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Abstract

The korAB operon in RK2 plasmids is a beautiful natural example of a negatively and cooperatively self-regulating operon. It
has been particularly well characterized both experimentally and with mathematical models. We have carried out a detailed
investigation of the role of the regulatory mechanism using a biologically grounded mechanistic multi-scale stochastic
model that includes plasmid gene regulation and replication in the context of host growth and cell division. We use the
model to compare four hypotheses for the action of the regulatory mechanism: increased robustness to extrinsic factors,
decreased protein fluctuations, faster response-time of the operon and reduced host burden through improved efficiency of
protein production. We find that the strongest impact of all elements of the regulatory architecture is on improving the
efficiency of protein synthesis by reduction in the number of mRNA molecules needed to be produced, leading to a greater
than ten-fold reduction in host energy required to express these plasmid proteins. A smaller but still significant role is seen
for speeding response times, but this is not materially improved by the cooperativity. The self-regulating mechanisms have
the least impact on protein fluctuations and robustness. While reduction of host burden is evident in a plasmid context,
negative self-regulation is a widely seen motif for chromosomal genes. We propose that an important evolutionary driver
for negatively self-regulated genes is to improve the efficiency of protein synthesis.
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Introduction

Negative self-regulation of transcription is commonly seen for

transcription factors in many species and has been identified as a

‘network motif’ [1]. The implication is that evolution has

repeatedly selected for negative self-regulation, and therefore that

this motif is optimizing some form of phenotypic response. Several

hypotheses have been posited about what precisely is being

optimized. These include: reduction in the random fluctuations

(noise) in the abundance of the regulated proteins [2–3], or, more

subtly, a change in the noise profile of the regulated proteins [4];

speeding up the response time of the production of the regulated

proteins [5]; and reduction in the cost to the organism of

producing the regulated proteins [6]. Others have shown that

negative self-regulation can improve the trade-offs between these

objectives, for example noise reduction and speed [7]. These

hypotheses have generally been explored either with generic

theoretical models [2] [8] or with synthetic systems [9], often using

either parameter values or experimental conditions that do not

reflect the in vivo operational context of these systems.

We consider a naturally occurring, negatively and cooperatively

self-regulated transcription circuit, the central control operon

(CCO) of RK2 plasmids. IncP-1 plasmids are broad host range

plasmids [10] that have been found in both clinical [11] and

environmental bacteria [12]. They frequently carry genes for

antibiotic resistance or catabolic pathways [13]. The archetypal

IncP-1a plasmid RK2 is a well-characterized biological system,

with a fully sequenced and annotated genome [14] and wide range

of experimental measurements [15]. Its central control operon

encodes the two global regulators KorA and KorB, that

cooperatively regulate the operon as well as all of the processes

necessary for the plasmid life cycle, including conjugation,

replication and partitioning [16].

Within a plasmid context, the possible evolutionary adaptations

for negative self-regulation can be articulated as follows. First, the

RK2 plasmid is able to persist in most Gram-negative bacteria

[10]; these hosts provide different environmental conditions for the

plasmid, including availability and specificity of RNA polymerase

and ribosomes, and it is plausible that the plasmid has evolved to

be robust to changes in extrinsic (host) factors. The second

hypothesis is evolution to minimize protein fluctuations: high levels

of fluctuations could give an unpredictable response, drawing

more host resources when protein levels are high, or reducing

plasmid efficacy when protein levels are low. The third hypothesis

is that the network has evolved to ensure that, post-conjugation to

a new host, the plasmid can establish its transcriptional

programme as rapidly as possible. This will ensure replication

and transfer capabilities are in place prior to host cell division or

even establishment of competitor plasmids [17]. Finally, plasmids

need to evolve minimal cost to their host. Thus the fourth
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hypothesis is that the gene regulatory network has evolved to

ensure that the synthesis of plasmid proteins is as efficient as

possible in its use of host resources.

More generally, however, cooperative and negative self-

regulation is widely observed on chromosomal genes outside of a

plasmid context. Thus it is relevant to consider this particular

system as a well-characterized example of the network motif, and

exploration of these hypotheses in this system will have general

application to the understanding of negative self-regulation of

other genes.

In previous work, we have developed a mathematical model

that we have used to integrate diverse experimental measurements

on the RK2 CCO [18]. That model includes the dynamics of

protein synthesis, including transcription regulation, protein

synthesis, protein dimerization and protein dilution due to cell

growth. By expressing the mechanisms as a series of ordinary

differential equations, and employing appropriate parameter

inference techniques, we were able to estimate all mechanistic

parameters in the model, and use them to integrate experimental

measurements of protein abundance [19–20] and regulatory

strength [21].

In this study, we build on our previous experimental and

modeling work to investigate the adaptive benefits of the

regulatory circuit. We extend the published model to include host

growth and replication, plasmid division, molecular noise associ-

ated with plasmid gene regulation, and, where appropriate, the

synthesis of mRNA. The next step is to build four versions of the

model with decreasing complexity. The first model is for the wild-

type CCO. The second model is slightly simpler, retaining both

regulators, but removing the cooperativity between KorA and

KorB; this has been achieved experimentally, by mutating a single

amino acid residue, Tyrosine 88 on KorA [22]. The third model is

simpler still, considering negative self-regulation by only a single

(dimeric) regulator, rather than two regulators. The fourth model

considers the simplest system, in which there is no regulation at all,

so that all gene expression is constitutive.

