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ABSTRACT: Pseudomonas aeruginosa chronically infects patients with cystic fibrosis and is

associated with greater morbidity. There has been limited progress on the clinical development of

new antibiotics with novel modes of action. This review addresses some of the latest research

developments on the exploitation of candidate adjuvant therapeutic agents that may act alongside

conventional antibiotics as an alternative therapeutic strategy. After considering key mechanisms

this opportunistic pathogen employs to control virulence, the progress of various strategies

including the inhibition of quorum sensing, efflux pumps and lectins, and the use of iron chelators,

bacteriophages, immunisation and immunotherapy is reviewed. Both therapeutic approaches in

early development and clinical phase are discussed.
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C
oncern regarding the impact of antibiotic
resistance has led the European Com-
mission to develop an action plan against

the rising threat, priority is given to mitigating the
development of antibiotic resistance through appro-
priate use, prevention of infection and developing
effective antimicrobials [1]. In a paired surveillance
report by the European Centre of Disease Pre-
vention and Control, reporting on resistance
trends of the top seven bacterial pathogens of
importance to human health, Pseudomonas aerugi-
nosa is detailed as being of particular concern due
to its ubiquity and intrinsic tolerance to many
antibiotics [2]. Many patients have increased
susceptibility to P. aeruginosa infections including
those with chronic lung conditions such as cystic
fibrosis (CF), bronchiectasis and chronic obstruc-
tive pulmonary disease [3]; individuals who are
immunosuppressed, those receiving intensive care
and those who have indwelling catheters [4].

Of those patients with CF, those with chronic pul-
monary infection with P. aeruginosa suffer a more
rapid deterioration in lung function, greater morbi-
dity and a shorter life expectancy [5]. Repeated
prolonged courses of broad-spectrum antibiotics
lead to the selection of increasing antibiotic tolerant
and resistant strains [6]. Although infection with
P. aeruginosa may be eradicated if treatment is

commenced early [7], no antibiotics are able to
eradicate an established chronic P. aeruginosa infec-
tion and there are no such agents on the horizon [8].
A new paradigm for the management of chronic
pulmonary infection with P. aeruginosa in CF is
clearly needed. Antibiotic adjuvants, agents that act
alongside a co-administered antibiotic, potentiating
its action, may offer a future strategy. We recently
published a Cochrane review [9] and found that few
such interventions had been assessed in rigorous
clinical trials and so could not recommend their use.
There are, however, numerous of these novel
strategies under development some of which are
reaching clinical trials. This review will evaluate the
opportunities these strategies may present and
consider when such therapeutic approaches may
be available for our patients.

P. AERUGINOSA AND THE CF LUNG
P. aeruginosa has two modes of growth: as motile
planktonic cells adept at colonising new sites, and
as a biofilm, enabling communities of organisms
to protect themselves from host immune and anti-
biotic attack. In contrast to the situation with chro-
nic infection, isolates of P. aeruginosa in previously
uninfected individuals appear to be almost fully
susceptible to first line antibiotics [10]. However,
many characteristics of strains responsible for
early P. aeruginosa infection, such as pyocyanin
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and protease production, appear not to be predictive of per-
sistence compared with strains that are successfully eradicated
[11]. Instead a combination of host-pathogen factors may be
important in the conversion to chronic infection rather than
bacterial factors in isolation, in contrast to the situation with
non-CF bronchiectasis.

The biofilm mode of growth is associated with a mucoid
phenotype of P. aeruginosa [12]. Individuals with CF who are
chronically infected with mucoid organisms have a more rapid
decline in clinical status compared with those with non-
mucoid P. aeruginosa who in turn decline more rapidly than
those without infection [13].

