
First-past-the-post Games

Roland Backhouse

roland.backhouse@nottingham.ac.uk

School of Computer Science University of Nottingham, Nottingham NG8 1BB,
England

Abstract. Informally, a first-past-the-post game is a (probabilistic) game
where the winner is the person who predicts the event that occurs first
among a set of events. Examples of first-past-the-post games include so-
called block and hidden patterns and the Penney-Ante game invented by
Walter Penney. We formalise the abstract notion of a first-past-the-post
game, and the process of extending a probability distribution on symbols
of an alphabet to the plays of a game.
Analysis of first-past-the-post games depends on a collection of simulta-
neous (non-linear) equations in languages. Essentially, the equations are
due to Guibas and Odlyzko but they did not formulate them as equations
in languages but as equations in generating functions detailing lengths
of words.
Penney-Ante games are two-player games characterised by a collection
of regular, prefix-free languages. For such two-player games, we show
how to use the equations in languages to calculate the probability of
winning. The formula generalises a formula due to John H. Conway for
the original Penney-Ante game. At no point in our analysis do we use
generating functions. Even so, we are able to calculate probabilities and
expected values. Generating functions do appear to become necessary
when higher-order cumulatives (for example, the standard deviation) are
also required.
Keywords: algorithmic problem solving, regular language, generating
function, probabilistic game, Penney-Ante, block pattern, hidden pattern

Penney-Ante is the name of a game with pennies invented by Walter Penney
[Pen74]. The two-player game is interesting because it is non-transitive; the game
is also used to demonstrate the use of generating functions in the calculation of
probability distributions [GO81,GKP94]. Our interest in the game began as a
simple, (for us) introductory exercise in probability generating functions. It has
turned out to be an exercise in applying the calculational method to the analysis
of the game in the general case of an arbitrary number of players — an exercise
with the surprising conclusion that generating functions are not needed for the
calculation of probabilities and expected values.

Analysis of the game is substantially facilitated by a collection of simul-
taneous (non-linear) equations between languages. In the literature, either the
equations are stated without proof [GKP94] or the equations are not given explic-
itly but translated directly into generating functions detailing lengths of words

[GO81]. The contribution of this paper is to record a derivation of the equations
and the associated probability distributions in which naming of word length and
the use of generating functions is avoided.

Our derivation has several novel features. We introduce the abstract notion
of a first-past-the-post game, and we formalise the process of extending a proba-
bility distribution on symbols of an alphabet to the plays of such a game (section
2). (Multi-player) Penney-Ante games and so-called block and hidden patterns
[FS09] are shown to be instances of first-past-the-post games. Such games are
characterised by a collection of regular, prefix-free languages. We derive a col-
lection of simultaneous non-linear equations in these languages and use these to
show how to calculate the probability of winning (section 4).

The equations are essentially the basis for the equations in generating func-
tions derived by Guibas and Odlyzko [GO81]. The formula we derive generalises
a formula due to John Horton Conway for the original two-player Penney-Ante
game. Another instance is the formula due to A.D.Solov’ev [Sol66] for the ex-
pected number of coin tosses until a given (contiguous) pattern appears. Like
Guibas and Odlyzko [GO81], we also consider the generalisation of Penney-Ante
games to an arbitrary number of players.

We show in section 5 that the equations in languages do not have a unique
solution. This is surprising and demands further investigation.

1 Preliminaries

We assume familiarity with the use of regular expressions to denote languages. To
avoid confusion with ordinary addition, the usual symbol “∪” is used to denote
set union, and not “+” (as often used in regular expressions). The symbol ε

denotes the empty word and T denotes a finite set (which is fixed throughout the
paper). In line with other literature on the Penney-Ante game, capital letters at
the beginning of the alphabet (A, B, etc.) denote words and capital letters at the
end of the alphabet (U ,V , etc.) denote sets of words. The elements of T are called
symbols and sets of words are called languages. Symbols are denoted by lower
case letters (a, b, etc.). The length of word A is denoted by #A. Concatenation
of words and of languages is denoted by juxtaposition.

For any word A different from the empty word, pre.A is the prefix of A

obtained by discarding the last symbol in A. The function pre is extended to
sets by the definition: for all languages V ,

pre.V = {A,a : A∈T ∗ ∧ a∈T ∧ Aa∈V : A} .

(We use the Eindhoven notation for quantifications [Bac86,GS93,Bac03]. The
notation {vars : rng : term} abbreviates 〈∪ vars : rng : {term}〉. In conventional
notation, the dummy a in the definition of pre would be existentially quantified.)

Repeated application of pre one or more times is denoted by pre+ and zero
or more times by pre∗. Thus pre+.V is the set of all proper prefixes of words in
V , and pre∗.V is V ∪ pre+.V . Note that pre distributes through set union.

For calculational purposes the following property of pre+ is used. For all
words C and languages V ,

C ∈ pre+.V ≡ {C}T +∩V 6= ∅ .

2 First-past-the-post Games

Penney-Ante is an instance of a class of probabilistic games for which winning
is characterised by the first occurrence of one of a set of events, and the events
are words. We begin by formalising this class of games.

Definition 1. Suppose S is a subset of T ∗. The set S is said to be a first-

past-the-post game if

(a) pre+.S ∩ S = ∅ .

In words, no proper prefix of a word in S is a word in S.
(b) pre∗.S = {ε} ∪ (pre+.S)T .