We compare each of these four models in the context of each

of the four hypotheses posited for the adaptive value of negative

self-regulation. Where the addition of regulatory complexity leads

to improvements in a measure associated with one of the

hypotheses, then that hypothesis is considered to be a good

explanation for that regulatory complexity. Conversely, where

there is little improvement, then that hypothesis has less

explanatory value.

The advantage of this approach is two-fold. On the one hand,

our model is grounded in a natural biological system, with

extensive experimental measurements and with realistic parame-

ters that have been validated against the experimental data [18].

Thus the results obtained should compare favourably with those

associated with purely theoretical models without the same level of

biological underpinning, or models associated with synthetic

operons. On the other hand, this stochastic and multi-scale model

allows us to carry out in silico investigations of the four hypotheses

posed above that, some of which would be extremely difficult to

carry out experimentally. This is particularly the case for mRNA

production, since the plasmid transcripts are rare and short-lived,

and therefore difficult to observe.

Model Description
The system is modelled using a multi-scale approach that

includes plasmid and host replication as well as the dynamics of

plasmid gene regulation (Figure 1); the approach includes both

deterministic and stochastic components. Details of parameter

values and simulation techniques are provided in the Methods

section.

In all versions of the model, plasmid replication is considered as

an independent Poisson process with a fixed rate kp. In reality, this

behaviour derives from tight molecular control of plasmid

replication, but such control is beyond the scope of this model,

so we make use of the emergent phenotype. Host cell growth, also

in all versions of the model, is deterministic and exponential

according to the equation:

v~v0(1zr)t ð1Þ

Each time the host cell volume reaches the value of 2v0 the host

cell divides; thus cell divisions occur at fixed time intervals every

ln(2)/r seconds. After cell division, the cell contents are divided

between the daughter cells.

Main Model
The main model contains the full regulatory mechanism of the

CCO, based closely on our previous work [18], and is used for the

comparison of robustness, protein fluctuations and response times.

The other model variants are derived from this model, and are

distinguished by their consideration of slightly different sets of

molecular reactions. In the main model, the KorA and KorB

proteins form homodimers, and when both are bound to the

operator, the operon is fully repressed. The operon is fully

expressed when neither transcription factor is bound to the

operator. Partial repression occurs when either KorA or KorB

dimers bind in the absence of the alternate regulator. Coopera-

tivity is achieved by having separate parameters for KorA and

KorB dimers dissociating from the DNA, according to whether the

alternate regulator is also bound. The stochastic (chemical)

equations are:

Plasmid Replication 1
kp

D

Promoter Binding DzA2

konD
XDzB2

konD
YYzA2

konD
ZXzB2

konD
Z

Promoter Dissociation X
koff 1

DzA2Y
koff 2

DzB2Z
koff 3

YzA2Z
koff 4

XzB2

KorA Dynamics D
kA

DzA1X
pX kA

XzA1Y
pY kA

YzA12A1

konP
A2

KorB Dynamics D
kB

DzB1X
pX kB

XzB1Y
pY kB

YzB12B1

konP
B2

ð2Þ

In Equations 2, A1, A2, B1 and B2 represent the KorA and

KorB monomer and dimer, respectively; D, X, Y and Z represent

states of the DNA strand: empty DNA, KorA-DNA, KorB-DNA

and KorA-KorB-DNA complexes respectively. kp is the plasmid

replication rate, kA are kB the maximal KorA and KorB synthesis

rates, pX and pY are scaling parameters for the protein synthesis

associated with partial repression, konP is the protein dimerization

rate, konD is the protein association rate to the DNA, koff1, koff2,

koff3 and koff4 are the KorA, KorB dissociation rates: KorA from

KorA-DNA complex, KorB from KorB-DNA complex, KorA

from KorA-KorB-DNA complex and KorB from KorA-KorB-

DNA complex respectively. The on-rate parameters konP and

konD are inversely proportional to host volume. This dependence

reflects changes in diffusion time as a consequence of larger cell

volume. All other parameters are independent of host cell

volume.

Comparator Models
The three simpler versions of the model differ in terms of

regulation of the CCO as a progression of models that decrease in

complexity. For the non-cooperative model, denoted CCOnoC,

(2)
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the affinities of the KorA and KorB dimers are unchanged by the

bound alternate regulator: the equations are the same as in

Equations 2, but the parameter koff3 is set to be equal to koff1, and

the parameter koff4 is set to be equal to koff2.

For the model with a single regulator, denoted CCOregB, the

reactions between KorA dimers and the operator are removed

from the model. Thus the chemical equations are:

Plasmid Replication 1
kp

D

Promoter Binding DzB2

konD
Y

Promoter Dissociation Y
koff 2

DzB2

KorA Dynamics D
kA

DzA1Y
pY kA

YzA12A1

konP
A2

KorB Dynamics D
kB

DzB1Y
pY kB

YzB12B1

konP
B2

ð3Þ

Figure 1. Model representation. (a) Multi-scale stochastic model of gene regulation of the RK2 central control operon. The population dynamic
layer contains plasmid replication as an independent Poisson process and continuous host cell growth at an exponential rate with cell division when
the cell doubles its initial size. After each division, only one daughter cell is tracked. The plasmid molecular dynamics layer contains protein synthesis,
dimerization, cooperative binding of KorA and KorBdimers to the promoter, and repression of the operon. (b) The four models for comparison: CCO is
the wild type system; CCOnoC is a system with two regulators but with no cooperativity between then regulators; CCOregB is a system with just a
single dimeric regulator; CCOnoR is a system with no regulation. In order to ensure comparability, the rates of protein synthesis are tuned so that
protein abundance is the same in all models (see Methods). (c) Stochastic model formulation for the CCO model: A1, A2, B1, B2– KorA and KorB
monomer and dimer, respectively; D, X, Y, Z – states of the DNA strand: empty DNA, KorA-DNA, KorB-DNA, KorA-KorB-DNA complexes respectively; kp

