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Abstract— In this paper, we describe a dataset relating to cellular 
and physical conditions of patients who are operated upon to 
remove colorectal tumours. This data provides a unique insight 
into immunological status at the point of tumour removal, 
tumour classification and post-operative survival. Attempts are 
made to learn relationships between attributes (physical and 
immunological) and the resulting tumour stage and survival. 
Results for conventional machine learning approaches can be 
considered poor, especially for predicting tumour stages for the 
most important types of cancer. This poor performance is further 
investigated and compared with a synthetic, dataset based on the 
logical exclusive-OR function and it is shown that there is a 
significant level of “anti-learning” present in all supervised 
methods used and this can be explained by the highly 
dimensional, complex and sparsely representative dataset. For 
predicting the stage of cancer from the immunological attributes, 
anti-learning approaches outperform a range of popular 
algorithms 
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I.  INTRODUCTION  

Colorectal cancer is the third most commonly diagnosed 
cancer in the world. Colorectal cancers start in the lining of the 
bowel and grow into the muscle layers underneath then through 
the bowel wall [11]. TNM staging involves the Classification 
of Malignant Tumours  

• Tumour (T).  Size of the tumor and whether it has 
invaded nearby tissue  

• Nodes (N). The extent to which regional lymph nodes 
involved  

• Metastasis (M). This is the spread of a disease from 
one organ or part to another non-adjacent organ. 

4 TNM stages (I,II,III,IV) are generated by combining these 
three indicator levels and are allied with increasing severity and 
decreasing survival rates. 

Treatment options include minor/major surgery, 
chemotherapy, radiotherapy but the correct treatment is heavily 
dependent on the unique features of the tumour which are 

summarised by the TNM staging. Choosing the correct 
treatment at this stage is crucial to both the patient’s survival 
and quality of life. A major goal of this research is to 
automatically optimize the treatment plan based on the existing 
data. 

The data for this research was gathered by scientists and 
clinicians at the University of , Nottingham. The dataset we use 
here is made up of the 84 attributes for 462 patients. The 
attributes are generated by recording metrics at the time of 
tumour removal, these include: 

 

• Physical data (age, sex etc)  

• Immunological data (levels of various T Cell subsets)  

• Biochemical data (levels of certain proteins) 

• Retrospective data (post-operative survival statistics)  

• Clinical data (Tumour location, size etc).  

 

The goal of this research is two-fold, we hoped to be able to 
use the attribute set to accurately predict:  

• The TNM stage assigned by the clinical team. 

• The subsequent survival of the patient 

We show in this paper that both of these tasks are extremely 
difficult using conventional techniques and that the dataset 
might belong to a subset of dataset that require a unique 
approach. 

II. PRE-PROCESSING 

The dataset supplied is a biological dataset and as such has 
a rich complement of preprocessing issues. 11.32% of the 
values are missing, with some attributes having over 40% 
missing values and some patients having over 30% missing 
values.  



Missing data poses a problem for most modelling 
techniques. One approach would be to remove every patient or 
every attribute with any missing data. This would remove a 
large number of entries, some of which only have a few 
missing values that are possibly insignificant. Another 
approach is to average the existing values for each attribute and 
to insert an average into the missing value space. The 
appropriate average may be the mean, median or mode 
depending on the profile of the data.   

Much of the data takes the form of human analysis of 
biopsy samples stained for various markers. Rather than raw 
cell counts or measurements of protein levels we are presented 
with threshold values. For instance, CD16 is found on the 
surface of different types of cells such as natural killer, 
neutrophils, monocytes and macrophages. The data contains a 
simple 0 or 1 for this rather than a count of the number of cells. 
This kind of manual inspection and simplification is true for 
most of the data and any modeling solution must work with this 
limitation.  

It is apparent that there are some existing strong 
correlations in the data. By using a combination of correlation 
coefficients and expert knowledge the data was reduced down 
to a set of ~50 attributes.  This included removing several 
measurements that were hindsight dependent (ie. chemo or 
radio treatment) and correlated with TNM stage. (ie. Dukes 
stage).  