In words, appending an arbitrary symbol of the alphabet T to a proper prefix
of a word in S gives a word that prefixes a word in S.
(This informal statement expresses only that the right side of the equation is
included in the left side. The opposite inclusion is obvious from the definitions
of pre∗ and pre+.)

A play of the game is an element of pre∗.S. A complete play of the game is an
element of S. 2

A play of the game can be thought of as repeatedly throwing a die with
sides labelled by the elements of T . The play starts with the empty word and,
as the die is thrown, the symbol that occurs is appended to the end of the play.
The play is complete when the play is in S. Property (a) states that no proper
prefix of a word in S is an element of S. That is, the game ends —the play is
complete— immediately an element of S is recognised. Property (b) states that
the plays are the empty word or arbitrary continuations of an incomplete play.
It has the consequence that any throw of the die continues an incomplete play
of the game. A second consequence is that S is non-empty (because the right
side of the equation is a non-empty set).

Example 1. With T = {a,b}, the table below shows examples of languages and
whether or not they fulfill properties (a) and (b) of definition 1.

Language (a) (b)
{a} √ ×
{a,ab} × ×
T k (0≤k)

√ √
T≤k (0<k) × √
{a,ba,bb} √ √
{b}∗{a} √ √
{b}∗{a}{a}∗{b}{b}∗{a} √ √

2

The set T k, where k is some fixed natural number, exemplifies the set of
complete plays in a first-past-the-post game. (See example 1.) It is the game
where a die is thrown exactly k times.

Generally, the set S may be assumed to be split into disjoint sets each of
which is owned by one of the players. When the play is complete, the owner of
the play is the winner. The Penney-Ante game assumes that two players each
choose one word. The reason for this assumption is that the game is then non-
transitive: if one player chooses one word it is always possible for the second
player to choose a word that gives a better than evens chance of winning. This,
however, is not the focus of our investigation. For our purposes, the number of
players can be arbitrary as can be the number of words each player chooses.
There is no reason why games with fewer or more than two players should not
be allowed, or why each player should choose just one word. “Games” with one
player are associated with pattern-matching problems. See section 4.

We assume that the outcome of each single throw of the die is given by some
probability distribution p. The outcomes of separate throws are assumed to be
independent. This suggests the following definition.

Definition 2. Let p be a function with domain T and range the set of real
numbers. We define the function hp with domain T ∗ inductively by

(a) hp.ε = 1 ,

(b) hp.Ba = hp.B×p.a , for all B ∈T ∗ and a∈T .

The function hp is extended to languages by defining, for all V , where V ⊆T ∗,

hp.V = 〈ΣA : A∈V : hp.A〉 .

The function ep is defined on languages by, for all V , where V ⊆T ∗,

ep.V = 〈ΣA : A∈V : hp.A×#A〉 .

(Note: these definitions assume that the summations are well defined. In all the
concrete examples discussed in this paper, this is indeed the case.) 2

Theorem 1 shows that, if p is a probability distribution on T , hp is a prob-
ability distribution on a first-past-the-post game S. The value of ep.S is then
interpreted as the “expected” length of the game. It is important to note, how-
ever, that definition 2 does not assume that p is a probability distribution. We
apply definition 2 just as often when p and/or hp cannot be viewed as probability
distributions.

Typically languages are defined syntactically — by a combination of regular
expressions and equations (aka grammars). Unambiguity of syntactic definitions
is useful in the evaluation of the functions hp and ep. This is made precise in the
following definitions and lemmas.

Definition 3 (Unambiguous Expressions). Let U and V be expressions de-
noting languages L.U and L.V , respectively. We say that the expression “U∪V ”

is unambiguous if L.U ∩ L.V = ∅ (i.e. the languages are disjoint). We say that
the expression “UV ” is unambiguous if, for all words A, A′, B and B′,

A,A′ ∈L.U ∧ B,B′ ∈L.V ∧ AB =A′B′ ⇒ A=A′ ∧B =B′ .

We say that the expression “U∗” is unambiguous if, for all natural numbers k

and k′, and sequences of words Ai (1≤ i≤k) and Bj (1≤ j≤k′) all of which are
elements of L.U ,

A1 . . . Ak =B1 . . . Bk′ ⇒ k =k′ ∧ 〈∀i : 1≤ i≤k :Ai =Bi〉 . 2

Expressions and languages are, of course, different in the same way that
names and people are different. (“Winston Churchill” is the name of a famous
Englishman. The name consists of a forename and a surname, whilst the person
has a mother and father, etc.) Definition 3 has been formulated in a way that
makes the difference clear. Henceforth however, we are not so precise and we
leave it to the reader to determine whether we are referring to the syntactic
form of an expression or to the language that is denoted by the expression. So,
for example, a less precise formulation of the first clause of definition 3 is

“the expression U∪V is unambiguous if U ∩V =∅”.