– plasmid replication rate, kA, kB – maximal KorA and KorB synthesis rates, pX, pY - scaling parameters for the protein synthesys, konP – protein
dimerization rate, konD – protein association rate to the DNA; koff1, koff2, koff3, koff4– KorA, KorB dissociation rates, KorA for KorA-DNA complex, KorB
from KorB-DNA complex, KorA from KorA-KorB-DNA complex and KorB from KorA-KorB-DNA complex, respectively. Each of the other models is
derived by appropriate simplification of this model. For CCOnoC, koff1 = koff3 and koff2 = koff4; for CCOregB, the reactions between KorAdimers and
DNA are removed from the model; for CCOnoR, the reactions between KorBdimers and DNA are also removed from the model.
doi:10.1371/journal.pone.0049678.g001
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For the model without regulation, denoted CCOnoR, the

reactions both between KorA dimers and the operator and

between KorB dimers and the operator are all removed from the

model. Thus the chemical equations are:

Plasmid Replication 1
kp

D

KorA Dynamics D
kA

DzA12A1

konP
A2

KorB Dynamics D
kB

DzB12B1

konP
B2

ð4Þ

In all three cases, the host cell growth, host cell division and

plasmid division elements of the model are unchanged. In the case

of analyses of protein fluctuations, additional simulations were

carried out for models in which the plasmid copy number was held

constant, by removing the plasmid replication event from the main

model and all three comparator models.

Model that Includes mRNA Synthesis
For the comparison of mRNA synthesis between the four

schemes, a slightly more complex set of models is used that

includes separate mRNA and protein synthesis steps. This model is

necessary for the exploration of this hypothesis, but has the

disadvantage that the parameters introduced for the separate steps

of transcription, translation and mRNA turn-over have not been

separately estimated from the experimental data. The equations

are:

Plasmid Replication 1
kp

D

Promoter Binding DzA2

konD
XDzB2

konD
YYzA2

konD
ZXzB2

konD
Z

Promoter Dissociation X
koff 1

DzA2Y
koff 2

DzB2Z
koff 3

YzA2Z
koff 4

XzB2

mRNA Dynamics D
kMi

DzMX
pX kMi

XzMY
pY kMi

YzMM
cMi

1

KorA Dynamics M
kAi

MzA12A1

konP
A2

KorB Dynamics M
kBi

MzB12B1

konP
B2

ð5Þ

These equations contain mRNA as a new species. Synthesis of

mRNA is modelled in an analogous fashion to the protein

synthesis steps in the main model, at maximal rate kMi. mRNA

degrades at rate gM; this is included into the model as mRNA

degradation is fast relative to cell growth. The mRNA M encodes

both the korA and korB genes and so translation of each protein can

occur from the mRNA, at rates kAi and kBi respectively. For the

comparison of mRNA synthesis, comparator models have been

derived from this model in an analogous fashion to the comparator

models derived above.

Evolutionary Trajectory Analysis Model
For the trajectory analysis, we consider a model with a single

transcription factor that operates as a partial repressor, analogous

to KorA or KorB, while including mRNA dynamics. We explore

behaviour of this model as two parameters are varied: the partial

repression parameter, that controls the extent to which the

transcription factor blocks gene expression; and the affinity of the

transcription factor to the DNA. The equations are given by:

Plasmid Replication 1
kp

D

Promoter Binding DzB2

konD
Y

Promoter Dissociation Y
koff 2

DzB2

mRNA Dynamics D
kMi

DzMY
pY kMi

YzMM
cMi 1

KorA Dynamics M
kAi

MzA12A1

konP
A2

KorB Dynamics M
kBi

MzB12B1

konP
B2

ð6Þ

Model Comparisons
For comparing the four models, we have tuned the protein

synthesis rates for each model in order to ensure equal values of

protein abundance (Table S2). In doing so, we assume that the set

level of KorA and KorB has evolved to concentrations associated

with their global regulatory functions in all aspects of the plasmid

life cycle. For three cases, this is controlled by a single parameter,

the protein synthesis rate. However, for the study of mRNA

production analyses, we have considered two scenarios. The first is

to tune the translation rate whilst holding the transcription rate

constant; in this case, the models with simpler regulatory

mechanisms also have lower maximal translation rate (Table

S3). The second scenario is to tune the transcription rate, whilst

holding the translation rate constant. In this case, the models with

simpler regulatory mechanisms also have lower maximal tran-

scription rates (Table S3). Evolution might use a combination of

both sets of changes; these two scenarios represent the two extreme

possibilities and thus are useful for model comparison.

For the evolutionary trajectory analysis, two parameters are

varied. In order to ensure equal values of protein abundance, the

translation rate is tuned (Table S4) while the transcription rate is

held constant.

