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Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing 

materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high 

throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models 

that link microscopic or molecular properties of polymers or other materials to their biological effects.  We illustrate the potential of 10 

these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic 

stem cell embryoid bodies (hEB) to the surfaces of 496-member polymers. 

1. Introduction 

Culture of multipotent cells such as haematopoietic stem cells 

(HSCs) and induced pluripotent stem cells is a major research 15 

focus in regenerative medicine. Present methods to culture them 

and expand their population rely upon animal-derived products 

now increasingly under scrutiny. Much research effort is focused 

on designing chemically defined, serum-free, feeder-free 

synthetic substrates and media to support robust self-renewal of 20 

pluripotent cells. Changes in cellular properties such as adhesion, 

morphology, motility, gene expression and differentiation are 

influenced by surface properties of the materials on which cells 

have been cultured. Important surface properties that have been 

identified include surface chemistry,1 surface wettability,2 25 

topography,3 and elastic modulus.4 Additionally, it is clear that 

proteins adsorbed onto material surfaces strongly influence the 

biological responses to the surfaces.5, 6 High throughput methods 

employing large polymer libraries and rapid screening methods 

can play an important role in discovery of materials for culture 30 

and expansion of stem cells.7  High throughput surface 

characterisation has been developed that allows surface structure-

property relationships to be investigated. 8-10 Working together, 

these techniques allow a much larger part of materials property 

space to be explored than has been possible in the past. However, 35 

as the dimensionality of materials property space is too large to 

be explored by even high throughput methods, computational 

modelling provides an effective means of leveraging the limited 

and expensive experimental data into a larger portion of materials 

property space. 40 

Consequently, high throughput synthesis and characterization 

technologies are complementary to computational modelling 

tools that analyse large data sets and provide interpretation and 

prediction of new, improved materials. Robust machine learning 

methods can extract useful information on design and 45 

optimization of new materials from many types of existing data. 

They can identify which physical, process, and chemical 

properties of polymers and other materials will have the greatest 

influence on cell and tissue response. They can also reduce the 

dimensionality of complex synthesis and processing procedures 50 

by identifying the subset of these parameters that have little effect 

on biological outcomes and may be ignored.11 Machine learning 

methods are simple to apply, broad in application, and 

particularly well suited to data from high throughput 

experiments.12  55 

Recently Yang et al.13 reported the first relationship between 

surface chemistry and structure of a polymer microarray and the 

adhesion of partially differentiated stem cells: human embryonic 

stem cell embryoid bodies (hEB). The large library of materials 

in the microarray was characterized experimentally by 60 

wettability, surface topography, surface chemistry, and 

indentation elastic modulus properties. These studies employed 

high-throughput synthesis and characterization methods to 

explore the polymer property space supporting stem cell growth. 

They identified materials that, with a fibronectin pre-treatment, 65 

could support hEB adhesion. The adhesion of human stem cells is 

critical for cellular activities such as proliferation and 

differentiation. Multivariate analysis of time of flight secondary 

ion mass spectrometry (ToF-SIMS) data was used to identify 

relationships between surface chemistry and cell attachment.14 70 

Yang et al.13 used these TOF-SIMS data and other 

experimentally-derived polymer properties to generate a model of 

hEB adhesion. This approach has since been applied to other cell 

characteristics such as pluripotency.15 Their methodology 

provided a general paradigm for the combinatorial development 75 

of synthetic substrates for stem cell culture that has recently been 

extended to developing materials with reduced bacterial pathogen 

attachment.16  

 We investigated whether advanced machine-learning methods 



coupled with efficient mathematical descriptions of molecular 

properties could model and predict hEB adhesion to this large 

library of polymers. Our aim was to determine how well we could 

predict experimental hEB adhesion of the polymer library using 

computational descriptors alone, not using any experimental data 5 

such as contact angle, TOF-SIMS spectra, or mechanical 

properties. Purely computational methods of modelling high 

throughput materials data will clearly accelerate new materials 

discovery by reducing the need for additional experimental 

measurements to characterize the microscopic, bulk, or surface 10 

chemistry properties of large materials libraries. 