We trust that the reader will have no difficulty in understanding what is meant.
An example of unambiguity is the expression {ε}∪ (pre+.S)T in definition

1. Obviously {ε}∩ (pre+.S)T =∅ because {ε} is the set of words of length zero
whilst (pre+.S)T contains only words of length at least one. So the “∪” operator
is unambiguous. Also obvious on length considerations is that the (implicit)
concatenation operator in the expression (pre+.S)T is unambiguous. In general,
an expression denoting the concatenation of two languages of which one is a
subset of T k for some k (i.e. all the words in the language have the same length)
is unambiguous. Deterministic finite-state machines also exemplify the use of
unambiguous expressions in order to define a language. A deterministic finite-
state machine corresponds to a system of equations in languages; the right sides
of the equations are disjoint unions of expressions of the form ε or aU (where U

denotes the language recognised by some state of the machine).
The following lemma is the key to evaluating probabilities and expected

values in the context of first-past-the-post games. Note how the equations for ep

resemble the equations for calculating derivatives.

Lemma 1. If U∪V is an unambiguous expression,

hp.(U∪V) = hp.U +hp.V , and

ep.(U∪V) = ep.U + ep.V .

If UV is an unambiguous expression,

hp.UV = hp.U ×hp.V , and

ep.UV = hp.U × ep.V + ep.U ×hp.V .

Proof. Straightforward manipulation of quantifier expressions. 2

We now consider the consequences of the function p being a probability
distribution. Recall that we use S to denote a first-past-the-post game. Because
it plays an important role in what follows, we use N throughout to denote
pre+.S. (The symbol “N” is the one used in [GKP94]; it may be read as a
mnemonic for “N”ot complete.) With this notation, the two clauses in definition
1 of a first-past-the-post game become:

N ∩S = ∅ , and(1)

N ∪S = {ε} ∪ NT .(2)

From (2), it is easy to see that hp.T =1 ⇒ hp.S =1. See the calculation below.

hp.S = 1

= { heading towards (2) in definition of a game,
we add hp.N to both sides }

hp.N + hp.S = hp.N + 1

= { by definition, 1=hp.{ε}; assumption: hp.T =1 }
hp.N + hp.S = hp.N × hp.T + hp.{ε}

= { expressions N∪S and NT ∪{ε} are unambiguous,
lemma 1 }

hp.(N ∪S) = hp.(NT ∪{ε})
= { definition of a game: (2) }

true .

This suggests that, if p is a probability distribution on T , hp is a probability
distribution on complete plays. This fact appears to be taken for granted in
[GKP94] and [GO81]. (At least, we have been unable to find anything that we
would recognise as a proof.) We think it is important to make the theorem
explicit and provide a proof. (The proof is not calculational because it links the
formal definitions with the informal notion of relative frequencies.)

Theorem 1. If p is a probability distribution on the alphabet T (i.e. p.a is the
relative frequency of the occurrence of symbol a when the die is thrown and, thus,
hp.T =1) and throws of the die are independent, the function hp is a probability
distribution on complete plays of a first-past-the-post game S. Specifically, for
an arbitrary word A in S, hp.A is the relative frequency that the word A is a
complete play of the game. Moreover, hp is a probability distribution on 2S (the
set of subsets of S); if U ⊆S, then hp.U is the relative frequency with which a
word in U occurs as a complete play.

Proof. Suppose A ∈ pre∗.S. We prove by induction on the length of A that hp.A

is the relative frequency with which the word A occurs as a prefix of a complete
play of the game.

When the length of A is zero, A= ε. The empty word occurs in every play of
the game. That is, the relative frequency of ε as a prefix of a complete play of
the game is 1, which equals hp.ε by definition. This proves the basis.

Now suppose the length of A is at least one. Suppose A=Ba for some B ∈T ∗

and a∈T . Since B ∈ pre∗.S, and the length of B is less than the length of A, we
may assume inductively that hp.B is the relative frequency with which the word
B occurs as a prefix of a complete play of the game. But B ∈ pre+.S and so,
by definition 1(b), hp.B is the relative frequency with which words of the form
Bb, for some b∈T , occur as a prefix of a complete play. Since p.a is the relative
frequency that a occurs, the independence assumption implies that hp.B×p.a

is the relative frequency with which Ba occurs as a prefix of a complete play.
But hp.A = hp.B×p.a by definition. In this way, the induction step is verified.

A corollary of this inductive argument and definition 1(a) is that, when A

is a complete play, hp.A is the relative frequency of A among complete plays.
(Because of definition 1(a), a complete play only occurs as a prefix of itself and
no other plays.)

By the definition of a probability distribution, it is an immediate corollary
that the extension of hp to subsets of S is a probability distribution. 2

Note that hp is just a function on arbitrary languages. As shown above, it is a
probability distribution on S and on 2S whenever p is a probability distribution
on T but we apply it elsewhere to arbitrary languages. An example of where hp

is used in this way is the following lemma.

Lemma 2. Suppose S is the set of complete plays in a first-past-the-post
game and N is the set of incomplete plays. Suppose the symbols in T occur with
probability distribution given by p. Then

ep.S = hp.N .

Proof. First,

ep.S = hp.N

= { heading towards (2) in definition of a game,
we add ep.N to both sides }

ep.N + ep.S = ep.N + hp.N .

But

ep.N + ep.S

= { expression N∪S is unambiguous, lemma 1 }
ep.(N∪S)

= { (2) }

ep.(NT ∪{ε})
= { expression NT ∪{ε} is unambiguous, lemma 1 }

hp.N × ep.T + ep.N ×hp.T + ep.{ε}
= { p is a probability distribution on T , so hp.T =1;

also, for each A∈T , #A=1. So ep.T =1.
By definition, ep.{ε}=0. }

hp.N + ep.N .