Single attribute relationships exist within the dataset but are 
not strong. Analysis of single attributes can yield a greater than 
65% prediction rate when attempting to predict which TNM 
stage a patient was classified as but only ~55% when the TNM 
stages were restricted to the more interesting  (TNM stage 2 or 
3). If we look at CD59a and CD46 threshold values we can see 
that they are loosely related to survival (figure 1) with elevated 
levels of each indicating a reduction in survival averaging ~13 
(Figure 1a) and 6 months. (Fig. 1b) yet neither are a strong 
discriminator of TNM stage 2 or 3 tumours. 

 

Figure 1a. Relationship of CD59a to survival with average survival rates. 

 

Figure 1b.  Relationship of CD46 to survival with average survival rates. 

III.  LEARNING 

It is relatively trivial to build a model that best fits the data, 
even with numerous attributes and missing values. 
Unfortunately this model is very likely to be memorising 
unique combinations of values for each patient. This is why 
models are tested on an unseen test set to decide how well the 
trained model generalises to the “rest of the world”.  

Define abbreviations and acronyms the first time they are 
used in the text, even after they have been defined in the 
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, 
and rms do not have to be defined. Do not use abbreviations in 
the title or heads unless they are unavoidable. 

A. TNM Stage. 

Several methods were used in an attempt to predict the 
appropriate TNM stage of a patient from their attribute set. 
The methods used included Bayesian Networks [7], Naïve 
Bayes Classifier [8], CART [3], Multilayer Perceptron [4] and 
SVM [9]. These were either self-programmed, available in the 
WEKA toolkit [6] or used other existing software suites [5]. 
When initially looking at all 4 TNM stages there was some 
success at predicting stages from the attribute set, particularly 
when some of the patients and attributes with the most missing 
data were removed. Most success was achieved when 
predicting TNM stage 1 and 4, which were the least and most 
severe stages respectively. A Multilayer Perceptron (MLP) 
was trained using back-propagation of error. This artificial 
neural network architecture included 5 sigmoid transfer 
function hidden units and a linear transfer function output unit. 
The desired output for the for TNM stage 1,2,3 and 4 were 
rescaled to 0.2, 0.4, 0,6 and 0.8 to allow for efficient 
separation. This approach showed excellent accuracy on the 
training set (Fig 2a) and showed some promise at predicting 
TNM stages 1 and 4 for the unseen test set (Figure 2b) but was 
clearly very poor at predicting stages 2 and 3. This method of 
graded linear output makes for a neural network of low 
complexity but assumes a linear progression through the TNM 
stages. An approach using 4 independent binary outputs 
performed equally poorly. 
 
 
 



 

Figure 2a. Neural Network Prediction of TNM stage for training set 

 

 

Figure 2b. Neural Network Prediction of TNM stage for an unseen test set 

Next a CART approach was used, Classification and 
regression trees (CART) are a non-parametric decision tree 
learning technique that produces either classification or 
regression trees. Decision trees are formed by a collection of 
rules based on attributes in the dataset based on rules that 
achieve the best division to differentiate observations based on 
the dependent variable. This recursive process continues until 
pre-defined stopping rules are met. Each branch of the tree 
ends in a terminal node. Each observation falls into exactly 
one terminal node, and each terminal node is uniquely defined 
by a set of rules. A CART approach achieved similar results 
when looking at all 4 TNM stages but slightly better results 
could be achieved by just looking at TNM stages 2, 3 and 4. 
(Figure 3a) with particular importance being assigned to 
cleaved caspase 3 (CC3) proteins, a sample CART tree is 
shown in figure 3. CC3 has been shown to play an important 
role in tumour apoptosis [10]. 
 