There is significant phenotypic variation between P. aeruginosa
strains found to infect the CF lung both within [14] and between
[15] individuals. Rapid mutations may occur in subsets of
bacteria within individuals that provide adaptation for chronic
infection and are linked to the development of antibiotic
resistance [15]. The innate antibacterial tolerance of P. aeruginosa
provides significant therapeutic challenges but this, accompa-
nied by its modest nutritional demands and ability to use both
aerobic and anaerobic metabolism, makes it a versatile
opportunistic pathogen. The biofilm mode of growth provides
a significant challenge for therapy as even when antibiotics are
able to penetrate the biofilm, the combination of oxygen
limitation and low bacterial metabolic activity result in limited
bacterial killing [16] with a core of inactive ‘‘persister’’ cells that
are uniquely tolerant to antibiotics but can re-populate the
biofilm once administration of an antibiotic ceases [17].

In the CF lung, a lack of functioning CF transmembrane
regulator (CFTR) in the apical membrane of the respiratory
epithelial cell results in an environment that is favourable to
P. aeruginosa. Physical effects of thick secretions, dehydrated
epithelial surfaces and accompanying mucus plugging allow the
organism to establish a colony. There is an on-going debate
regarding whether the CFTR mutation is itself pro-inflammatory
or whether the excessive inflammation is secondary to bacterial
infection. The defect of CFTR itself may promote infection with
P. aeruginosa either by increasing adherence [18] or reducing
clearance of the organism [18, 19]. P. aeruginosa is ubiquitous in
the environment and as the CF lung epitomises the ideal niche
for the organism to become pathogenic [4], this organism exerts a
significant burden on the well-being of patients with CF.

RECENT ADVANCES IN ANTIBIOTIC THERAPIES
New antibiotic formulations have been developed over recent
years and some are within the developmental pipeline. Tobra-
mycin inhalation solution (TIS) has been introduced for the long-
term management of chronic P. aeruginosa infection, with a
Cochrane review [20] suggesting some benefit from TIS in terms
of lung function and pulmonary exacerbation rate but also con-
cern regarding an increase in antibiotic resistance. A recent
registry study examining data from the Cystic Fibrosis Founda-
tion’s Patient Registry has suggested that TIS use is associated
with reduced mortality [21]. TIS has also been demonstrated to be
effective in delaying re-infection in those with early P. aeruginosa
infection [22]. A dry powder formulation of tobramycin for
inhalation has been developed that does not require a nebuliser
and so appears to be more convenient, but as effective as TIS
[23, 24]. It is suggested that this may improve adherence to

treatment. Aztreonam lysine has recently been approved for
inhalation for those with P. aeruginosa infection the benefit of
which appears to be good sputum penetration, delayed time to
next exacerbation and improved lung function [25].

Antibiotics in development include liposomal preparations
of amikacin and ciprofloxacin [26] and the first trial of a
levofloxacin inhalation solution which was recently reported
with favourable results [27]. A new family of peptidomimetics
has generated excitement as early in vitro and animal models
suggests potency but also specificity for P. aeruginosa [28].

ANTI-VIRULENCE STRATEGIES
Much of the organism’s capacity for virulence, antibiotic
resistance and evasion of the host immune system is controlled
by complex chemical signalling mechanisms. These mechan-
isms offer the potential for exploitation as therapeutic targets in
the development of novel antibacterial agents (table 1).

QS inhibition
P. aeruginosa regulates much of its virulence via quorum
sensing (QS). QS is a mechanism by which individual bacteria
communicate with each other through the production and
detection of small signal molecules. The concentration of signal
molecules within their environment increases in line with the
number of bacteria within the colony producing that signal.
Eventually this concentration reaches a threshold and activates
virulence gene expression within the bacterial community in a
coordinated manner [47]. These signals may also be perceived
by other bacterial species, resulting in competition for the same
niche [31] and even eukaryotic host cells resulting in cross-
kingdom signalling [32, 46].

P. aeruginosa uses at least three QS signalling pathways (fig. 1).
The Las and Rhl pathways utilise the N-acylhomoserine
lactones (AHLs) N-(3-oxo-dodecanoyl)-L-homoserine lactone
(3OC12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL),
respectively [48]. The alkylquinoline pathway uses 2-heptyl-3-
hydroxy-4-quinolone, also known as the pseudomonas quinolone
signal (PQS), and its biosynthetic precursor 2-heptyl-4-quino-
lone (HHQ) [49]. These QS molecules are released into the
environment by free diffusion (C4-HSL) [50], via efflux pumps
(3OC12-HSL) [50] and embedded within micro-vesicles (PQS)
[51]. Once the signal molecule concentration inside cells reaches
a threshold it binds to its cognate transcriptional factor; 3OC12-
HSL to LasR, C4-HSL to RhlR and PQS/HHQ to PqsR. The
subsequent activation results in the induction of expression of
multiple virulence genes and the upregulation of the signal
biosynthetic genes resulting in the production of more signal
(autoinduction) [52].