The lemma follows by combining the two calculations (using symmetry of addi-
tion). 2

Example 2. If S ={a,ba,bb} and p.a= q and p.b= r, where q+r =1, then
N ={ε,b} and ep.S = 1×q +2×r×q +2×r×r = 1+r = hp.N .

If S = {b}∗{a} and p.a= q and p.b= r, then N ={b}∗; so ep.S =(1−r)−1.
(Note how much easier it is to use the lemma than to calculate ep.S directly
from its definition.) 2

3 Prefix-free Languages

A requirement on games is that complete plays are prefix-free languages (defi-
nition 1(a)). Any language V can be reduced to a maximal, prefix-free language
by selecting the words that have no proper prefixes in V . Specifically, if V is a
language, the set PF.V , called the prefix-free reduction of V , is defined by

PF.V = V ∩ ¬(V T +) .

The element-wise formulation of PF .V is that, for all languages V and all words
C,

C ∈PF .V ≡ C∈V ∧ ¬
〈

∃D,E : D∈V ∧ E∈T + : DE =C
〉

.

That is, PF .V is the set of words in V that do not have a proper prefix in V .

Example 3. It is sometimes of interest to determine the expected length of
a sequence of observations that culminates in a given “pattern”. Patterns are
classified as either block or hidden [FS09]. Formally, let A be an arbitrary word
over the alphabet T . Then PF .T ∗{A} models the process of observing sequences
of letters until the word A first occurs contiguously (i.e. as a “block” pattern). If
1≤n and A=a1a2 . . . an, then PF.T ∗{a1}T ∗{a2} . . . T ∗{an} models the process
of observing sequences of letters until all the letters of A occur in order but not
necessarily contiguously (i.e. as a “hidden” pattern).

Lemma 6 establishes that PF.T ∗W is a first-past-the-post game for arbitrary
non-empty set W . Thus PF.T ∗{A} and PF .T ∗{a1}T ∗{a2} . . . T ∗{an} are both
first-past-the-post games.

(Of course, PF .W is not a first-past-the-post game for arbitrary non-empty
set W . A simple counter-example is W ={a} since PF .{a}={a}. When T 6={a}
this is not a first-past-the-post game. See example 1.) 2

The following lemma expresses formally the process of “reducing” V to
PF .V .

Lemma 3. Every word in V has a unique prefix in PF .V .

Proof. Let C be a word in V . Consider a linear search of the prefixes of C,
starting with the empty word and iteratively increasing the length of the prefix,
to find a word that is an element of V . The search will eventually terminate
successfully because C is itself such a word. An invariant of the algorithm is
that the current prefix is an element of ¬(V T +). The prefix that is found is
thus an element of both V and ¬(V T +). It is clearly unique because any other
prefixes of C are either not in V or in V T +. 2

Several properties of the function PF will be used later.

Lemma 4. PF .V is prefix-free. That is, for all V such that V ⊆T ∗,

pre+.(PF .V) ∩ PF .V = ∅ .

Proof. This is, in fact, a corollary of lemma 3 but is proved directly as follows.
We have, for all words C,

C ∈ pre+.(PF .V) ∩ PF .V

= { definition of pre+ }
〈∃E : E ∈PF.V : E ∈{C}T +〉 ∧ C ∈PF .V

⇒ { PF .V ⊆V }
〈∃E : E ∈PF .V : E ∈V T +〉

⇒ { PF .V ⊆¬(V T +) }
false . 2

Remark: The prefix-free reduction of V is a maximal prefix-free reduction in
the sense that it is prefix-free (lemma 4) and it is the largest prefix-free subset
of V , i.e. for all languages U ,

(U ⊆V ≡ U ⊆PF .V) ⇐ U ∩ pre+.U = ∅ .

End of Remark

Lemma 5. For all languages V and U , the expression (PF .V)U is unambigu-
ous. That is, for all languages V and all words C, C′, D and D′,

CD =C′D′ ∧ C ∈PF .V ∧ C′ ∈PF.V ⇒ C =C′ ∧ D =D′ .

Proof. We begin with a simple property of words.

CD =C′D′

⇒ { case analysis on #C and #C′, definition of pre+ }
C =C′ ∨ C ∈ pre+.C′ ∨ C′ ∈pre+.C .

We now show that, assuming C ∈PF .V ∧ C′ ∈PF .V , the second and third dis-
juncts are false.

C ∈ pre+.C′ ∧ C′ ∈PF .V

⇒ { definition of pre+ }
C ∈ pre+.(PF .V)

⇒ { lemma 4 }
¬(C ∈PF .V) .

We conclude that

C ∈ pre+.C′ ∧ C ∈PF.V ∧ C′ ∈PF .V ≡ false .

Interchanging the roles of C and C′, the third disjunct is also false. The lemma
follows straightforwardly. 2

4 Block Patterns and Penney-Ante Games

We now specialise the analysis to block patterns and Penney-Ante-type games.
In Penney-Ante games, each player chooses a word. A die (with |T | faces each
of which bears one of the elements of T , but not necessarily fair) is then thrown
repeatedly until one of the chosen words occurs as a suffix of the play. The
player who made the choice is declared the winner. For example, suppose the
alphabet has two symbols a and b, one player chooses the word a and the second
player chooses the word bb. There are just three complete plays of this game: the
words a, ba and bb. The first player wins in the first two cases and the second
player wins in the third case. Note that this is a first-past-the-post game — see
example 1. Recognition of a block pattern (see example 3) is a special case of a
Penney-Ante game with one player.