 
Figure 3. CART tree for prediction on TNM class  

 
Differentiating between TNM stage 2 and 3 is a priority for 
this research, these are the stages where correct choice of post-
operative treatment are most important. We trialed all 5 
algorithms (SVM, Bayesian Network, Artificial Neural 
Network, Naïve Bayes Classifier and CART) on 3 different 
attribute sets (55, 45, 35) and used 3 different testing regimes 
(10 fold cross validation, 5 fold cross validation and a 33% 
random selection). Table 1 shows the results from this, the 
only approach that performed better than guessing was Naive 
Bayes and this was only on one of the three attribute sets. 
Furthermore, if we look at the performance of all approaches 
for each validation technique as a whole it can be said that the 
approaches performed significantly worse than guessing. It 
must be remembered that algorithms were optimised for test 
set performance and performance of the training set was much 
better (80-98% accurate). This exceptionally poor 
performance will be discussed more in section 4. 
 

Table 1. Test Set performance of different algorithms 

 



B. Survival 

Several of the attributes presented in the dataset pertain to 
the survival of the patients after their operation to remove the 
tumour. The number of months the patient has survived, 
whether they are still alive or not and how they died (if dead) 
are all available. Figure 4 shows survival curves for patients 
with greater than 60 months survival or those that died of 
colorectal cancer prior to the 60 month period. The strong 
difference between survival rates in TNM stage 1 and 4 
patients is apparent (ie. at 30 month the survival rate is 
approximately 95 and 5%). The difference between patients 
with TNM stage 2 and 3 cancers is less apparent, for 18 months 
there is very little difference between mortality for TNM stage 
2 and 3 patients.. After 30 months deaths from colorectal 
cancer for TNM stage 1 patients increase quite quickly, in 
percentage terms steeper than any other TNM class. 

 

 
Figure 4. Survival Curves for patients at all 4 TNM stages 

 

Again focusing on just TNM stage 2 and 3 patients we 
attempted predict survival at different thresholds using AI 
techniques, this time Naïve Bayes, ANN and CART. The term 
“survival” is obviously somewhat subjective so we used 
several time periods to represent survival ranging from 12 to 60 
months, if a patient survived for the assigned number of 
months they were deemed to have survived.  

If we take just TNM stage 2 and 3 patients again, figure 5 
shows how well three techniques predicted survival for an 
unseen test set, the average of all three techniques is also 
shown. It is apparent that these techniques could perform 
slightly better than guessing at all survival thresholds but with 
average performances of between 55 and 60% on an unseen 
test set (using 10 fold cross validation) the performance is far 
from impressive suggesting the issues discussed in section 3.1 
are still present. With CART performing worse than guessing 
at a high survival threshold and an ANN performing worse 
than guessing at a low survival threshold. 

 
Figure 5. Prediction accuracy when modeling TNM stages 2 or 3 

IV.  ANTI-LEARNING 

In many cases the results shown in section 3 show some 
very poor prediction on an unseen test set, sometimes below 
what would be expected for random guessing. This kind of 
behavior is rare but when it has been observed one of the 
dataset types it has been observed in is biological data in 
general and cancer data in particular. We investigated this 
further by running a full range of predictive techniques on 
several pre-processed versions of the original dataset with 
several correlation techniques. The results from this were 
tabulated in Table 1. It is apparent that in all cases results on a 
test set are a small but significant amount below 50%, which 
would be the value for a random selection. Results were even 
lower when hybrid techniques such as Bagging [12] and 
Boosting [13] were used. If we assume anti-learning is present 
and invert the outcome of the model we find superior 
prediction results to any learning approach tested. Table 2 
shows a comparison of the best performing learning and anti-
learning techniques for 3 processed versions of the dataset with 
55, 45 and 35 attributes, with the anti-learning results showing 
up as better on all 3 datasets. 

Synthetic and real world datasets have been shown to 
express similar anti-learning properties. The simplest example 
being the exclusive-OR (XOR) problem, which can be 
summarised as a logical function on two operands that results 
in a value of true if exactly one of the operands has a value of 
true. This can be tabulated and plotted as follows, with X and Y 
being the two operands and Z being the result (figure 6). An 
exclusive-AND function is just the opposite where two 
operands that results in a value of true if neither or both of the 
operands are true. 