2. Experimental 

 We employed partially differentiated hEB cells rather than 

undifferentiated human embryonic stem cells (hES) cells because 

fully dissociated hES cells tend to undergo cell death during 15 

plating. hEB cells are substantially more robust, while 

maintaining high differentiation potential. The hEBs were 

cultured for 8 days, as described in Yang et al.13 hEBs were 

subsequently trypsinized and cultured on fibronectin (Fn) pre-

conditioned polymer arrays for 16 hrs to test their initial 20 

adhesion. Polymer arrays were washed with PBS, fixed with 

Accustain (Sigma) solution for 30 min, permeabilized with 1% 

Triton X-100 in PBS for 10 min, and then stained with Cyto 24 

(Invitrogen) for 1 h. The arrays were gently washed with PBS and 

deionised water to remove buffer salts and air dried before 25 

imaging by laser-scanning cytometry, and cell number 

quantification.  

The polymer library was synthesized and characterized as 

previously described by Yang et al.13  It consisted of 496 

polymers synthesized by mixing 22 monomers at various ratios, 30 

for which hEB adhesion on the surface had been measured.  

Surface contact angle, elastic modulus of the polymers in the 

library, and the surface roughness were measured, and surface 

chemistry parameters were characterized using ToF-SIMS. These 

experimental measurements had been used by Yang at al. to 35 

model the growth of hEB on the library polymers. However, we 

generated models of this biological property that employed only 

molecular descriptors that could be calculated from the monomer 

structures (no experimental measurements required).  

For computational modelling we partitioned the data set into a 40 

training and test set. The training set was used to generate the 

models and contained 80% of the data (397 polymers). The 

remaining 20% of the data (99 polymers) constituted an 

independent test set used to estimate how well the models could 

predict data not used to generate the model. The splitting of 45 

training and test sets was achieved by using k-means cluster 

analysis. We generated 68 molecular descriptors (mathematical 

objects that capture the molecular properties of polymers) using 

Dragon v. 5.517 and Adriana v. 2.218 software.  Descriptors were 

chosen to be chemically interpretable and a large number of more 50 

complex potential descriptors were not used. The QSPR models 

were generated using multiple linear regression with sparsity 

imposed by an expectation maximization algorithm.19  Nonlinear 

models used three layer neural networks with the same number of 

input nodes as descriptors used, a variable but small number of 55 

hidden layer nodes, and a single output node corresponding to the 

property (e.g. hEB adhesion) being modelled (Figure 1).  

 

Figure 1. Structure of the neural networks. The input nodes receive the 

molecular descriptors, the hidden layer (2-3 nodes) does the computation, 60 

and the output node generates the predicted response variable (hEB 

adhesion or roughness). 

The logarithm of the properties being modelled was used, as is 

usual practice in these types of machine learning models. The 

complexity of the neural network models was controlled using 65 

Bayesian regularization that employed either a Gaussian prior 

(BRANNGP)20 or a sparsity-inducing Laplacian prior 

(BRANNLP)21. The maximum of the Bayesian evidence for the 

model was used to stop training of the neural network. Both 

neural network methods effectively prune the number of weights 70 

in the network to a number that is substantially smaller than the 

number of weights in a fully connected network.  This reduced 

number of weights is called the number of effective weights, and 

is one of the reasons why Bayesian regularized neural networks 

are relatively immune to overfitting. The BRANNLP neural 75 

network also prunes less relevant descriptors from the model, 

depending on the sparsity setting chosen. Details of the three 

modelling algorithms have been published previously.19-21 No 

outliers were removed from the models. 

3. Results and discussion 80 

3.1 Stem cell embryoid body adhesion models 

We modelled the adhesion of hEBs to the entire 496-member 

polymer library in several ways. We used linear modelling 

methods with increasing levels of sparsity to model the EB 

adhesion in order to identify the molecular features most relevant 85 

to the biological activity of the polymers. Optimally sparse 

models have the greatest ability to predict the properties of new 

polymers. We also used nonlinear modelling methods to generate 

models for EB adhesion to determine whether interactions 

between the relevant molecular features, or nonlinear 90 

relationships between these features and the adhesion were 

important. We generated models of EB adhesion that employed 

only calculated molecular descriptors for the polymer 

components. The quality of prediction of the EB adhesion 

generated by both linear and nonlinear models was relatively 95 

high.  