Consider a set W of words over an alphabet T . Note that we do not assume
at this stage that W is finite.

The set S is defined to be the set of minimal-length words that end in a word
in W . Formally, (in standard regular-language notation)

S = T ∗W ∩ ¬(T ∗WT +) .

Equivalently, S =PF .T ∗W .

Returning to the example above, taking W to be {a,bb} we have:

S = {a,b}∗{a,bb} ∩ ¬({a,b}∗{a,bb}{a,b}+) = {a,ba,bb} .

In this very simple example, the set S is finite; this is not the case in general.

Lemma 6. For all W such that W ⊆T ∗ and ∅ 6=W , PF .T ∗W is a first-past-
the-post game.

Proof. Let S denote PF .T ∗W and let N denote pre+.S. Then that S satisfies
1(a) in the definition of a first-past-the-post game,

N ∩S = ∅ ,(3)

is immediate from lemma 4 by instantiating V to T ∗ W .
It remains to verify the property 1(b). Now,

pre∗.S = {ε} ∪ (pre+.S)T

= { pre∗.S = S ∪ pre+.S , N = pre+.S }
S ∪N = {ε}∪NT

= { T is the alphabet }
(S ∪N)∩T ∗ = ({ε}∪NT)∩T ∗

= { T ∗ = {ε} ∪ T + }
(S ∪N) ∩ ({ε} ∪ T +) = ({ε}∪NT) ∩ T ∗

= { distributivity of intersection over union,
assumption: ∅ 6=W . So {ε}⊆S ∪N }

{ε} ∪ ((S ∪N)∩T +) = {ε} ∪ (NT ∩T ∗)

= { NT ⊆ T + ⊆ T ∗,
cancellation property of languages: ε has length 0
and words in T + have length at least 1 }

(S ∪N)∩T + = NT

= { definition of set concatenation and equality }
〈∀B,a : B∈T ∗ ∧ a∈T : Ba∈S ∪N ≡ B∈N〉 .

Now, for all B∈T ∗ and a∈T , we have

Ba∈S ∪N

⇒ { definition of pre }
B ∈ pre.(S ∪N)

= { S ∪N = pre∗.S }
B ∈ pre+.S

= { N = pre+.S }
B∈N .

For the opposite implication, choose an arbitrary word C in W . Then, for all
B ∈T ∗ and a∈T , we have

B∈N

= { C∈W }

B∈N ∧ BaC ∈T ∗W

⇒ { lemma 3, definition of S }
B∈N ∧

〈

∃k : 0≤k≤#(BaC) : prek.(BaC)∈S
〉

⇒ { pre∗.B ∩ S

⊆ { assume: B∈N }
pre∗.N ∩ S

= { pre∗.N = pre∗.(pre+.S) = pre+.S = N }
N ∩S

= { (3) }
∅ .

That is, assuming B∈N ,
〈

∀k : #(aC)≤ k≤#(BaC) : ¬(prek.(BaC)∈S)
〉

}
〈

∃k : 0≤k≤#C : prek.(BaC)∈S
〉

⇒ { range splitting on k =#C, definition of N }
Ba∈S ∨ Ba∈N

= { definition of set union }
Ba∈S ∪N . 2

4.1 Equations in Languages

In this section, we show how to construct from a given language W a (non-linear)
system of simultaneous equations in languages. The system has one equation
for each word in W (which is not necessarily finite); as we show in section 5,
these equations together with the equation 1(b) uniquely characterise PF .T ∗W .
Although W need not be finite, we do assume that it is “reduced”, as defined
below.

The set W is said to be reduced if, for all words A and B in W , A is a
subword1 of B equivales A equals B. The assumption that W is reduced is
sensible because without it the game would be either unfair or ill-defined — if
A is a proper suffix of B, the winner of complete play B is not well-defined, and
if A is a proper subword of B and not a proper suffix, the player who chooses B

can never win. For example the set {a,ba,bb} in example 2 is not reduced. (If the
complete play is ba, it is not clear whether the winner is the player choosing a or
the player who chooses ba.) The need for the assumption also appears formally
in our calculations.

If A is a word in W , SA is defined by

SA = T ∗{A} ∩ ¬(T ∗ W T +) .

1
A is a subword of B equivales there are words C and D such that B =CAD.

Note that S = 〈∪A : A∈W : SA〉. The language SA is the set of complete plays
that end in the word A.

As in lemma 6, the set N is defined to be the set of all proper prefixes of S :

N = pre+.S .

(It is straightforward to show that N =¬(T ∗ W T ∗). That is, N is the set of
words of which no word in W is a subword. This is the definition of N used by
Guibas and Odlyzko [GO81].)

The crucial properties of S and N are as follows. If W is reduced then, for
all A∈W ,

N{A} = 〈∪B : B∈W : SB(B⊃⊂A)〉(4)

where

B⊃⊂A = {E,F : #E<#A ∧ #F<#B ∧ BE =FA : E} .(5)

We pronounce B⊃⊂A as B match A. Note that, in spite of the symbol by which
it is denoted, the match operator is not symmetric. See example 4 below for
instances of the match operator and equations (4) and (5).