QS regulates the production of multiple virulence products
(table 1) that includes rhamnolipid (inhibiting the function of host
polymorphonuclear leukocytes (PMNLs)). Wild type biofilms are
resistant to tobramycin and the action of PMNLs however QS-
deficient biofilms are significantly more sensitive to the action of
tobramycin and PMNLs [53]. While QS has a significant role in the
formation of antibiotic resistant P. aeruginosa biofilms with QS-
negative mutants forming abnormal, flat and biocide-sensitive
biofilms [54], the addition of PQS substantially enhances biofilm
development [55]. The pivotal role of QS in the formation of
biofilms is demonstrated in a mouse foreign body model of
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infection whereby silicone implants were infected with wild
type and QS-deficient bacteria. The QS-deficient bacteria were
rapidly cleared compared to the wild type bacteria which were
only cleared after treatment with a QS inhibitor [56].

QS, pivotal for the regulation of virulence in P. aeruginosa, is
therefore a prime therapeutic target. QS inhibition (or ‘‘quorum
quenching’’) of AHL signalling pathways can be achieved at
different levels including the interference of signal generation,
the degradation of signal molecules, preventing their accumula-
tion, and the antagonism of the signals mode of action [57]. In
the case of signal degradation, a number of enzymes of bacterial
origin, capable of degrading AHL molecules and attenuating
bacterial virulence gene expression have been identified [57].

QS signal molecules have been identified in the sputa of
patients with CF and P. aeruginosa infection [58, 59]. Many
potential QS inhibitors (QSI) which show similarities to the
signal molecules have been identified by high-throughput

technologies. Quorum quenching activity has been found in a
number of foods including chamomile, carrot and garlic but
also in algae. Some of the most potent candidates, such as algal
furanones, are toxic to man but provide the chemical basis for
the development of non-toxic QSIs [60, 61].

Garlic (Allium sativum) is one of the more potent naturally
occurring QSIs. Garlic extracts have been shown to increase the
susceptibility of P. aeruginosa biofilms to antibiotics in vitro and
promote clearance of P. aeruginosa in a chronic mouse infection
model [62]. However, direct extrapolation from an animal
model to man is not possible because doses administered to
mice in this model were considerably greater than those that
could be tolerated by humans [62]. In a small pilot randomised
controlled trial of a commercial garlic formulation in adults
and children with CF and chronic P. aeruginosa infection, there
was a nonsignificant improvement in clinical parameters and it
was possible to detect QS molecules in the plasma and sputa of
these patients indicating QS activity [63]. Hence the current

TABLE 1 Virulence approaches by Pseudomonas aeruginosa, their role in pathogenicity and opportunities for intervention.

Virulence approaches Mechanism of action//activity Therapeutic strategies

Alginate biofilm# Biofilm formation [29] Alginate lyase [30]

Quorum sensing# [31] Coordination of virulence factor production

Immune modulation [32]

QS inhibitors

Phenotypic transfer and variability Resistance acquisition [12]

Environmental adaptation

Anti-sense inhibitors [33]

Pili# Adhesion [34]

Twitching motility [34]

Biofilm formation [34]

Horizontal gene transfer [35] (natural transformation)

Immunisation

RND efflux pumps# [36] Antibiotic removal [37]

QS molecule release

Efflux pump inhibitors

Lectin# Cell aggregation proteins [38]

Ciliary dysregulation [39]

Lectin binding site competitive inhibition

Flagella

Flagellin

Motility [34]

Immune induction

Immunisation [40]

