reflection of the 
accuracy of the CRISP frequency estimates at a much finer level than the total 96 samples allows.

Table 5. Validated indels, miscalled by CRISP as SNPs

Chr Coordinate Alleles Actual 
Variant

Coordinate 
of indel

Alternative 
Allele Call 
Frequency 
(CRISP - all 
pools)

1000 genomes 
frequency (EUR) rs number 

Alternative  
Allele Call  
Frequency (CRISP  
- sequenced pool)

Alternative  
Alleles (Sanger  
- sequenced pool)

Alternative Allele 
Frequency (Sanger 
– sequenced pool)

8 27452179 G/T T ins 27452180 0.145 0.26 rs146954978 0.232 3 0.125

8 27452243 A/T T ins 27452242 0.099 0.17 rs35598594 0.115 1 0.042

11 85774424 T/G TA del 85774420 0.42 Not available rs112671434 0.455 17 0.708
Details of the indels discovered at the sites of spurious SNP calls, all of which had been previously recorded in dbSNP.
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and having the alternate allele occur in >5% of 
sequencing reads at that position. Given the 
apparent commonality of these variants in our 
data, the fact that they had not been docu-
mented prior to the extensive resequencing 
efforts of the 1000 genomes project, if at all, 
seemed worthy of investigation. Other variants 
called by CRISP which fell within the regions 
sequenced were also considered in the analy-
sis. Information on all of the SNPs Sanger 
sequenced is presented in Table 1.

Of the 12 putative SNPs included in Sanger 
sequenced regions, six were found to be genu-
ine (Table 4). Reliability of frequency estimates 
could also be assessed once the number of 
actual alternative alleles in a pool was estab-
lished by Sanger sequencing. Each alternative 
allele should contribute ~4.2% of reads to the 
pool total, assuming equal representation. The 
relationship between the number of actual 
alternative alleles and the proportion of NGS 
reads they make up is shown in Table 4.

Three of the remaining SNPs were not found to 
be present in the samples Sanger sequenced, 
but instead small indels were found at the sug-
gested variant sites (all which were also called 
by CRISP). These variants are summarised in 
Table 5. 

The final three SNPs (8:27466924, 
8:27473743 and 11:85668102) were not vali-

dated by Sanger Sequencing. All three of these 
putative variants occurred adjacent to mono-
nucleotide polyA repeats, with numerous other 
potential variants in the immediate area, called 
by CRISP or present in dbSNP 134 (see Figure 
1). When CRISP was run on GATK realigned and 
recalibrated data, the 8:27466924 and 11:8566- 
8102 SNPs were no longer called, and 
8:27473743 went from being called as present 
in all pools to only being present in two (includ-
ing the pool Sanger Sequenced). Within each of 
the polyA repeats, CRISP also called a +A inser-
tion, all of which persisted following GATK 
realignment and recalibration. There are also 
multiple +A insertions reported in dbSNP for 
each of the mononucleotide repeat sites, which 
suggests these may be genuinely variant. Due 
to the issues even Sanger sequencing has in 
dealing with mononucleotide repeats, our find-
ings were inconclusive as to whether there 
were genuine variations in the number of A 
nucleotides present at these sites.

Discussion

NGS data

The percentage of reads which mapped to the 
target region was lower than expected, result-
ing in lower than anticipated coverage of the 
targeted areas. SureSelect has been reported 
to return 40-50% [30] of reads on target, 
although with the custom kits it can be lower 

Figure 2. Depth of coverage at repetitive regions. Combined images from IGV and UCSC (http://genome.ucsc.edu) 
to show the drop off in coverage of NGS reads at repetitive regions in the genome. The gray graph in the top panel 
is from IGV. The height of the graph is proportional to the depth of coverage at a given genomic position. The gray 
bars in the panel below are taken from the Repeat Masker track of UCSC and show the location of repetitive DNA; 
with the depth of colour being proportional to the strength of the repeat sequence. The list on the left hand side 
explains the class of repetitive element present. The region displayed is from the 3’ end of CLU, but is representative 
of the data as a whole. Vertical coloured bars within the IGV image indicate variant sites within the data, where not 
all base calls match the reference. 
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[31]. The figures for average coverage of the 
three genes are actually deceptively low – 
repetitive regions within the genes tended to 
have few reads aligned to them, lowering the 
calculated coverage. An optional repeat mask-
er (based on RepBase [32] v9.11) could have 
been used when designing the SureSelect 
baits, which would have prevented strongly 
repetitive regions from being targeted. However, 
this was not used in the design of this experi-
ment as it was deemed overly conservative 
(masking out 34%, 34% and 48% of CLU, 
PICALM and CR1 respectively). However, when 
images from IGV and UCSC are compiled, as in 
Figure 2 [18, 21, 27], it can be seen that the 
regions that would have been repeat masked 
and therefore not baited, generally had 
extremely low coverage, so no real information 
was gained by targeting these regions. 
Additionally, allowing these repetitive regions to 
be included in the bait design will have reduced 
the specificity of the capture, as non-target, 
similar DNA will also have been pulled down, 
reducing the recovery of the true target region, 
and limiting the number of reads which could 
be uniquely mapped. 