For the proof of (4), we first note that

N{A} = 〈∪B : B∈W : SB(B⊃⊂A)〉
≡ 〈∀C :: C∈N ≡ 〈∃B : B∈W : CA∈SB(B⊃⊂A)〉〉 .

(This is a simple application of the definition of equality of sets, set concatenation
and set union.)

Now, for all words C and all words A in W ,

〈∃B : B∈W : CA∈SB(B⊃⊂A)〉
= { definition of B⊃⊂A }

〈∃B,E,F : B∈W ∧ #E <#A ∧ #F <#B ∧ BE =FA : CA∈SB{E}〉
= { word calculus, #(XY) = #X +#Y }

〈∃B,D,E,F : B∈W ∧ 1≤#D≤#B ∧ A=DE ∧ B =FD : CD∈SB〉
= { SB ⊆ T ∗{B} }

〈∃B,D,E : B∈W ∧ 1≤#D≤#B ∧ A=DE : CD∈SB〉
= { #B <#D ∧ A=DE ∧ CD∈SB

⇒ { SB ⊆ T ∗{B} }
B is a proper subword of A

⇒ { W is reduced, A∈W and B∈W }
false }

〈∃B,D,E : B∈W ∧ 1≤#D ∧ A=DE : CD∈SB〉

= { S = 〈∪B : B∈W : SB〉 }
〈∃D,E : 1≤#D ∧ DE =A : CD∈S〉

= { (⇒) definition of N ,
(⇐) A∈W , so CA∈T ∗ W ; lemma 3 }

C∈N .

This completes the proof of (4).

Example 4. Suppose the alphabet has two symbols h and t. Suppose the set
W has three elements hh, ht and th. The set S is {t}∗{hh,ht,th} and the sets
Shh, Sth and Sht are, respectively, {t}∗{hh}, {t}∗{th} and {t}∗{ht}; the set N

is {ε} ∪ {t}∗{h,t}.
The following table shows B⊃⊂A for each of the 9 combinations of B and A.

(Rows are indexed by B and columns by A.)

⊃⊂ hh ht th

hh {ε,h} {t} ∅
ht ∅ {ε} {h}
th {h} {t} {ε}

The appropriate instances of (4) are thus as follows:

N{hh} = Shh{ε,h} ∪ Sth{h}
N{ht} = Shh{t} ∪ Sht ∪ Sth{t}
N{th} = Sht{h} ∪ Sth

(Some simplification has been applied to these equations. So, for example, in
the first equation the term Sht∅ has been omitted and, in the second equation,
Sht{ε} has been simplified to Sht.)

These equations are complemented by the equations:

N ∪S = {ε} ∪ N{h,t}
S = Shh ∪Sht ∪Sth

The combination of the two sets of equations is the basis for calculating the
probabilities of winning a game with three players who each choose the three
words hh, ht and th as the eventual outcome of the game, as we discuss in the
next section. 2

4.2 Solov’ev’s Equation and Conway’s Equation

Suppose we are given a probability distribution p on the elements of the alphabet
T . Suppose W is a language and S equals PF .T ∗W . Then, for each word A in
W , hp.SA is the relative frequency that a word ending in A is a complete play of
the game (theorem 1). We show how to use (4) to evaluate hp.SA for each A. In
the case that W has one element, this gives Solov’ev’s equation for the expected

length of a sequence of observations culminating in (the “block pattern”) A; see
theorem 2. In the case that W has two elements, this gives Conway’s formula
for the probability that each person wins in a two-person Penney-Ante game;
see theorem 3.

Lemma 7. Suppose V is a function from words in W to languages. Suppose
W is reduced and finite. Then 〈∪B : B∈W : SBVB〉 is unambiguous.

Proof. By lemma 5, each term SBVB is unambiguous. Also, for all words D, D′,
E and E′, and all words B and C in W ,

DE =D′E′ ∧ D∈SB ∧ D′∈SC

⇒ { SB∪SC ⊆ PF .T ∗W , lemma 5 }
DE =D′E′ ∧ D∈SB ∧ D′∈SC ∧ D =D′

⇒ { W is reduced, SB ⊆T ∗{B}, SC ⊆T ∗{C} }
D =D′ ∧ E =E′ ∧ B =C . 2

Corollary 1. For all A in W ,

hp.N ×hp.{A} = 〈ΣB : B∈W : hp.SB ×hp.(B⊃⊂A)〉 .

Also, for all A and B in W ,

hp.(B⊃⊂A) = 〈Σ E,F : #E<#A ∧ #F<#B ∧ BE =FA : hp.E〉 .

Proof. The expression N{A} is obviously unambiguous. So, by lemma 1, hp.N{A}
is the product of hp.N and hp.{A}. Applying hp to both sides of (4), this gives
the left side of the first equation above. The right side is immediate from lemma
1 and lemma 7.

The second equation is immediate from lemma 1. (Obviously the right side
of (5) is unambiguous.) 2

We are now in a position to formulate the theorems attributed to Sovol’ev
and Conway. In the statement of the theorems, the binary operator “:” is defined
on pairs of words by, for all C and D,

C : D =
hp.(C⊃⊂D)

hp.D
.

This operator generalises the one with the same name in [GKP94]. See theorem
3, below, for further explanation of the generalisation.