Results

Increased Regulatory Complexity Provides Limited
Improvement in Robustness to Factors Impacting on
Protein Synthesis

Sensitivity analysis of the four architectures to changes in each

of the parameters, as measured by concentration control

coefficients of the protein concentrations, are summarized in

Table 1. A decrease in control coefficients between the models

represents an increase in robustness for that model. For most of

the parameters that are present in all models, there is minimal

change in robustness as the regulatory complexity increases. Note

the synthesis rates kA and kB are parameters that represent an

amalgamation of all processes involved in protein synthesis,

including transcription, translation and mRNA turn-over, so the

different systems are similarly robust to changes in rates of any of

these processes. The one exception is the rate of plasmid

replication, kp, where the concentration control coefficient of

KorA in the systems regulated by two repressors with or without

cooperativity (0.21, 0.22) is half that of systems with a single

regulator or the unregulated system (0.50, 0.54). However, there

is little impact of cooperativity relative to the non-cooperative

model.

(5)
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Negative and Cooperative Self-regulation has Limited
Impact on Protein Concentration Fluctuations

There is a small decrease in fluctuations in protein abundance

from the mean steady state level, as measured by the coefficient of

variation, between models with no regulator or a single regulator

(c.v. = 0.11) and models with two regulators (c.v. = 0.07)

(Figure 2a). There is no significant difference between the models

with and without cooperativity. Figure 2b shows the fluctuations of

protein abundance in the models where plasmid copy number is

held constant: there are no differences in fluctuations between the

four models (c.v. approx. 0.025). Thus it appears that the decrease

in fluctuations of protein abundance seen between the models is

due to the interaction between gene regulation and fluctuations in

plasmid copy number. Overall, self-regulation has limited impact

on the magnitude of protein fluctuations and cooperativity has no

impact.

Strong Negative Auto-regulation Speeds up the
Accumulation of Regulatory Proteins

Figure 2c shows the increase in KorA concentration from

plasmid RK2 following transfection to a new host; Figure 2d shows

the time taken to reach half of the mean KorA concentrations at

steady state. The models with the slowest dynamics are models

with either no regulator or a single regulator, taking 3754 or 3606

seconds respectively. The most competitive models are models

with two regulators: the model without cooperative regulation

takes 1412 seconds and the model with cooperative regulation

takes 1288 seconds. Thus the naturally occurring system shows

greater than two-fold improvement in response time relative to the

unregulated system or a system with a single regulator. However,

there is only a minimal improvement in response time in systems

with our without cooperativity, although this improvement is

statistically significant (p,,0.001).

Cooperative and Negative Auto-regulation Substantially
Improves the Efficiency of Protein Synthesis

There is a considerable reduction in the number of mRNA

molecules produced per cell cycle between the four model systems,

in the scenario where the translation initiation rate is tuned

(Figure 2e). A similar result is seen when considering the first ten

generations post-conjugation (Figure S1). The unregulated system

produces an average of 8402 mRNA molecules per host

generation. By introducing a single regulator, production reduces

to 6077 molecules per generation. The introduction of a second

regulator reduces the number of mRNA molecules more than 20-

fold to 331 molecules per generation. The introduction of

cooperativity between the two regulators, so that the system has

the complexity of the wild-type plasmid, results in a further 3-fold

reduction to 107 mRNA molecules per generation. On the other

hand, when controlling protein abundance by tuning transcription

initiation, there is no impact on the numbers of mRNA molecules

produced per cell cycle (Figure 2f).

The relative costs of transcription and translation in each of the

four models can be compared directly by considering the number

of phosphate groups (e.g. from ATP) required per cell cycle. The

KorA protein is 101 amino acids and the KorB protein is 359

amino acids. Protein synthesis costs approximately 4 phosphates

(,P) per a.a. [23]. There are 4000 KorA molecules and 1000

KorB molecules per cell [19–20]; in a single cell cycle, half of these

would need to be replaced, so the replacement cost per cell cycle is

approximately 1.536106 ,P. This cost is assumed to be the same

in all four models. Considering transcription, the total length of

transcript associated with KorA and KorB (not including the other

genes on the operon) is 1380 nucleotides, and the cost is 2 ,P/

nucleotide [23]. Thus in the four models considered, the total cost

of mRNA production for KorA and KorB per cell cycle are

2.36107 ,P for no regulation, 1.76107 ,P with a single

regulator, 9.16105 ,P with two regulators, and 3.06105 ,P

including cooperativity. Overall, the CCO regulatory mechanism

produces the same set level of protein for less than 10 times the

total cost as compared with the unregulated system (Table 2).

Results Presented are Robust to Uncertainty in Parameter
Values

The results presented above are based on a single representative

parameter set that optimally fits the data, as derived from our

previous work [18]. However, in that work, we also derived

posterior distributions for each of the parameter values that

represent our uncertainty in those values. In order to test whether

our results are robust across a range of realistic possible parameter

values, we re-sampled from those posterior distributions (described

in Methods) and ran the comparisons for 1000 different sets of

parameter values. The model comparisons for protein fluctuations,

response times and mRNA usage (transcription constant) are

shown in Figure 3; the results are broadly similar to those

described above, demonstrating that these are robust to uncer-

tainty in parameter values. The only minor difference is in the

response time comparison between the models with and without

cooperativity: although the mean response time with cooperativity

is still lower, the improvement is small relative to the variability

due to uncertainty in parameter values. The model comparisons in

mRNA usage with translation constant also give similar results

(Figure S2). Similarly, the results on robustness to changes in the

parameter values are themselves robust to variability in the

underlying parameters: the mean control coefficients are almost

identical to those presented in Table 1 and are presented in Table

S1.

