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Strategies for MCR image analysis of large
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Polymer microarrays are a key enabling technology for high throughput materials discovery. In this study, multivariate image
analysis, specifically multivariate curve resolution (MCR), is applied to the hyperspectral time of flight secondary ion mass

spectroscopy (ToF-SIMS) data from eight individual microarray spots. Rather than analysing the data individually, the data-
sets are collated and analysed as a single large data-set. Desktop computing is not a practical method for undertaking MCR
analysis of such large data-sets due to the constraints of memory and computational overhead. Here, a distributed memory
High-Performance Computing facility (HPC) is used. Similar to what is achieved using MCR analysis of individual samples,
the results from this consolidated data-set allow clear identification of the substrate material; furthermore, specific chemis-
tries common to different spots are also identified. The application of the HPC facility to the MCR analysis of ToF-SIMS hyper-
spectral data-sets demonstrates a potential methodology for the analysis of macro-scale data without compromising spatial
resolution (data ‘binning’). Copyright © 2012 John Wiley & Sons, Ltd.
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Introduction

Many applications of materials in biomedicine suffer from sub-
optimal performance, such as the high incidence of catheter-
associated urinary tract infections. In these cases, new materials
are required that have properties ideally suited to the application;
in the case of urinary catheters, the material must be both anti-
bacterial and flexible. Polymer microarrays are ideally suited to
high throughput materials screening by presenting thousands
of unique polymers on one glass microscope slide.[1] Combinato-
rial microarrays have been used to screen for biomaterials that
are capable of supporting the clonal expansion of stem cells,
resist bacterial attachment, identify switchable materials and sort
co-culture cell populations.[2–6] Furthermore, high throughput
surface characterisation of arrays has successfully been applied
to determine the chemical and physical properties of the
materials[7–10] which can then be correlated with the biological
performance of the materials to elucidate structure–function
relationships.[2,3] Progress in this field relies on the application
of polymer microarrays, with an expansion of the combinatorial
space that these explore, and increased throughput in processing
tools to effectively analyse the plethora of data that high
throughput studies produce.
Time of flight secondary ion mass spectroscopy (ToF-SIMS) is a

surface characterisation technique with the capacity to readily
analyse materials ranging across electronics, metallic, polymer
and biological samples.[11–13] The volume of data associated with
ToF-SIMS hyperspectral image analysis can sometimes lead to
difficulty in data handling and interpretation. This is particularly
notable when performing comparative studies upon multiple
samples, such as microarray systems. MVA techniques have
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proven vital in extracting the important aspects from data
acquired from such systems.[12] Moreover, the MVA technique,
multivariate curve resolution (MCR), has successfully analysed
complex hyperspectral image data-sets from carbohydrate and
polymer/drug microarrays.[14,15] These studies have demon-
strated a capacity to discern specific features within individual
array printed spots as well as the chemical heterogeneities from
different printed spots located across larger array areas.

Although techniques such as MCR can alleviate some of the
‘manual’ workload associated with ToF-SIMS data analysis, certain
systems such as microarrays can still pose a challenge because of
the number of separate samples (spots) involved and/or because
it is desirable to analyse mm-scale areas. Both of these
approaches result in large data-sets. The current computing
power of commonly employed desktop computers often requires
data to be reduced (binned) for MCR image analysis. This limits
the potential to analyse multiple samples or mm-scale regions
at high resolution, which can be routinely achieved using the
stage scan ‘image stitching’ functionality of SurfaceLab 6 (IONTOF
GmbH). The production of spots is not flawless as the printing
can sometimes form spots which are not homogeneous mixtures
Copyright © 2012 John Wiley & Sons, Ltd.
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of the monomer constituents which must be detected and
analysed by ToF-SIMS. This study aims to demonstrate a method
for automated cross-comparison of individual data-sets by
analysing multiple data-sets as a single entity.
Experimental

Array printing

Arrays were prepared as previously described.[16] Prior to print-
ing, epoxy-coated glass slides (Genetix) were prepared by dip-
coating with a 4% (w.v) poly(2-hydroxyethyl methacrylate)
(pHEMA) solution in ethanol. The polymer microarrays were
produced onto the pHEMA-coated glass slides using a contact
printer (Biodot). The environment throughout printing was main-
tained at O2< 1300 ppm, 25 �C and 40% relative humidity. Slot-
ted metal pins (946MP6B, Arrayit) with a diameter of 220 mm
were used to transfer approximately 2.4 nL of monomer solution
(75 % (v/v) monomer in DMF with 1 % (w/v) photoinitiator
2,2-dimethoxy-2-phenylacetophenone) before irradiating with a
long wave UV source for 10 s. Once produced, the resulting arrays
were dried at < 50 mTorr at 25 �C for seven days.
ToF-SIMS