Note that C : D has no interpretation as a probability. Indeed, C : C is
typically greater than 1; it is the expected length of the first occurrence of block
pattern C, as shown in the next theorem.

Theorem 2 (Sovol’ev’s formula). Suppose S =PF .T ∗{A}. Then

ep.S = A : A .

Proof. We have:

ep.S

= { lemma 2 }
hp.N

= { corollary 1 with W :={A} (using hp.S =1

and one-point rule to simplify the summation) }
hp.(A⊃⊂A)

hp.A

= { definition }
A : A . 2

Example 5. Suppose the alphabet has two symbols h and t (for heads and
tails). Suppose k is a natural number and A is the word hkt and B is the word
hk+1. Then

A⊃⊂A = {ε}
B⊃⊂B =

{

j : 0≤ j ≤k :hj
}

Suppose further that p.h= q and p.t= r, where q+r =1. It follows that

hp.(A⊃⊂A) = 1

hp.(B⊃⊂B) =
1−qk+1

1−q

Since hp.A is qk×r and hp.B is qk+1,

A : A =
1

qk×r

and

B : B =
1−qk+1

(1−q)×qk+1
.

It follows from theorem 2 that

ep.(PF .T ∗{B})
ep.(PF .T ∗{A}) =

1−qk+1

q
.

The expected number of coin-tosses before hk+1 is encountered is thus approx-
imately 1

q
times greater than the expected number of coin-tosses before hkt is

encountered. In the words of [GKP94]: “patterns with no self-overlaps occur
sooner than overlapping patterns do!” 2

Theorem 3. Suppose W ={A,B}. Suppose W is reduced. Then

hp.SA

hp.SB

=
B : B − B : A

A : A − A : B
.

Proof. Straightforward instantiation of corollary 1. 2

Corollary 2 (Conway’s formula). If A and B have equal length, and p

assigns equal values to each element of T then

hp.SA

hp.SB

=
hp.(B⊃⊂B)−hp.(B⊃⊂A)

hp.(A⊃⊂A)− hp.(A⊃⊂B)
.

(The latter is equivalent to the formula attributed to John Horton Conway in
[GKP94] for the odds of A winning against B in a Penney-Ante game where a
coin is tossed and the probability of a head or tail occurring is 1

2 . In Conway’s
formula, the notation B : A is used for hp.(B⊃⊂A)× 2#A− 1. It is not clear from
the published literature whether or not Conway derived the general formula
given in theorem 3.) 2

The examples below test the use of theorem 3 on cases where it is easy to
predict the relative frequency of occurrence of words in SA and in SB.

Example 6. Suppose the alphabet has two symbols h and t (for heads and
tails). Suppose k is a natural number and A is the word hkt and B is the word
hk+1. Suppose further that p.h= q and p.t= r, where q+r =1. A simple argument
establishes that the relative frequency of A compared to B in a Penney-Ante
game is r

q
. We can check that this is predicted by theorem 3 as follows. We first

calculate that

A⊃⊂A = {ε}
A⊃⊂B = ∅
B⊃⊂A =

{

j : 0≤ j <k :hjt
}

.

Then.

hp.(A⊃⊂B) = 0

hp.(B⊃⊂A) =
(qk−1)×r

q−1
.

Combining these with the calculations in example 5 and substituting in theorem
3 (top formula), we get, for example,

B : A =
(qk−1)×r

(q−1)× (qk×r)

Hence, applying theorem 3 (top formula) (and a lot of simplification!), we get

hp.SA

hp.SB

=
r

q

as expected. 2

Example 7. Suppose the alphabet has two symbols a and b . Suppose the set
W has two elements, A and B, equal to a and bb, respectively. Suppose p.a= q

and p.b= r, where q+r =1. As observed earlier, PF .({a,b}∗{a,bb})={a,ba,bb}.
If q and r model the relative frequency of occurrences of a and b, respectively,

it is clear that the relative frequency of SA, which equals {a,ba}, is q + r×q and
the relative frequency of SB, which equals {bb}, is r2. Let us check that this is
what is predicted by theorem 3.

We calculate that A⊃⊂A equals {ε}, B⊃⊂B equals {ε,b} and both A⊃⊂B and
B⊃⊂A equal the empty set. The hp values are now easily calculated. Applying
theorem 3, we get

hp.SA

hp.SB

=
(1+r)×q−0

1×r2 −0

which simplifies to (1+r)×q

r2 . Since q+r =1 and hp.SA +hp.SB = 1, it follows that
hp.SA equals 1−r2 and hp.SB equals r2. 2

The next example is of a game with an infinite number of players.

Example 8. Suppose the alphabet has three symbols a, b and c. Suppose
W ={a}{b}∗{c}. (So each word in W is of the form abkc for some k, 0≤k. Note
that W is not finite but it is reduced.) It is easy to verify that abkc⊃⊂abkc={ε}
and, when j 6=k, abjc⊃⊂abkc = ∅. Thus:

N{abkc} = Sabkc

N ∪S = {ε} ∪ N{a,b,c}
S = 〈∪k : 0≤k :Sabkc〉

It is immediate from these equations that S =N{a}{b}∗{c}. However, it is dif-
ficult to “solve” them in the sense of determining a regular expression defining
N . Indeed, it is not even clear that there is a unique solution for N ; see section
5.