For CR1, around 40kb of the ~150kb region 
targeted received effectively no coverage, 
reducing the average for the whole region. This 
gap in the sequencing is as a result of the 
nature of the CR1 gene. CR1 encodes comple-
ment receptor 1, a membrane glycoprotein and 
the main receptor for complement proteins C3b 
and C4b. There are four different CR1 isoforms, 
encoded by CR1-A (the F allele), CR1-B (the 
S-allele), CR1-C and CR1-D, with allele frequen-
cies in Caucasian populations of 0.83, 0.15, 
0.01 and <0.01 [33] respectively. The proteins 
differ in the number of C3b binding sites pres-
ent, and the different alleles are thought to 
have arisen from unequal crossover events 
involving a stretch of DNA encoding this. CR1-C 
which encodes the smallest isoform has a sin-
gle C3b binding site, and thus a single copy of 
this stretch of DNA, but alleles encoding the 
larger isoforms with multiple C3b binding sites 
will have multiple copies of this region, making 
accurate alignment of reads virtually impossi-
ble. A recent study [34] which used multiplex 
amplicon quantification to distinguish F- and S- 
alleles found an association between the 
S-allele (with an extra C3b binding site) and 
increased AD risk, however, with our methodol-
ogy it was not possible to determine genotypes 

for this polymorphism within sample pools, let 
alone within individual samples. 

When repetitive DNA comprises such a large 
proportion (~50% [14]) of the human genome, 
these regions cannot simply be ignored, but nor 
can they be accurately sequenced, given the 
current technology and data analysis method-
ologies available. The CR1 example above 
demonstrates that repetitive DNA can be bio-
logically important and disease relevant, but 
whether this is a common phenomenon or an 
isolated example remains to be seen.

This study had 80% power to detect variants 
with a MAF down to 0.85%. This figure is a high-
er frequency than the multiple individual vari-
ants Bettens et al. found in their study, however 
significantly more samples (several thousand) 
were included in their resequencing approach 
targeting CLU exons [35]. The study here docu-
mented used less samples, so would not be 
expected to find so many extremely rare vari-
ants, but has strengths in its coverage of full 
exonic, intronic and potential regulatory 
regions. That said, CRISP did detect several 
variants (rs185685560, rs188050008, rs186- 
928661 and rs1834226) which all have MAFs 
as low as 0.13% in the 1000 genomes EUR 
population data. Of the 13 variants with MAFs 
from 0.85-1% in the 1000 genomes data for 
these genes, nine were not identified in our 
samples. Although it is likely some of these rare 
variants were simply not present in our sample 
set, some were likely missed due to poor cover-
age of the regions. This limitation arose through 
the inclusion of repetitive regions in the study 
design, creating issues during alignment, which 
could have been improved via the use of paired-
end rather than single-end reads.

Sanger validation

Overall, the total number of variants called by 
CRISP in the three genes was 761 SNPs and 
171 indels, of which over 150 were without co-
located variants. All of the SNPs listed in dbSNP 
134 with CEU frequencies >5% within the tar-
geted regions were found in our data (see Table 
3), with the exception of five in CR1, likely due 
to the coverage issues mentioned above. This 
indicates a low false negative rate, for common 
SNPs at least. The strong positive correlation 
between 1000 genomes and CRISP frequency 
estimates for all CRISP called SNPs indicates 
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that even from pooled data, frequency esti-
mates can be considered reasonably accurate, 
although it should also be noted that as only AD 
patients were included in this sequencing proj-
ect, deviance from a perfect correlation could 
be indicative of disease association. A recent 
paper [13] commented that frequency esti-
mates from pooled samples were not generally 
accurate enough to use in meaningful associa-
tion testing between case and control groups, 
however, the strong correlation between CRISP 
and 1000 genomes frequencies in our data 
suggests otherwise.