Table 1. Concentration control coefficient of KorAdimers for
each parameter of the models.

CCO CCOnoC CCOregB CCOnoR

koff1 0.005 20.001 – –

koff2 20.004 0.004 0.040 –

koff3 0.056 0.058 – –

koff4 0.160 0.146 – –

kA 0.431 0.431 0.560 0.471

kB 20.112 20.104 0.007 20.014

kP 0.208 0.215 0.544 0.494

pX 0.174 0.160 – –

pY 0.050 0.060 0.537 –

konD 20.151 20.144 0.025 –

konP 20.002 0.002 0.040 0.001

koff1, koff2, koff3, koff4– KorA, KorB dissociation rates, KorA for KorA-DNA complex,
KorB from KorB-DNA complex, KorA from KorA-KorB-DNA complex and KorB
from KorA-KorB-DNA complex, respectively, kA, kB – maximal KorA and KorB
synthesis rates, kp – plasmid replication rate, pX, pY- scaling parameters for the
protein synthesis, konD – protein association rate to the DNA, konP – protein
dimerization rate. Smaller control coefficient implies greater robustness; model
descriptions in Figure 1b. Note that the models have similar robustness for the
majority of parameters; this includes the parameters governing protein
synthesis and protein-DNA affinity and cooperativity. The one exception is the
plasmid replication rate; the systems with two regulators are more robust than
the systems with zero or one regulator.
doi:10.1371/journal.pone.0049678.t001
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A Simplified Model Suggests an Evolutionary Trajectory
from an Unregulated System to the Wild-type
Architecture

In order to ascertain how the wild-type system may have

evolved, we consider a simplified version of the model with just a

single regulator. Negative repression can be strengthened either by

increasing the level of repression when the repressor is bound, or

by the increasing the strength of the repressor-DNA binding. The

first of these is analogous to the wild type mechanism of having

two different repressors acting in different ways to repress

transcription (KorA competing with RNA polymerase and KorB

preventing opening of the DNA); the second of these is analogous

to the evolution of cooperativity between the two transcription

factors.

We measured the number of plasmid mRNA molecules

produced by the host per host generation, as a measure of cost

Figure 2. Results on the various optimizations by the central control operon regulation. Comparison of the ability of the four models to
optimize different desirable properties. With the exception of (c), bar heights are means and error bars are standard errors across 20 replicates. (a)
Fluctuations in KorB regulator concentration in their steady state for models that include plasmid replication and (b) exclude plasmid replication.
There is little improvement in protein fluctuations between the models, with a minor improvement observed when a second regulator is introduced
when plasmid copy number fluctuations are also present. (c) Dynamics of KorA total monomer concentrations after a new host transfection; means of
arising concentrations over time are indicated by solid lines, the shadows show standard deviations. The horizontal solid line indicates a mean KorA
concentration and dashed line a half of the mean concentration. (d) Times of reaching a half of a mean KorA concentration with standard errors; the
systems with strong regulation reach a half of mean KorA concentration quicker than with weak or without regulation. (e) Number of mRNA
produced per generation after the model has reached steady state. CCOnoR (grey) has no regulation; CCOregB (yellow) has a single regulatory
protein; CCOnoC (cyan) has two regulatory proteins; CCO (red) has two regulatory proteins with cooperativity. The translation rate is tuned so that
the total protein abundance is held constant. There is a small reduction in mRNA usage after the introduction of a single regulator; a second regulator
brings a 20-fold improvement in mRNA usage; the introduction of cooperativity brings a further 3-fold improvement. (f) The transcription rate is
tuned so that protein abundance is held constant. All four architectures are equivalent.
doi:10.1371/journal.pone.0049678.g002

Efficiency of a Self-Regulating Operon
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to host, for a range of expression reduction and protein-DNA

affinities (Figure 4). The red arrows show a possible evolutionary

path indicated by the greatest decrease in mRNA production from

one state to another. More than one arrow from one state to

another indicates lack of statistical difference between numbers of

mRNA produced for competing states. The path indicates that

Table 2. Energetic analysis of cost of transcription and translation for each of the models.

Model mRNA molecules/cell cycle Transcription Cost/,P Translation Cost/,P Total Cost/,P

CCO 107 2.956105 1.536106 1.826106

CCOnoC 331 9.146105 1.536106 2.446106

CCOregB 6077 1.686107 1.536106 1.836107

CCOnoR 8402 2.326107 1.536106 2.476107

The cost of protein synthesis for each model taking account the number of mRNA molecules produced during one cell cycle and translation to replace half of the total
KorA and KorB protein pool during a cell cycle. The cost is calculated in terms of phosphate groups from ATP. In the unregulated model, he transcription cost is more
than 5-fold greater than the translation cost. This reduces to less than 7% of the translation cost in the fully cooperative model. Thus the overall benefit of the
cooperative regulation is a greater than 10-fold reduction in cost to the host of producing the same quantity of protein.
doi:10.1371/journal.pone.0049678.t002