Suppose now that p.a= q, p.b= r and p.c= s, where q+r+s=1. Then, ex-
ploiting the above equation for S, we obtain:

hp.N × q× rk × s = hp.Sabkc

hp.N + hp.N × q× r∗× s = 1 + hp.N × (q+r+s)

(where we write r∗ for 1
1−r

). It follows that hp.N = 1−r
q×s

and hp.Sabkc =(1−r)×rk.

So the expected length of a game is 1−r
q×s

(which equals 1
q
+1

s
) and the probability

that the recognised pattern is abkc is (1−r)×rk. 2

5 Uniqueness

In the case that a Penney-Ante game has just two players, theorem 3 together
with the equation hp.SA +hp.SB = 1 enables one to calculate both hp.SA and
hp.SB. In other words, it is possible to determine the probability that each of
the players wins. This raises the question whether or not the system of equations
(4) together with the equations

N ∪S = {ε} ∪ NT(6)

S = 〈∪A :A∈W :SA〉(7)

(cf. definition 1(b)) viewed as equations in the unknowns N , S and SA (for each
A∈W), has a unique solution independently of the size of W .

The answer is no. A very simple example demonstrates this fact. Suppose
T ={a}=W . Then, since a⊃⊂ a= {ε}, we get just two equations (equation (7)
is trivial):

N ∪S = {ε} ∪ N{a}
N{a} = S

As is easily checked, one solution to these equations is N ={ε} and S ={a}.
(This is the desired solution.) A second solution is N ={a}∗ and S ={a}+.

Note that, although these two equations do not have a unique solution, we
can use them to determine hp.N and hp.S. Specifically, since inevitably hp.a=1,
we get the equations:

hp.N +hp.S = 1+hp.N

hp.N = hp.S

Unsurprisingly, the expected length of a complete play is 1. (Apply lemma 2.)
Note, however, that hp.{a}∗ is undefined. (Recall that {a}∗ is a solution for N .)

It was a surprise to us that the equations in languages do not have a unique
solution since Guibas and Odlyzko [GO81] claim that the derived equations in
generating functions do have unique solutions. Their argument is based on the
fact that, when {A,B} is reduced, ε∈A ⊃⊂ B ≡ A=B for all words A and B.
We have as yet been unable to use this fact to show that the equations in hp

values have unique solutions and the question remains open. (Whether or not the
equations have unique solutions when we add the equation N∩S =∅ is irrelevant
since this property is not reflected in the generating functions.)

6 Conclusion

The purpose of this paper has been to fully understand the reasoning behind
the derivation of Conway’s formula for solving the Penney-Ante game. Our un-
derstanding has improved considerably. In [GKP94] equations are formulated
for hp.N and hp.SA (for each A) —albeit using a different notation— and it
is claimed that hp.SA is the probability that the event A occurs. However, this
claim does not appear to be properly justified, as evidenced by the fact that
no claim is made about the meaning of hp.N . Similarly, we find the arguments
given by Guibas and Odlyzko [GO81] somewhat difficult to understand because
they involve events that can never occur in a first-past-the-post game: Guibas
and Odlyzko appear to ascribe meaning to hp.SB ×hp.(B⊃⊂A) as a probability,
whereas, for B 6=A, the frequency that a word in SB(B ⊃⊂ A) ever occurs is 0
— the game would be terminated before such an event occurs. Here we have
made clear that hp is a probability distribution on the sample space PF .T ∗W .
In the derivation of theorem 3, the function is also applied to languages not in
this sample space, in which case it is typically not a probability distribution.

We make no use whatsoever of generating functions. Generating functions
enable one to derive properties related to word length; our derivations show
that word length is irrelevant to deriving Conway’s formula (and also Solov’ev’s
formula). Even in the case of calculating the expected length of a complete play
of a game, where word length is part of the definition, lemma 2 is all that is
needed.

On the other hand, we have been unable to calculate a formula for the stan-
dard deviation of the length of complete games (or for other higher-order cu-
mulants). The conclusion would appear to be that the versatility of generating
functions is best demonstrated by their use in determining higher-order cumu-
lants.

The fact that we have been unable to establish uniqueness of the system of
equations in languages whilst the system of equations in hp values does have
a unique solution (since the equations in generating functions have a unique
solution) requires further investigation.

Acknowledgement

I am very grateful to the anonymous referees all five of whom gave very detailed
and supportive comments on the submitted paper, including correcting some
errors. I hope I have done justice to their efforts.

References

[Bac86] R.C. Backhouse. Program Construction and Verification. Prentice-Hall In-
ternational, 1986.

[Bac03] Roland Backhouse. Program Construction. Calculating Implementations

From Specifications. John Wiley & Sons, Ltd., 2003.
[FS09] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge

University Press, 2009.
[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-

ematics : a Foundation for Computer Science. Addison-Wesley Publishing
Company, second edition, 1994.

[GO81] L.J. Guibas and A.M. Odlyzko. String overlaps, pattern matching and non-
transitive games. Journal of Combinatorial Theory, Series A30, pages 183–
208, 1981.

[GS93] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.
Springer-Verlag, 1993.

[Pen74] Walter Penney. Problem 95: Penney-Ante. Journal of Recreational Mathe-

matics, page 321, 1974.
[Sol66] A.D. Solov’ev. A combinatorial identity and its application to the problem

concerning the first occurrence of a rare event. Theory of Probability and its

Applications, 11:276–282, 1966.