Measurements were conducted using a ToF-SIMS IV (IONTOF
GmbH) instrument using a 25 kV Bi3

+ primary ion source operated
with a pulsed target current of ~ 1 pA. The primary ion beam was
rastered over analysis areas of 500� 500mm, capturing data from
whole individual array spots and some surrounding pHEMA back-
ground at a resolution of 256� 256 pixels. An ion dose of
2.45� 1011 ions/cm2 was applied to each sample area ensuring
static conditions were maintained throughout. Both positive
and negative secondary ion spectra were collected (mass resolu-
tion of >10,000), over an acquisition period of 15 scans (the data
from which were added together). Owing to the non-conductive
nature of the samples, charge compensation, in the form of a low
energy (20 eV) electron floodgun, was applied.
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Multivariate data analysis

Two distinct peak lists, comprising 461 and 417 peaks, were gen-
erated for the positive and negative ToF-SIMS data, respectively.
These lists were created based on eight separate sample data-
sets and were used to retrospectively reconstruct the image data.
In this study, only the positive data will be discussed. This data
was subsequently exported and processed simultaneously using
PCA[17,18] (R package version 1.24.0) and MCR[18,19] (R package
version 0.0.4, modified as below). The PCA analysis was used as
a pre-curser to the MCR analysis, and an evaluation of the ‘scree’
plot (SI. 1) was used to help establish the number of MCR compo-
nents to apply. In order to validate the appropriate number of
components to apply for MCR analysis, MCR analysis was per-
formed and the results assessed for a range of component numb-
ers. In both the PCA and MCR analysis, no data pre-treatments
were applied. The Alternating Least-Squares MCR (ALS-MCR)
was undertaken using random initial estimates of the scores
and loadings. Since the deconvolution results are partially depen-
dent upon the initial starting estimates, each ALS-MCR analysis
was repeated ten times from different starting points. The resulting
ten sets of loadings data of each component were then k-means
Surf. Interface Anal. 2013, 45, 466–470 Copyright © 2012 John
clustered and the mean of each cluster used as the initial guess
for one final round of ALS-MCR, again using random scores.

Owing to the large size of the data-set and the multiple repeats
required, the ALS-MCR analysis was undertaken on the distrib-
uted memory High-Performance Computing (HPC) cluster at the
University of Nottingham. The MCR R package was modified to
increase performance and exploit the multiple cores of each of
the compute nodes, with an order-of-magnitude decrease in
the time to one solution achieved. As the ten ALS-MCR analyses
for each number of components were performed concurrently
using the HPC cluster, the total wall-time for the analysis was less
than one one-hundredth of what it would have been using our
desktop machine.
Results and discussion

The hyperspectral images from eight polymer spots, chosen from
a 576 spot array because they exhibited chemical heterogene-
ities, were analysed by MCR. In many cases, the spot appearance
observed by optical microscopy was non-uniform as shown in
Fig. 1a. The constituent monomers of these spots are shown in
Figs. 1b and c. High spatial resolution ToF-SIMS image data,
256� 256 pixels, over an area of 500� 500mm were acquired
from each spot which was subsequently collated for analysis as
a single data-set. The ‘scree’ plot of the PCA analysis of this
data-set (SI. 1) does not identify a definitive number of compo-
nents to apply, but suggests a value ranging from 7 to 12. MCR
image analysis was then performed using different numbers of
components with the results examined for evidence of ‘over’ fit-
ting, where similar spatially located features are identified with
similar associated secondary ions for multiple components. Using
this methodology, a component number of 9 was established as
being the most appropriate to analyse the data.

The scores image, corresponding loadings plot and an associ-
ated table of the most significantly loaded ions are shown in full
for each of the nine components in the supplementary informa-
tion (SI. 2a – i). This nine component MCR image analysis clearly
identified the pHEMA coating of the microscope slide, mutual
chemistries across different spots that corresponded to common
monomer constituents, as well as some sample contamina-
tion. The lateral resolution of these images also allows for the
observation of the distribution of each component within
individual spots.