Immune modulation# [32] AHL/AQ signal QS inhibition

Rhamnolipid# [41] Biosurfactants – diffusible nutrition Swarming/motility

PMNL necrotic killing

QS inhibition

Iron sequestration# Pyoverdin

Pyochelin

PQS [42]

QS inhibition

Iron metabolism inhibition/chelation [43]

Enzymes

Invasion-mediating#

Elastases

Phospholipase

Lecithinase (alkaline protease)

QS inhibition

b-lactamase inhibitors

Antibiotic modifying b-lactamases

Cephalosporinase

Aminoglycoside-modifying enzymes

Toxins Lipopolysaccharide (endotoxin)

Exotoxin A

Exoenzyme S

Immunotherapy and Immunisation [44]

Antibody to secretion system apparatus [45]

Host-cardiovascular effects [46] AHL-mediated vasodilatation – increasing blood flow for

nutrient delivery

QS inhibition

QS: quorum sensing; AHL: N-acylhomoserine lactone; AQ: alkylquinoline; PMNL: polymorphonuclear leukocyte; PQS: Pseudomonas quinolone signal. #: quorum

sensing regulated factor.
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challenge is to identify effective strategies to translate QSIs
from natural sources to use in the clinic.

Commonly used antibiotics including azithromycin, ceftazidime
and ciprofloxacin have been shown to have a negative impact on
QS-dependent virulence factor production [64]. Interestingly,
azithromycin acts as a QSI at concentrations below its minimum
inhibitory concentration [64, 65]. A murine chronic infection
model has demonstrated significantly more clearance in those
treated with azithromycin compared with control [65].

Lectin inhibitors
Lectins are outer membrane proteins which recognise sugar
residues and allow bacterial cells to cross link, aggregate and so
form the architecture of the biofilm [38, 66]. Lectins may also
interfere with normal ciliary beating in the human airway [39] and
form another barrier to host-mediated clearance of the organism.

The two specific lectins, LecA and LecB have fucose-specific
and galactose-specific binding sites and so may be blocked by

competitive inhibitors (fucose and galactose moieties, respec-
tively). Studies performed in vitro show that these inhibitors
either on their own or accompanied by an antibiotic, facilitate
dissolution of biofilms or prevent their formation [66–68].

A small randomised trial in CF patients, without a control group,
demonstrated a positive trend towards improvement in those
that received fucose/galactose inhalation treatment [69]. Patients
with chronic P. aeruginosa infection were recruited during an
infective exacerbation and randomised to receive either inhala-
tion of sugars alone or inhalation accompanied by intravenous
antibiotics. Both groups demonstrated a significant reduction in
sputum P. aeruginosa’s colony forming units and tumour necrosis
factor-a levels. More recently, multivalent dendrimers with these
sugars attached to them have shown higher affinities than
monovalent fucose, showing potential as therapeutic agents [70].

Iron chelation
Iron metabolism in the respiratory tract is complex [71] and
only available as free iron in minute quantities in the healthy
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FIGURE 1. Quorum sensing (QS) pathways of Pseudomonas aeruginosa. P. aeruginosa uses N-acylhomoserine lactones (AHLs) and alkylquinolines (AQ) mediated QS

systems to control the production of virulence factors and the interaction with the host. The balance between these signalling mechanisms is also a key determinant in biofilm

formation. 3OC12-HSL: N-(3-oxo-dodecanoyl)-L-homoserine lactone; C4-HSL: N-butanoyl-L-homoserine lactone; HHQ: 2-heptyl-4-quinolone; PQS: Pseudomonas quinolone

signal.
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lung as it is normally bound by ferritin and transferrin.
However, compared with non-CF sputa, the sputa of patients
with CF is a rich iron source, and correlates with chronic
P. aeruginosa infection [72]. The acquisition of iron is essential
for the survival of this bacterium. It sequesters iron from its
environment predominantly, but not exclusively [73] using the
siderophores pyoverdin and pyochelin [74]. The human innate
immune system has developed to recognise and block biofilm
development through the action of lactoferrin, at sub-bacter-
iocidal concentrations [75]. Lactoferrin chelates iron prompting
the bacteria to increase motility, rather than form a biofilm.
However, in the CF airway the affinity of these siderophores
for iron is higher than that of serum proteins and so the
protein-bound iron may be sequestered directly by the action
of pyoverdin [76] or liberated by proteolytic cleavage [77], see
LAMONT et al. [78] for a detailed review.