Figure 3. Robustness of central control operon regulation results. Comparisons between the different models are robust to uncertainty in
parameter values. Bar heights are means; error bars are standard deviations from 1000 resamples of the parameter values. (a) Differences between
the models in control of protein fluctuations show a similar pattern to Figure 2(a), demonstrating that the result is robust to uncertainty in parameter
values. (b) A similar pattern is plasmid replication is included, as per Figure 2(b). (c) Difference in response times between the four models is
comparable to that shown in Figure 2(d). Note, however, that the difference in mean response time between the models with and without
cooperativity is small relative the variability due to uncertainty in parameter values. (d) Difference in mRNA usage between the four models when
transcription rate is held constant shows the same overall result as Figure 2(e). The difference between the CCOnoC and CCO model results are more
than 3-fold, comparable with Figure 2(e), and which is difficult to see in the bar plot. A comparison with translation rate held constant, as per
Figure 2(f), is shown in Figure S2.
doi:10.1371/journal.pone.0049678.g003
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evolution would first favour a reduction in expression from the

regulated DNA, followed by an increase in regulatory binding

strength. This would suggest that the wild type architecture would

first have evolved to increase repression by blocking both RNA

polymerase and DNA melting, following which selection would

have favoured cooperativity as a means to strengthen the protein-

DNA interaction.

Discussion

In this work, we have carried out a detailed analysis of the

architecture of a naturally occurring negatively and cooperatively

self-regulated operon, the korAB operon in RK2 plasmids. We have

used a multi-scale stochastic model to unravel how the different

elements of the regulation impact on possible evolutionary

advantages of the gene regulatory architecture. Specifically, we

have investigated four hypotheses associated with the function of

negative self-regulation: improving robustness, minimizing protein

fluctuations, minimizing response times and improving efficiency

of protein synthesis. We have shown that, at least with this system,

the most significant improvements are seen in improving efficiency

of protein production. Improvements are seen in response time,

but only for stronger regulation and not for cooperativity. The

gene regulatory architecture conveys only a small advantage in

reduction of protein fluctuations or robustness to extrinsic factors,

both in relation to the plasmid replication rate.

These results can be viewed in the specific context of the biology

of RK2 plasmids; but they also extend to the study of the

evolutionary role of negative and cooperative self-regulation.

Negative self-regulation has been identified as an extremely

common network motif for chromosomal genes in both prokary-

otic and eukaryotic cells. From a plasmid perspective, it is expected

that there would be strong selection for minimization of host

burden, so increased efficiency of protein synthesis would

contribute to this goal. Indeed, the RK2 plasmid has evolved to

persist in a wide range of hosts, and it is possible that its elaborate

mechanisms of gene regulation have evolved to enable it to be a

low burden in a wide range of host contexts. However, efficient

protein production is just as important for a host cell as it is for a

plasmid [24], and in this work we posit that an important

evolutionary adaptation of negative self-regulation is to minimize

the metabolic cost of protein production. In previous work, we

have shown that artificial regulatory networks that are free to

evolve either their topology or their parameters have evolved

negative self-regulation for this same reason [25]. The results of

this study on a natural system strongly support this position.

The reduction in mRNA usage is achieved by allowing

translation in the cooperative model to be more efficient than it

is in models with less regulatory complexity. It could be argued

that increased translational efficiency is an additional cost not

factored into the model, for example by drawing ribosomes that

could otherwise be used elsewhere in the host. However, because

we have controlled the protein abundance to be the same in all

models, the mean ribosome usage per cell cycle is identical in all

the systems: what differs is that in systems with more complex

regulation, the ribosomes are required in larger numbers for a

short period of time, while in systems with less or no regulation,

the requirement is for more dispersed availability over the cell

cycle. This irregular, bursty requirement for ribosomes in the wild

type system is likely to be more consistent with host use of

ribosomes; it is known that transcription is bursty [26], and with

many host proteins also being negatively self-regulated, these

genes too would also have requirements for larger numbers of

ribosomes for short periods of times. Thus these results are

consistent with a picture of protein synthesis in which different

transcripts are being manufactured at different times, and

ribosomes are being recruited in numbers to different operons

as they are required.

The results on mRNA usage can also be explained with the help

of a toy ODE model. In its simplest form, models for gene

regulation could be expressed by two equations:

dM

dt
~r1f (P){r2M ð7Þ

dP

dt
~r3M{r4P ð8Þ

The function f(P) satisfies 0,f(P) #1 and encapsulates the

mechanisms of gene regulation, including possible protein

dimerization and transcription regulation. In the special case of

no regulation, f(P) = 1 and the solution is:

M�~
r1

r2
; P�~

r1r3

r2r4
; ð9Þ

Now consider a system with some transcription regulation so

that f(P),1. In order to make the comparisons, we need to tune

parameters so that the protein abundance is still the value P*. This

could be achieved by tuning the transcription rate r1 or the

translation rate r2. If we hold the translation rate fixed and tune

the transcription rate r1, then we obtain a new value r1 that

satisfies r1f(P*) = r1. The mRNA abundance satisfies.

M~
r1

r2
f (P�)~

r1

r2
~M� ð10Þ

Figure 4. Optimization of the mRNA production by the central
control operon regulation. mRNA production per one generation
for a single negative regulation for different repressor-DNA affinities
and different levels of reduction in expression while a repressor is
bound to the DNA. The red arrows represent statistically significant
differences of mRNA production. The top-left hand corner approximates
an unregulated system while the bottom-right corner approximates the
wild-type system of RK2. The implied evolutionary trajectory is that first
increased efficacy of repression would evolve following which the
protein-DNA interaction would become stronger.
doi:10.1371/journal.pone.0049678.g004
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and so is unchanged relative to the unregulated model, no matter

how strong the regulation. If, on the other hand, we hold

transcription constant, we tune translation rate to obtain a new

value r3, then r3f(P*) = r3. The resulting mRNA level thus satisfies

M~
r1

r2
f (P�)vM� ð11Þ

Thus mRNA abundance is decreased relative to the unregulated

model. The stronger the mechanism of repression, the smaller the

value of f(P*), and so the less mRNA is required to produce the

same quantity of protein. The same argument holds for mRNA

production dM/dt.