Table 2. Comparison of Learning and Anti-learning methods of predicting 
TNM stage for datasets with 35, 45 and 55 attributes 

  Dataset Attributes   

Method 55 Attributes 45 Attributes 35 Attributes 

Learning 

52.43% (Naive 

Bayes) 

49.41% 

(BayesNet) 46.34% (ANN) 

Antileaning 55.56% (SVM) 54.65% (ANN) 

58.54% (Naive 

Bayes) 

Anti-learning + 

Boosting 57.25% (SVM) 56.9% (ANN) 

58.54% (Naive 

Bayes) 



 
Figure 6. Graph and Table showing a standard 2 dimensional XOR dataset 

This dataset can be learned by an AI approach capable of 
non-linear feature extraction, an example would be an artificial 
neural network, but only if all 4 operand couples are presented 
with the desired output. This leaves no samples for testing. If 
we present any 3 of the 4 examples to any machine learning 
approach they will generalise to a point where they predict the 
unseen test value wrong 100% of the time, in effect they will 
“anti-learn” the problem. This is a trivial, abstract example but 
is an important indication that if too few datapoints are 
presented to a machine learning solution it is possible that they 
will not only perform poorly (ie. equal to guessing) on an 
unseen test set but actually perform WORSE than guessing. 
When we are dealing with real world datasets with many 
attributes and relatively few samples, the possibility that the N 
dimensional search space is badly represented is distinct. 

 
Figure 7 Predictive performance of Neural Network and increasing sample 

sizes 

We can generate a 12 dimensional synthetic XOR style 
dataset by taking all possible combinations of a 12 attribute 
binary dataset (4096 combinations) and passing them through a 
series of XOR and XAND processes: 

{ [ ( A xor B ) xor ( C xand D ) ] xor [ ( E xor F ) xand ( G 
xand H ) ] } xor { [ ( I xor J ) xor ( K xand L ) ] } 

If we take this 12 dimensional exclusive-OR and exclusive-
AND problem we can achieve degrees of anti-learning when 
small percentages of the total dataset are presented to a learning 
algorithm. Figure 7 shows how presenting most of the available 
data yields high test set performance (~90%) but reducing the 
sample size for training and testing reduces the test set 

performance to a point where it drops below 50%, reducing it 
even further means any prediction tends towards 50% 
(guessing). Initial results for a real world cancer dataset appear 
to occupy an area that would suggest the available data 
represents only a small sample of a much bigger, non-linear 
‘complete’ set. Another approach to show anti-learning exists 
in this dataset and how it differs from overtraining or the 
absence of any learnable features is to show the difference 
between training and testing for a dataset over a range of 
modeling configurations, in this case ANN architecture. If we 
take a very simple, single hidden unit ANN we can achieve 
slightly higher than guessing performance for the Colorectal 
Cancer training dataset (figure 8), but below guessing for test 
set. As we increase the number of hidden units we see an 
increase in training set performance up to nearly 100% at 20 
hidden units but performance on an unseen test set yields a less 
than 50% performance in all cases. In cases of a normal, 
learnable dataset we can see that the test set performance 
increases up to an optimal number of hidden units of 7 before 
overtraining occurs and the test set performance decreases. If 
the dataset just consists of random numbers the test set 
performance approximates to 50% which is the same as 
guessing as there are no general features in the data but adding 
hidden units allows a degree of memorization in the training 
set. From these results we can conclude that the cancer dataset 
consists of a mixture of unlearnable attribute relationships and 
anti-learning relationships. 