The linear hEB adhesion model (MLR) predicted the training 

set with an r2 value of 0.68 (i.e. the model accounted for 68% of 

the variance in the data), and a standard error of estimation (SEE) 

of 0.163 logEB (predicted hEB binding within a factor of ±1.5). 100 

This model successfully predicted the hEB adhesion on polymers 

in the test set with an r2 value of 0.66, and a standard error of 

prediction (SEP) of 0.145 logEB. The similarity between the 

training and test set results suggests the model is robust and not 

overfitted. These results were similar to those for a partial least 105 



squares (PLS) model of hEB adhesion that used experimental 

ToF-SIMS peaks as descriptors reported by Yang et al.13 They 

reported a training set r2 value of 0.74 and test set r2 of 0.62 for 

their model (training and test partitioning were different to our 

study). No standard errors were reported. 5 

The two nonlinear Bayesian neural network models were 

substantially better than the linear model at predicting training 

and test sets. The quality of both neural network models was 

similar to each other. The Bayesian neural network using a 

Gaussian prior (BRANNGP) with two nodes in hidden layer 10 

predicted the hEB adhesion of the training set polymers with an r2 

value of 0.81 (i.e. the model explained 81% of the variation in the 

data), and an SEE=0.108 logEB (the model could predict the EB 

binding to within a factor of ±1.3). The model predicted the hEB 

adhesion for test set polymers with an r2 value of 0.80, and an 15 

SEP of 0.107 logEB (predicted EB binding within a factor of 

±1.3). This model had 28 effective weights in the neural network, 

considerably fewer than the number of polymers in the training 

set and similar to the number of monomers from which the 

library was generated. The Bayesian neural network with sparse 20 

Laplacian prior (BRANNLP) also employed two nodes in the 

hidden layer. It predicted hEB adhesion for training set polymers 

with an r2 value of 0.80, and an SEE=0.113 logEB (predicted EB 

binding within a factor of ±1.3). This model predicted hEB 

adhesion of test set polymers with very similar fidelity to the 25 

BRANNGP model with an r2 of 0.82, and an SEP of 0.101 logEB 

(predicted EB binding within a factor of ±1.3) (Figure 2). This 

model used twenty-three molecular descriptors. The BRANNLP 

method automatically prunes out the least relevant molecular 

descriptors and network weights. The majority of molecular 30 

descriptors were pruned from the model. The twenty-three most 

relevant descriptors used in the model are summarized in Table 1, 

together with a description of the type of information these 

descriptors encode. 

Table 1. Description of parameters used in the hEB adhesion model 35 

Parameter Description 

HAcc_N Number of H-bond acceptors on nitrogen 
XlogP Log octanol/water partition coefficient 

Dipole Molecular dipole moment 

LogS Log aqueous solubility 
NRotBond Number of rotatable bonds 

NViolationsRo5 Number of Lipinski’s rule of 5 violations 

NStereo Number of tetrahedral stereo centres 
Complexity Molecular complexity parameter 

RComplexity Ring complexity 

Rgyr Radius of gyration 
Aspheric Molecular asphericity 

nCs Number of secondary C(sp3) 

nCrs Number of ring secondary C(sp3) 
nCar Number of aromatic C(sp2) 

nR=Cp Number of terminal primary C(sp2) 

nR=Cs Number of aliphatic secondary C(sp2) 
nRCOOR Number of esters (aliphatic) 

C-004 Number of atom-centred fragments CR4 

C-006 Number of atom-centred fragments CH2RX 
C-015 Number of atom-centred fragments =CH2 

C-026 Number of atom-centred fragments R--CX--R 

H-047 Number of H attached to C1(sp3)/CO(sp2) 
O-059 Number of aliphatic ether atom-centred fragments 

   

    
Figure 2. Predictions of the log hEB adhesion on the polymers for the 

training (left) and test (right) sets for the nonlinear Bayesian (BRANNLP 
neural net model. 40 