The relative lack of reduction in protein fluctuations appears to

be a surprising result, especially given considerable literature that

suggests that negative self regulation acts to decrease protein

fluctuations [2–3]. However, in previous work, we have also shown

that physiologically strong negative regulation can potentially

increase protein fluctuations by enhancing ‘‘burstiness’’ - [6]. In

the case of this system, it would appear that control of protein

fluctuations is not important; it is entirely plausible that in other

biological contexts the control of fluctuations may have greater

importance.

The lack of impact of gene regulatory network architectures on

robustness is a particularly surprising result. In the model used, the

protein synthesis parameters (kA and kB) amalgamate many

processes, including RNA polymerase availability, transcription

initiation, translation and mRNA turn-over. Thus these param-

eters are likely to vary considerably in different hosts, and it is

plausible that the gene regulatory network may have evolved in

order to ensure that the plasmid can respond effectively in a range

of hosts. However, we have shown in Table 1, that protein

abundance responds similarly to changes in these parameters in all

the models, i.e. the CCO system with strong regulation and a

strong promoter is similarly robust to changes in these parameters

as the CCOnoR system with no regulation and a weak promoter.

An important consideration of this work is the use of

computational models to explore hypotheses that would be

difficult or expensive to carry out experimentally. While, for

example, response times are straightforward to measure, the

production of rare mRNAs is difficult to measure, especially in

plasmid systems. In the case of the wild-type RK2 plasmid, we

predict that approximately 100 korAB mRNA molecules would be

produced per host cell generation, so the number of mRNA

molecules present would be very low. This work provides a clear

prediction: that the abundance of plasmid mRNA produced by

hosts bearing wild-type and mutant RK2 plasmids would be very

different; this could justify the expense of carrying out experi-

mental work to verify this point.

Methods

Parameter Values
The majority of the parameter values have been derived from

our previous work [18] in which a deterministic version of the

model was carefully analyzed in the context of experimental

measurements of the system; for this work, the parameters have

been redefined in units of molecules per cell as relevant to

Table 4. Parameter value uncertainty associated with resampling regime.

Parameter Prior
Approximate Marginal Posterior
Distribution Mean Standard Deviation

koff1 Informative Normal 13.16 1.3

koff2 Informative Normal 9.7 0.95

koff3 Informative Normal 3.08 0.3

koff4 Informative Normal 2.97 0.3

kA Uninformative Lognormal 19.5 4.2

kB Uninformative Lognormal 5.5 1.16

pX Uninformative Uniform 0 (minimum) 1 (maximum)

pY Uninformative Uniform 0 (minimum) 1 (maximum)

G Informative Normal 0.00039 0.00002

lA2 Informative Normal 0.001 0.00005

lB2 Informative Normal 0.001 0.00005

Uncertainty in parameter values derived from previous work [18], conditional on KorA and KorB abundance predicted to be within 10% of their required values. For
seven of the parameters, inference was carried out with informative prior distributions reflecting experimental observations, and the marginal posterior distributions for
these parameters show similar means and smaller standard deviations than the prior distributions. For the protein synthesis rates kA and kB, for which uninformative
priors were used, the parameter estimates show an uncertainty of approximately 20%. For the scaling parameters pX and pY, the marginal posterior distributions are
approximately uniform across the range [0,1].
doi:10.1371/journal.pone.0049678.t004

Table 3. Parameter values.

Parameter Value Parameter Value

koff1 1.29 [s21] konP 0.0003–0.0006 [s21]

koff2 0.93 [s21] kA 11.5 [s21]

koff3 0.31 [s21] kB 3.2 [s21]

koff4 0.31 [s21] kp 0.0045 [s21]

konD 0.03–0.06 [s21] vol 2.77–5.54 [mm3]

koff1, koff2, koff3, koff4,- protein dissociation rate, KorA from a KorA-DNA complex,
KorB from a KorB-DNA complex, KorA from a KorA-KorB-DNA complex and KorB
from a KorA-KorB-DNA complex, respectively, konD – protein association rate to
the DNA strand, konP – KorA and KorBdimerization rate, kA, kB – KorA and KorA
synthesis rate for a CCO model, respectively, kp – plasmid replication rate, vol –
host cell volume.
doi:10.1371/journal.pone.0049678.t003
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stochastic simulations (Table 3). The mean cell volume (4.15 mm3)

is implicit in the calculations in the experimental work in which

KorB total monomer abundance (1000 molecules) and concen-

tration (400 nM) were given [20]. Host cell doubling time of 1789

seconds has been calculated from a host growth rate of 1/43

minutes (unpublished data from Thomas). The exponential

function for the growth of the host cell (Equation 1) is based on

the mean cell volume and host doubling time. Plasmid replication

rate has been tuned in order to obtain a mean plasmid copy

number 11–12, which corresponds to 4–7 copies per chromosome

(the measured quantity). For protein-protein interactions (dimer-

ization), KorA and KorB are considered as medium large particles

with diffusion limited reaction rate of 106 M21s21 [27]. The

protein-DNA interaction rate is set 2 orders of magnitude faster as

108 M21s21 [28]. The conversion of these parameters into the

stochastic model takes into account the multi-scale nature of the

model, as the stochastic reaction rates derived from these

parameters are volume dependent and so depend on the timing

of the reaction in the host cell cycle.