 

 
Figure 8. Training and test set performance for colorectal cancer data as 

the number of hidden units is increased 

V. CONCLUSIONS 

We have presented results for a unique dataset based on the 
biochemical and factors associated with colorectal tumour 
patients. This dataset is limited in many ways, but extremely 
important nonetheless and modeling any relationships or 
features based on the dataset to hand is an urgent priority. 
Generally, whether attempting to predict TNM stages or 
survival, patients at TNM stage 1 and 4 have more clear 
indicators in the attribute set. TNM stage 2 and 3 provides a 
much more challenging prediction task, so much so that the 
TNM stage appears much less important when predicting 
survival for these 2 stages than other indicators.  

 



Rule tree, Bayesian and Neural approaches have been used 
with some limited success for prediction, but in most 
experiments there is a lack of repeatable success in developing 
a model that accurately predicts survival or TNM stage on an 
unseen test set. One possible reason for this could be 
overfitting, though a well-constructed ANN or CART tree 
shouldn’t exhibit overfitting and in any case they shouldn’t be 
WORSE than guessing. Another possibility is poor or 
inaccurate labeling of patients tumour stages. But again this 
should only result in poor performance on the unseen test set.  
Modelling a dataset using all available data may produce the 
best possible model if the modelling process is ideally carried 
out, but ideal modelling is much more difficult without a test 
set. Methods such as Correlated Activity Pruning [14] may be 
useful in ensuring a minimal sized model and will be one 
focus of future research. There might be improvement to 
learning by using recent advancements such as multiple kernel 
learning [15] but it is just as likely, as with boosting, methods 
that improve learning may be just as effective at improving 
anti-learning. 

This failure to accurately classify TNM stages or survival 
periods may in fact be useful if we suspect there are subsets 
within the groups. The failure to correctly classify a set of 
patients may mean these patients have different characteristics 
while still expressing the same classification of tumour. This 
would imply that treatment based solely on tumour 
classification would be sub-optimal. 
Overall this is an iterative process with a large number of 
steps, each providing more insight into the dataset and its 
modelling. We are still at the stage where we are filtering and 
focusing the original data so that we arrive at the most 
important, complete dataset for modelling the relationship 
between tumour markers/immunology, tumour stage and 
survivability. It is also very significant that preprocessing the 
patient’s data (selecting based on different thresholds) has a 
significant difference on the resulting models. 
We have proposed an explanation for the results which is a 
phenomenon called “Anti-learning”. Here, unique 
characteristics of the dataset lead to a condition where 
validation on an unseen test set produces results significantly 
and repeatedly worse than guessing. Interestingly, one real 
world dataset that demonstrates this behaviour is very similar 
to the dataset used here, being the classification of response to 
chemoradiotherapy in Esophageal Adenocarcinoma patients 
using microarray data of biopsied patients [1][2]. Work with a 
12 dimensional exclusive-OR problem shows that when only a 
small portion of the dataset is available there is a real 
possibility that anti-learning will be present. It is possible to 
then infer that with some highly dimensional complex 
biological data sets, when we have a relatively small sample 
size, anti-learning may also exist. Initial experiments appeared 
to show that the best possible approach to classifying patients 
with TNM stage 2 and 3 tumours was to focus on anti-
optimising the learning process to achieve the worse possible 

test set performance and then inverting the underlying model. 
Overall when looking for test set performance on the 
important TNM stage 2 and 3 patients, the best possible results 
can be achieved if we inverted the answer supplied by an 
ADABoosted SVM or ANN. Using this method it is possible 
to achieve reliable prediction rates of 55-60% on an unseen 
test set of higher than any learning algorithm attempted. 
Taking this approach involves a significant leap of faith but 
we have shown that this method is optimal when dealing with 
a small sample of a compounded exclusive-OR dataset. It is 
not impossible to imagine that many complex biological 
datasets also present us with a small, noisy sample of a much 
bigger complex dataset and this must be investigated further. 
 
This dataset will be made available, in an anonomysed form 
for other research groups to apply their own methods to 
ascertain the true extent of the anti-learning behavior. 
Interested parties should contact the authors about this. 
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