The two neural network models had substantially higher 

predictive power than the PLS models using experimentally 

determined parameters reported by Yang et al. This suggests that 

there is some nonlinearity in the relationships between polymer 

structure and hEB adhesion, or that some of the descriptors used 45 

interact with each other in the models. The similarity between the 

training and test set statistics also strongly suggests that all 

models are quite robust with no overtraining or overfitting 

occurring. Earlier PLS models of hEB adhesion reported by Yang 

et al.13 indicated that hEB adhesion correlated with ions identified 50 

in the ToF-SIMS experiments corresponding to the following 

polymer environments: hydrocarbons, esters, cyclic structures, 

tertiary amines, propylene glycol, tertiary butyl)22. The most 

relevant descriptors used in our models are in very good 

agreement with these conclusions. The logP octanol/water and 55 

water solubility, (XlogP, logS) and hydrocarbon indicator 

variable (nCs, nCrs, nCar , nR=Cp, nR=Cs) descriptors are 

describing molecular surface chemistry properties similar to those 

of the hydrocarbon ToF-SIMS peaks. The descriptor for the 

number of esters (nRCOOR) contains information similar to that 60 

of ions assigned in the ToF-SIMS to esters from the monomer 

structures that correlated with hEB adhesion. The cyclic 

structures ToF-SIMS peak is mimicked to some extent by the 

molecular complexity (Complexity, RComplexity), radius of 

gyration (Rgyr), and molecular sphericity (Aspheric molecular) 65 

descriptors. Finally the tertiary amine and propylene glycol ToF-

SIMS peaks contain similar information on hydrogen bonding 

interactions to that of the number of hydrogen bond acceptors on 

nitrogen (HAcc_N) and dipole moment (Dipole).  

 As the polymers were pretreated with Fn, it was possible that it 70 

is the presence of this protein that modulates the hEB adhesion, 

rather than the polymers directly.  Therefore, we calculated the 

correlation between Fn adhesion to the polymer library and that 

of hEB. Surprisingly, the correlation was only 0.05, with the 

correlation between the log transformed values modelled below 75 

being slightly higher at 0.18. This poor correlation between Fn 

binding and hEB adhesion suggests that the relationship between 

surface chemistry and properties and hEB adhesion is quite 

complex. Recent work by Szott and Horbett indicates that it is 

protein conformation, not the amount that modulates cell 80 

adhesion.23 Polymers in the library are therefore influencing hEB 

adhesion indirectly via their effect on Fn conformation. The 

modelling of Fn adhesion to this polymer library will be reported 

elsewhere.  

 To understand how the calculated descriptors could substitute 85 



for experimentally measured properties in modelling hEB 

adhesion on polymer surfaces, we additionally generated 

machine-learning models of surface roughness that also 

employed calculated molecular descriptors solely.  

 5 

3.2 Surface Roughness models 

Although the modelling and prediction of the adhesion of hEBs 

on polymers was the primary focus of our work, we also 

constructed models of the experimentally measured surface 

roughness because this appeared to impact on the adhesion of 10 

hEBs. It was not intuitively obvious that surface roughness could 

be modelled computationally, as this material property may have 

more to do with sample preparation than the chemical structure of 

monomers and polymers.  However, it is likely that materials 

properties will have some influence on polymer surface 15 

roughness. We have previously observed that certain 

combinations of monomer chemistries (e.g. mixed hydrophobic 

and hydrophilic) produce specific nanotopographies with 

associated changes in roughness24. In some cases this results from 

phase separation prior to polymerization. 20 

  The statistics of the prediction of the training and test sets were 

similar to each other (Table 2), but compared to the hEB model, 

the statistical quality of the surface roughness models was lower.  

The moderate values for the r2 value of the non-linear models for 

the test sets in particular suggests that the models have some 25 

degree of useful predictive power.  Clearly other factors such as 

how the samples are prepared may indeed have a substantial 

impact on the surface roughness, as might be intuitively expected.  

The best nonlinear models account for 60% of the variance in the 

data, the remainder we suggest is largely due to experimental 30 

factors. There were twenty-two indices with nonzero weights in 

the most parsimonious BRANNLP model. These corresponded to 

descriptors for hydrophilic properties (number of H-bond 

acceptors on nitrogen, dipole moment, number of primary 

alcohols) and hydrophobic properties (number of tetrahedral 35 

stereo centres; ring complexity; first principal moment of inertia; 

molecular asphericity; number of secondary sp3 carbon atoms; 