For comparing the four models, we have tuned the protein

synthesis rates for each model in order to ensure equal values of

protein abundance (Table S2). For the study of mRNA production

analyses, we have considered two possible tunings of the models,

tuning the transcription or translation rates (Table S3). For

analyses of the simplified model, two parameters are varied. In

order to ensure equal values of protein abundance, the translation

rate is tuned (Table S4) while the transcription rate (kMi = 0.4 s21)

and mRNA turn-over are held constant (cMi = 0.003 s21).

Simulations and Calculations
The stochastic models were simulated with a hybrid stochastic

simulation algorithm. Times for events with constant propensities

(i.e. not volume-dependent) are calculated and updated according

to a Gibson-Bruck rule [29], with the next event time updated if

that event did not occur. Times for events with volume-dependent

propensities are calculated according to a Gillespie rule [30].

Timings for fixed cell divisions are handled in a non-Markovian

way. For each system we ran 20 simulations, each containing 30

host cell generations. For dynamics analyses we ran 100

simulations for each model. The starting point of each simulation

was a single host cell newly transfected with one copy of plasmid

RK2, and so without any plasmid products in the system. Cell

volume increases exponentially (Equation 1). Cell division occurs

each time the cell doubles in size; the cell volume and the

quantities of each reactant in the cell are divided by two. When

there are an odd number of molecules to divide, say 2k+1

molecules, then each daughter cell inherits either k or k+1

molecules with equal probability. Throughout the whole simula-

tion, we only keep track of one host cell, so after each cell division,

one of the two daughter cells is chosen at random and the other

discarded.

For the dynamics analyses, we recorded the times at which a

half of the mean protein concentration of a particular simulation

occurred. For each model, a mean of these times over 20

simulations was calculated. The reported p-value is based on a 2-

sample t-test using 100 simulations of each model.

For the fluctuation analyses we considered fluctuations in the

concentration of the regulatory protein KorB. KorB was chosen as

it is present in lower abundance (,1000 copies per cell) than KorA

(,4000 copies per cell), so the noise effects, variability relative to

mean, are greater. The calculations consider the long term steady

state distribution of the protein concentration, between 20th and

30th of host cell generations for each simulation and a mean was

taken over 20 simulations.

Robustness analyses were conducted with Stochastic Control

Analyses [31] by calculations of stochastic sensitivities for means.

The mean values were obtained from over 20 simulations for a

model with each parameter changed by 2-fold.

The analysis of the simplified model considers the numbers of

mRNA produced per one generation once protein concentration

has reached its equilibrium distribution. The mean numbers of

manufactured mRNA were calculated over 20 independent

simulations for each system, in which the repressor affinity to

the DNA strand and expression reduction parameter have been

varied (Table S4).

Robustness to Parameter Value Uncertainty
Our earlier work [18] provided joint posterior distributions for

the parameter values used in the model. To evaluate the

robustness of results to parameter value uncertainty, we re-

sampled from this the posterior distribution conditioned on those

values that gave predictions of KorA and KorB protein abundance

to be within 10% of their desired values; this condition is necessary

to enable fair model comparison. The ranges of parameter values

tested are summarized in Table 4. 1000 re-samples from this (joint)

distribution were evaluated. All model simulations were carried

out as described in previous sections.

Supporting Information

Figure S1 mRNA production over 10 first generations. a)

transcription rate is constant, b) translation rate in constant; model

descriptions in figure 1b.

(TIF)

Figure S2 Robustness of mRNA production to parame-
ter uncertainty. Similar numbers of mRNA molecules gener-

ated per cell cycle in each of the four models when transcription

rate is tuned and translation rate held constant.

(TIF)

Table S1 Mean concentration control coefficient of
KorA dimers for each parameter of the models. koff1,

koff2, koff3, koff4– KorA, KorB dissociation rates, KorA for KorA-

DNA complex, KorB from KorB-DNA complex, KorA from

KorA-KorB-DNA complex and KorB from KorA-KorB-DNA

complex, respectively, kA, kB – maximal KorA and KorB synthesis

rates, kP – plasmid replication rate, pX, pY- scaling parameters for

the protein synthesys, konD – protein association rate to the DNA,

konP – protein dimerization rate. Smaller control coefficient

implies greater robustness; model descriptions in figure 1b. These

are mean control coefficients from 1000 re-samples of parameter

values. Note that the values are very similar to those presented in

Table 1, indicating that the results on robustness of the systems to

changes in parameter values are themselves robust to uncertainty

in the parameter values.

(DOCX)

Table S2 KorA and KorB synthesis rates for different
models. kA – KorA synthesis rate, kB - KorB synthesis rate;

model descriptions in figure 1b.

(DOCX)

Table S3 Parameter values for mRNA production
analyses. kAi, kBi – KorA and KorB translation initiation rates

respectively, kMi – transcription initiation rate, cMi– mRNA turn-

over rate; model descriptions in figure 1b.

(DOCX)

Table S4 Parameter values for analyses of regulatory
mechanism evolution. kaff – an affinity of a transcription factor
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to the DNA strand, r – expression reduction, kAi, kBi – KorA and

KorB synthesis rates respectively; model descriptions in Figure 1b.

(DOCX)
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