However, comparison of the actual number of 
alleles within a pool and the CRISP frequency 
does not support this. Sanger sequencing 
allowed the determination of the exact number 
of alternative alleles within a pool for the vali-
dated SNPs. Frequency estimates from pooled 
data are based on the assumption that each 
allele contributes equally to the total number of 
reads. If this assumption is incorrect, frequency 
estimations will not be accurate. For the major-
ity of the variants considered in this study, there 
is a discrepancy between the number of alter-
native alleles within the Sanger sequenced 
pools, and the frequency estimation from 
CRISP, which could indicate the assumption is 
invalid and alleles are not equally represented. 
This could occur as a result of inaccurate pool-
ing, resulting in DNA from certain subjects 
being over or under represented. Alternatively, 
it may reflect inherent biases in the target 
enrichment or NGS processes if DNA from cer-
tain individuals is captured or sequenced to a 
lesser extent. The more samples included in a 
study, the more accurate estimations of fre-
quency will become [36], so when the full 96 
are considered, frequency estimates improve, 
but this does not mean samples are being 
equally represented, which should be acknowl-
edged during analysis. It is possible that while 
keeping a small number of samples per pool 
ensures accurate variant calls, it actually reduc-
es the reliability of frequency estimates for 
those pools.

With so many potential variants arising from 
even relatively small scale resequencing proj-
ects, it is crucial to minimise the amount of 
false positive variants, hence why validation via 
an independent methodology is important. Half 
of the putative SNPs in the Sanger sequenced 

regions were validated as being genuine SNPs, 
but this included only two which were deliber-
ately targeted for validation, and almost all of 
the variants which were incidentally sequenced 
as they fell within the amplicons to be 
sequenced. Bansal et al. [37] estimated a false 
positive rate of <1% using CRISP, which is sig-
nificantly lower than our 50%. However, our 
rate would be expected to be higher than this, 
since many of the SNPs selected for validation 
were in possession of unusual characteristics 
(e.g. being present in all pools sequenced). 

The location of these variants relative to the 
major transcripts of their respective genes is 
given in Table 1. The majority are deeply intron-
ic, so are unlikely to be affecting splicing activi-
ty. One variant (11:85668163) falls around 
1.5kb downstream of PICALM, where it is not 
likely to be affecting the gene’s function or reg-
ulation. None of the variants show a high 
degree of conservation. The other SNP, at 
11:85692181, is a synonymous exonic change, 
which whilst not affecting the primary sequence 
of the protein, could be having an effect on 
splicing regulatory elements or mRNA struc-
ture. Functional studies would be needed to 
clarify the effects of any of these variants. 

The remainder of the potential SNPs sequenced 
did not turn out to be genuine. These constitute 
false positives. However, three of these trans-
pired to be next to genuinely variant sites of 
small indels; two +T insertions and a –TA dele-
tion, all of which had been previously docu-
mented and were identified by CRISP. 

The final three putative SNPs which were not 
validated were each next to a string of polyA 
mononucleotide repeats. These repeats are too 
small for the issue to be solved by masking 
repeats in the design of SureSelect baits. Unlike 
longer repeats, short stretches of mononucleo-
tide repeats do not make alignment of reads 
impossible, as enough unique sequence is 
present, even in short 38bp reads to allow map-
ping. It is likely that these are genuinely variant 
sites, since CRISP calls +A insertions within 
each of them, and all have multiple rs number 
+A insertions falling within the repeat region. 
However, the problems presented by repetitive 
DNA even to the relatively robust Sanger 
sequencing meant it was not possible to tell 
whether these sites were polymorphic in our 
samples, or whether apparent variance was 
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simply an artefact of slippage during Sanger 
sequencing or PCR amplification [38].

It was hoped that running CRISP on data which 
had been realigned around indels and had had 
base quality scores recalibrated using GATK 
would reduce these false positive SNP calls, 
and for two of the variants next to mononucleo-
tide repeats this was the case, but not for the 
other one, or for the three spurious “SNPs” 
called next to indel sites. From this, it can be 
said that GATK is useful in clearing up some 
false positive calls, but certainly does not work 
for all, and a more reliable and less time con-
suming approach to avoiding these false posi-
tives might be to be aware of documented 
indels and mononucleotide repeats which 
could cause potential issues, and regard any 
SNPs called close to these sites with caution.
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