number of total quaternary carbon atoms; number of secondary 

sp3 carbon atoms in a ring; number of substituted benzene carbon 

atoms; number of terminal primary sp2 carbon atoms; number of 40 

aliphatic secondary sp2 carbon atoms; number of aliphatic ethers; 

number of aromatic ethers; number of atom centred fragments 

CR4, CH2RX, CHR2X, =CHR, R—CX—R, aliphatic-O-aliphatic, 

and aliphatic-O-aliphatic/aromatic-O-aromatic/R-O-R/R-O-

C=X). These descriptors were consistent with phase separation 45 

playing a role in surface topography. As surface roughness had 

previously been identified as an important factor in hEB 

adhesion, the fact that it can be modelled numerically reasonably 

well provides an explanation as to why we can model hEB 

adhesion without requiring this measured polymer surface 50 

property. 

 The relative performance of the three methods in modelling 

roughness is summarized in Table 2. The MLR model performs 

poorly compared to the neural network models. 

 55 

 

Table 2. Summary of surface roughness model statistics 

Model r2
train SEE r2

test SEP Neffective 

MLR 0.44 0.199 0.51 0.259 69 
BRANNGP 

(3 nodes in hidden layer) 
0.66 0.134 0.63 0.212 47 

BRANNLP 

(2 nodes in hidden layer) 
0.61 0.143 0.64 0.209 22 

 

 The quality of the prediction of the BRANNGP models for 

training and test set is illustrated in Figure 3.  The models have 60 

modest although statistically significant predictivity in contrast to 

the lack of correlation of experimental ToF-SIMS data with the 

polymer roughness reported by Hook et al.22 This lack of 

correlation may be due to artefacts in the estimation of the 

surface roughness reported that were subsequently removed in the 65 

data modelled here. 

 

     

Figure 3. Predictions of surface roughness for the training (left) and test 

(right) sets for the nonlinear Bayesian (BRANNGP) neural net models. 70 

4. Conclusions 

We found that the stem cell hEB adhesion on polymeric surfaces 

could be modelled well by our approach using only calculated 

molecular descriptors. These models provide a compact summary 

of a large amount of numerical data, and some interpretation of 75 

the role of surface chemistry in hEB adhesion. These models 

allow experimental data to be leveraged into a larger portion of 

materials property space by predicting polymers with improved 

properties. In addition, surface roughness can also be modelled 

moderately well using molecular descriptors. This suggests that 80 

surface roughness, important for hEB adhesion, may have at least 

a partial molecular basis, most likely phase separation. Our 

analysis and the descriptors that we use are amenable to 

systematic ‘reverse engineering’ by predicting the properties of 

larger virtual libraries of plausible polymer candidates and by 85 

allowing chemical interpretation of the relevant polymer 

molecular descriptors. These robust modelling methods that 

require only computed materials descriptors are a valuable 

complement to high throughput synthesis and characterization 

methods. They will allow more of materials property space to be 90 

accessed than by experimental methods alone. 

 

 



Notes and references 

aCSIRO Materials Science & Engineering, Parkville, Australia 
bKoch Institute for Integrative Cancer Research, Massachusetts Institute 

of Technology, Cambridge, MA  
c Department of Chemical Engineering, Massachusetts Institute of 5 

Technology, Cambridge, MA  
d Division of Health Science Technology, Massachusetts Institute of 

Technology, Cambridge, MA 
eUniversity of Nottingham, Nottingham, UK. 
fCSIRO Materials Science & Engineering, Clayton, Australia 10 

gMonash Institute of Pharmaceutical Sciences 

 

1. A. S. Curtis, J. V. Forrester, C. McInnes and F. Lawrie, J. Cell Biol., 

1983, 97, 1500-1506. 

2. K. L. Menzies and L. Jones, Optom. Vis. Sci., 2010, 87, 387-399. 15 

3. H. V. Unadkat, M. Hulsman, K. Cornelissen, B. J. Papenburg, R. K. 

Truckenmuller, G. F. Post, M. Uetz, M. J. Reinders, D. 

Stamatialis, C. A. van Blitterswijk and J. de Boer, Proc. Natl. 

Acad. Sci. U S A, 2011, 108, 16565-16570. 

4. K. G. Robinson, T. Nie, A. D. Baldwin, E. C. Yang, K. L. Kiick and 20 

R. E. Akins, Jr., J. Biomed. Mater. Res. A, 2012, 100, 1356-

1367. 