Gallium and desferrioxamine are both in clinical use for non-
bacteriological indications. However their iron chelation activity is
of interest as this may interfere with bacterial iron metabolism.
Gallium-gentamicin liposomal co-encapsulation preparations have
been shown to enhance in vitro activity of gentamicin against CF
clinical isolates of P. aeruginosa [43]. A pharmacokinetic and safety
study in patients with CF is underway (Clinicaltrial.gov identifier
NCT01093521). Combinations of administration of desferrioxa-
mine and tobramycin have been shown in vitro to significantly
reduce biomass of preformed biofilms and prevent the formation
of biofilm on CF epithelial cells [79].

ANTI-RESISTANCE STRATEGIES

Efflux pumps
Efflux pumps allow the organism to regulate their internal
environment by removing toxic substances, including anti-
biotics [36], metabolites and QS signal molecules [50]. They
are also implicated in host invasion. Elements of multidrug
resistance are attributed to five families of efflux pumps of
which P. aeruginosa has many of interest within the resistance
nodulation division (RND) family which are implicated in
resistance to many antibiotics including ciprofloxacin, ceftazi-
dime and tobramycin [80].

Some of the efflux pumps expressed by P. aeruginosa are only
active under specific growth conditions, such as those en-
countered in biofilms [81]. Indeed, QS is partly dependent upon
efflux, as the signal molecule 3OC12-HSL is not diffusible across
the cell membrane and requires active transport involving efflux
pumps [50]. Findings in clinical strains have been inconsistent as
over-expression of certain efflux pumps increases antibiotic
resistance [82], but can also be associated with reduced virulence
[83]. This may in part be related to the effects upon QS whereby
increased efflux activity may increase the transport of efflux
pump-dependent QS molecules (pro-virulent) but other QS
molecules may be exported from within a cell preventing the
concentration of these molecules reaching a quorum (and so
inhibit virulence). Interestingly, these attenuated strains over-
expressing efflux pumps formed better biofilms [83]. It would
appear that antibiotic resistance and virulence may have
competing costs for the organism and that intervention at the
level of the efflux pump may have varied consequences.

The use of efflux pump inhibitors (EPIs) have revealed that
intrinsic antibiotic resistance may be overcome, acquired

resistance may be reversed, and the emergence of new resistant
strains to a co-administered antibiotic may be reduced [84].
Indeed there are EPIs which can ameliorate fluoroquinolone
resistance in clinical strains [37]. A screen for EPI candidates
revealed Phe-Arg-b-naphthylamide acted as an EPI [77] how-
ever progression along the drug development pipeline was
halted due to phototoxicity [85]. While existing drugs, such as
selective serotonin re-uptake inhibitors, in the case of Sta-
phylococcus aureus, appear to have EPI activity, an agent that
acts upon P. aeruginosa has not been published [85]. Mpex Phar-
maceuticals (San Diego, CA, USA) are currently developing an
EPI agent in partnership with GlaxoSmithKline due to the
potential of this type of treatment in the clinic. Mpex Pharma-
ceuticals have also been developing levofloxacin inhalation
solution, the efficacy of which they have shown is increased
eight-fold in the presence of a candidate EPI [86] and so it is
conceivable that the product of the EPI development would be
co-administered with this.

Agents that reduce the effect of efflux pumps may be useful
therapeutically and result in a more effective action of antibiotics.
However, such an approach is likely to be complex given the
opposing actions of virulence, growth and resistance [83] and the
variety of efflux pumps hosted by P. aeruginosa [36].

Genetic ‘‘inhibitors’’ of resistance mechanisms
Antisense or antigene strategies have been proposed as
inhibitors of resistance mechanisms at the nucleic acid level,
targeting DNA and mRNA to prevent transcription and/or
translation of specific genes [33]. By doing so the expression of
the antibiotic resistance gene is blocked and the gene product
conferring resistance is not produced.