The scores image and most significant loadings for MCR com-
ponent 1 are shown in Fig. 2a, where it is clear from the lateral
distribution within each of the eight images that this component
identifies the pHEMA substrate material. This assessment is con-
firmed through an analysis of the loadings of MCR component
1 where the three highest loaded secondary ions are C2H5O

+,
Na+ and C4H5O

+. The C2H5O
+ and C4H5O

+ secondary ions are
characteristic of pHEMA.[20] The Na+ originates either as a con-
taminant in the pHEMA or the ethanol used in the dip-coating
procedure. Although in an individual data-set, the identification
of the substrate material is often trivial, establishing such a
clear substrate component in this single analysis of multiple spots
is a significant validation of the MCR methodology on this
consolidated data-set.

The spot regions highlighted in components 3, 4, 7, 8 and 9
(SI. 2c, d, g, h and i) correspond to specific monomer constituents
within the spots. The scores image for component 3 highlights
spots i, ii, iv and viii (Fig. 2b), where the two highest loaded ions
Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/sia



Identity CAS Name 
1 17831-71-9 Tetra(ethylene glycol) diacrylate 
2 97-63-2 Ethyl methacrylate 
3 15625-89-5 Trimethylolpropane triacrylate 
4 4687-94-9 Bisphenol A glycerolate diacrylate 
5 84100-23-2 5-Tert-butylcyclohexylacrylate 
6 7779-31-9 Trimethylcyclohexyl methacrylate 
7 50836-65-2 Dodecafluoro-7-(trifluoromethyl)-octy lacrylate
8 27905-45-9 Perfluorodecyl acrylate 
9 103-11-7 Ethylhexylacrylate 

10 2160-89-6 Hexafluoroisopropyl acrylate 
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Figure 1. a) Optical images of the eight individual polymer spots investigated in this study and their monomer composition, b) specific monomer
structures and c) table of monomers, where the numbers listed within 1a and b correspond to listed monomer identities.
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are CF3
+ and CF+, both of which are characteristic of the fluorine

containing monomers present in these spots. The intensity of
spot iv appears significantly lower than anticipated (Fig. 2b) due
to the ‘masking’ of the spot chemistry by polydimethylsiloxane
(PDMS) contamination. This is confirmed by the scores image
for component 2 which covers much of spot iv (SI. 2b), where
the most significantly loaded ion, SiC3H9

+, is characteristic of
wileyonlinelibrary.com/journal/sia Copyright © 2012 Joh
PDMS. Individual monomers are co-localised with high intensity
regions in components 4, 7 and 8. The scores image for compo-
nent 4 is shown as an example in Fig. 2c, highlighting spots iii
and vii which both contain the trimethylcyclohexyl methacrylate
monomer.

Recent technical advances have enabled high resolution
ToF-SIMS data to be acquired over areas of many square
n Wiley & Sons, Ltd. Surf. Interface Anal. 2013, 45, 466–470
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Figure 2. Scores image and significant loadings data for MCR components a) 1, b) 3 and c) 4, where the sample layout corresponds to that illustrated in Fig. 1.
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millimetres, however, conventional computing will be incapable
of performing image MVA techniques on the resulting data-
sets. Consequently, high-performance computing facilities are
required. Assuming the same number of peaks, 461 in this
instance, and the same lateral resolution, the size of the data-
set analysed in this study is the equivalent of a data-set obtained
over a 1� 2mm area. This study demonstrates the potential to
analyse the large ToF-SIMS hyperspectral data-sets which could
be obtained from a full microarray using MCR, either as an
individual macro-scale analysis or as a series of consolidated
data-sets analysed together as a single entity.
Surf. Interface Anal. 2013, 45, 466–470 Copyright © 2012 John
Conclusions

This study has demonstrated for the first time that the MVA tech-
nique of imaging MCR can be transferred to analysing numerous
image data-sets as a single entity. Whilst anticipated outcomes such
as the differentiation of the substrate material are clear, more spe-
cific spot-to-spot chemical heterogeneities have also been observed
whilst maintaining each individual analysis region’s full resolution.
The use of the HPC facility vastly increased the throughput of data
analysis and also demonstrates a method for the analysis of
macro-scale sample regions with no reduction in the volume of data.
Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/sia
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