5. Y. Mei, S. Gerecht, M. Taylor, A. J. Urquhart, S. R. Bogatyrev, S.-

W. Cho, M. C. Davies, M. R. Alexander, R. S. Langer and D. 

G. Anderson, Adv. Mater., 2009, 21, 1-6. 25 

6. C. J. Wilson, R. E. Clegg, D. I. Leavesley and M. J. Pearcy, Tissue 

Eng., 2005, 11, 1-18. 

7. D. Anderson, S. Levenberg and R. Langer, Nature Biotech. Lett., 

2004, 22, 863-866. 

8. M. Taylor, A. J. Urquhart, D. G. Anderson, R. Langer, M. C. Davies 30 

and M. R. Alexander, Surf. Interf. Anal., 2009, 41, 127-135. 

9. A. Urquhart, M. Taylor, D. Anderson, R. Langer, M. Alexander and 

M. C. Davies, Adv. Mater., 2007, 19, 2486–2491. 

10. A. J. Urquhart, M. Taylor, D. G. Anderson, R. Langer, M. C. Davies 

and M. R. Alexander, Anal. Chem., 2008, 80, 135-142. 35 

11. D. A. Winkler and F. R. Burden, Mol. Biosys., 2012, 8, 913-920. 

12. T. C. Le, V. C. Epa, F. R. Burden and D. A. Winkler, Chem. Rev. , 

2012, ASAP. 

13. J. Yang, Y. Mei, A. L. Hook, M. Taylor, A. J. Urquhart, S. R. 

Bogatyrev, R. Langer, D. G. Anderson, M. C. Davies and M. 40 

R. Alexander, Biomat., 2010, 31, 8827-8838. 

14. M. Taylor, A. J. Urquhart, D. G. Anderson, P. M. Williams, R. 

Langer, M. R. Alexander and M. C. Davies, Macromol. Rapid 

Comm., 2008, 15, 1298-1302. 

15. Y. Mei, K. Saha, S. R. Bogatyrev, J. Yang, A. L. Hook, Z. I. 45 

Kalcioglu, S. W. Cho, M. Mitalipova, N. Pyzocha, F. Rojas, 

K. J. Van Vliet, M. C. Davies, M. R. Alexander, R. Langer, R. 

Jaenisch and D. G. Anderson, Nature Mater., 2010, 9, 768-

778. 

16. A. L. Hook, Y. Mei, J. Yang, S. Atkinson, C.-Y. Chang, D. Irvine, R. 50 

Bayston, R. Langer, D. Anderson, G., P. Williams, M. C. 

Davies and M. R. Alexander, in Nature Biotech., 2012. 

17. A. Mauri, V. Consonni, M. Pavan and R. Todeschini, Match-Comm. 

Math Co., 2006, 56, 237-248. 

18. J. Gasteiger, J. Med. Chem., 2006, 49, 6429-6434. 55 

19. F. R. Burden and D. A. Winkler, QSAR Comb. Sci., 2009, 28, 645-

653. 

20. F. R. Burden and D. A. Winkler, J. Med. Chem., 1999, 42, 3183-

3187. 

21. F. R. Burden and D. A. Winkler, QSAR Comb. Sci., 2009, 28, 1092-60 

1097. 

22. A. L. Hook, J. Yang, X. Chen, C. J. Roberts, Y. Mei, G. G. 

Anderson, R. Langer, M. R. Alexander and M. C. Davies, Soft 

Matter, 2011, 7, 7194. 

23. L. M. Szott and T. A. Horbett, Curr. Opin. Chem. Biol., 2011, 15, 65 

677-682. 

24. A. L. Hook, J. Yang, X. Chen, C. J. Roberts, Y. Mei, D. G. 

Anderson, R. Langer, M. R. Alexander and M. C. Davies, Soft 

Matter, 2011, 7, 7194-7197. 

 70 



Journal of Materials 
Chemistry 

► 

PAPER 

 

This journal is © The Royal Society of Chemistry [year] [journal], [year], [vol], 00–00  |  6 

TOC entry 

 

Modern, sparse machine learning 
methods allow accurate in silico 

prediction of stem cell embryoid 5 

body adhesion to large polymer 
libraries. 