Such an approach has been successful in vitro in reverting
resistant strains to sensitive phenotypes. Delivery of the antisense
agent to the site of infection is a challenge that may be overcome
by linking the antisense molecule to a cell-permeabilising
peptide. This has been achieved with Escherichia coli [87] but
when considering the impermeability of P. aeruginosa this may be
quite a different undertaking. Although at a prospecting stage a
delivery strategy using a bacteriophage vector [33] or a conjugate
of an agent linked to a delivery peptide, as has recently been
described in the investigation of activity of such an agent upon
antibiotic resistant Gram-negative and Gram-positive bacterial
species, may be possible [88].

Bacteriophages
Bacteriophages are naturally-occurring viruses that infect
bacterial cells, in many cases causing lysis of the bacterium.
They are present in all environments and we are continually
exposed to them. The advantages of using bacteriophages to
kill bacteria are that only a specific bacterium will be killed, the
viruses replicate at the site of the infection and few side-effects
have been described [89].

Studies using P. aeruginosa in vitro bacterial biofilms have been
encouraging, demonstrating the ability of the phages to penetrate
the biofilm and kill the bacteria [90]. In a murine model of
intraperitoneal P. aeruginosa infection, a non-replicating phage
yielded a 70% survival rate at day 7 compared with a 20%
survival at day 2 in untreated mice [91].
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Bacteriophage therapy has been used routinely in Tblisi, Georgia
although little peer-reviewed data are available [92]. A recent
human clinical trial of a bacteriophage treatment of refractory
P. aeruginosa-related chronic otitis externa has further demon-
strated potential benefit [93]. This randomised double-blind
placebo-controlled trial using a six phage strain preparation
recruited patients with previously chronic and unresponsive
otitis externa. These patients were selected as their infections
were confirmed to exhibit in vitro bacterial sensitivity to the
phage preparation. Significant reductions in patient and phy-
sician evaluation scores were observed in all domains for the
treated group which was directly correlated with a signifi-
cant decrease in P. aeruginosa counts. The mean duration of
bacteriophages replication was 23 days in the treated group
and in those patients that completely cleared their P. aeruginosa
infection no bacteriophages could be isolated thereafter. A
randomised clinical trial assessing the efficacy of bacteriophage
therapy for venous leg ulcers has recently completed and
results are awaited [94].

There are multiple challenges with translating the promising in
vitro studies with bacteriophages to widespread clinical use.
While the recent clinical trials indicate a move of regulatory
authorities to consider and approve such studies, gaining regu-
latory authority for widespread clinical use will be difficult. There
are also significant technical challenges with phage selection,
purification, storage and sterility control [95]. Difficulties asso-
ciated with phage therapy, however, include their specificity for
individual bacterial strains, preventing the use of a single phage
to treat infections involving multiple strains. In the chronic otitis
media study, of those that were screened, 86.2% were sensitive to
the six-phage mix. Phage virulence and dose, as well as the
challenges posed by the immune system of the mammalian host
must also be considered for this kind of treatment [90]. These are
of particular relevance to pulmonary infection in CF. Possible
hazards must be considered when evaluating the potential
therapeutic use of bacteriophages, such as the possibility of the
infected organism acquiring virulence traits from the phage, as
has been demonstrated recently [96].

Endolysins
Bacteriophages produce endolysins to exert their hydrolase
action on the peptidoglycan cell wall resulting in the lysis of
the organism. The potential of endolysins in the treatment of
infection has been tested in animal disease models and found
to successfully clear Streptococcus pneumoniae from colonised
mucosal surfaces [97].

While translation of this may be less complicated in Gram-
positive bacteria, the challenge of delivering an endolysin, or so-
called ‘‘enzybiotic’’ through the less permeable outer membrane
of Gram-negative bacteria is more complex [98]. However, in
combination with an agent administered to penetrate the outer
membrane, such an approach could be possible, yet very early
in development [99].

Immunisation and immunotherapy
Prevention of primary infection by immunisation is an ambi-
tious aim considering the diversity of mechanisms used by the
organism to cause disease and the variability with which they
are expressed. The use of exotoxin A toxoid and lipopolysac-
charide as antigens have shown reduced mortality in murine

models [44]. Other strategies involving immunogenic bacterial
proteins, including flagellin, the highly immunogenic protein that
comprises the flagellum, are currently in development. While
there have been some clinical trials of vaccine preparations
published suggesting a positive effect, few are of high quality in
terms of randomisation and design. Three of these trials were
included in a Cochrane review [100] involving 996 patients with a
follow-up of between 2 and 12 yrs where the authors concluded
that vaccination cannot currently be recommended.

While immunisation strategies continue to be developed,
immunotherapy also offers a similar approach to increase the
efficacy of conventional antibiotics by artificially stimulating the
immune system. Immunotherapy studies are largely marred by
similar criticisms of either no or poor randomisation and non-
contemporaneous controls. However the authors of the cur-
rently available studies suggest that immunoglobulin (Ig)Y
prophylaxis could increase the time to first infection, reduce the
number of infection events, reduce the time to established
chronic infection and delay the conversion to a mucoid strain
[101]. These results have prompted its licensing in Sweden [102]
and its designation as an orphan drug. A Phase III double
blind randomised controlled trial of 180 patients is underway
(Clinicaltrial.gov identifier NCT01455675) recruiting those with
P. aeruginosa infection with the primary outcome measure being
time from start of treatment to the first isolation of P. aeruginosa
from sputum culture or throat swab. The completion of this
study is expected in December 2014. A phase IIa open pilot trial
of a monoclonal anti-lipopolysaccharide IgM antibody in those
with ventilator associated pneumonia suggested that such a
therapy is safe and suggested a degree of efficacy in the small
number of patients treated [103].

Antibodies have also been used against specific elements of
the type III secretion apparatus of P. aeruginosa. These have
ameliorated infection in a mouse pneumonia model with a
subsequent reduction in mortality and bacterial load [104].
Preliminary reports of a phase I/II study in patients with CF
suggested a dose-dependent reduction in sputum inflamma-
tory markers although the full report is awaited [45] as are
results from a phase I/II study of patients with ventilator asso-
ciated pneumonia.

Innate immunity supplementation

A component of the airway response to bacteria is the gene-
ration of hypothiocyanite (OSCN-), which is bactericidal.
However, the generation of this is defective in patients with
CF [105]. Preliminary data suggest an impressive reduction in
bacterial growth in vitro and in a murine model of infection with
a nebulised OSCN/lactoferrin preparation [106]. This prepara-
tion (Meveol) has recently been granted orphan drug status.

SUMMARY
P. aeruginosa exploits multiple mechanisms to elude the host
immune response and the action of conventional antibiotics.
Frequent and prolonged courses of broad spectrum i.v. antibiotics
encourage the emergence of resistance.

Conventional antibiotics, such as azithromycin, may have some
efflux and QS inhibitory effects which may invigorate work to
develop antibiotics of existing classes that have additional effects
[107]. However the longevity of such an approach is likely to be
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limited as the organism evolves to overcome such an effect.
With the exception of a new generation of peptidomimetic
antibiotics early in the discovery process [28], new antibiotics
exploiting novel mechanisms of action do not appear to be in
the pipeline. Consequently, the targets discussed above may act
as useful adjuvants, increasing the effectiveness of antibiotics at
our disposal. The optimal timing for the use of these agents
remains uncertain, however, it is likely that some approaches
may be more suited to prophylaxis, while others may prolong
the opportunity for eradication of early infection or may enable
a treatment strategy for chronic infection. However, it will
be some time before such treatments reach the bedside. The
novel nature of each of these approaches suggests that clinical
application of these therapies may be slow and progress limited
by a lack of experience of similar approaches with which to
satisfy regulatory bodies. Furthermore, the limited markets for
specific CF-applied therapies mean that biotechnology com-
panies may limit interest in strategies without wider applica-
tion. Nevertheless, novel approaches are required to limit
P. aeruginosa’s resistance to antibiotics and the host immune
system so that treatment of this versatile organism may be
successful.
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