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ABSTRACT 

Classical deterministic simulations of epidemiological 

processes, such as those based on System Dynamics, 

produce a single result based on a fixed set of input 

parameters with no variance between simulations. Input 

parameters are subsequently modified on these 

simulations, using Monte-Carlo methods, to understand 

how changes in the input parameters affect the spread of 

results for the simulation. Agent Based simulations are 

able to produce different output results on each run 

based on knowledge of the local interactions of the 

underlying agents and without making any changes to 

the input parameters. In this paper we compare the 

influence and effect of variation within these two 

distinct simulation paradigms and show that the Agent 

Based simulation of the epidemiological SIR 

(Susceptible, Infectious, and Recovered) model is more 

effective at capturing the natural variation within SIR 

compared to an equivalent model using System 

Dynamics with Monte-Carlo simulation. To demonstrate 

this effect, the SIR model is implemented using both 

System Dynamics (with Monte-Carlo simulation) and 

Agent Based Modelling based on previously published 

empirical data. 

 
INTRODUCTION 

Models of infectious diseases can be useful for 

understanding the spread of infection of the diseases 

within a population over time. However, within a given 

population, diseases can spread at different rates over 

time due to the natural random nature of contact 

between individuals in the population. If a simulation 

can incorporate this kind variation, the extra information 

can be used to determine the spread of uptake of 

infection in worst case and best case scenarios for a 

given population. 

   Currently, for classical System Dynamics (SD) models 

(Forrester, 1961) based on ordinary differential 

equations, the random contact between individuals is 

aggregated to fixed rates of contact and the output has 

no variation. Assuming the same parameter values are 

supplied to the System Dynamics simulation, on each 

run, the same results are produced. Subsequently, in 

order to understand the spread of output values, the 

simulations are repeated with different input parameters 

by applying Monte Carlo simulation (Stan, 1987). In this 

approach, multiple experiments are performed and the 

parameter values taken from a probability density 

function representing the input parameter range. In 

Agent Based models (ABM), uncertainty or variance 

can be inherent within the model so that the simulations 

from the models produce non-deterministic results 

directly without input parameter variation. 

   In this paper, the two approaches are examined by 

generating an SD model with Monte-Carlo and an ABM 

and comparing the spread of output values against 

published data for a defined population. Simulations 

from modelling paradigms such as Agent Based 

Modelling, which can include variance, help to bridge 

the gap between raw data and simulation data and also 

help answer the issue of validation in simulation - 

assessing the degree to which a model is an accurate 

representation of the real world (Oberkampf et al., 

2002). Both System Dynamics and Agent Based models 

are able to capture overall variance but unlike 

simulations from SD models, a single simulation run 

from an Agent Based Model is able to capture the 

„typical‟ outcome from a single simulation experiment. 

   Unlike System Dynamics which uses a top-down 

approach to model the system as a whole, in Agent 

Based simulations, the system is „brought about‟ by 

carrying out the lower level interactions between the 

agents. For this reason, ABM is beginning to be used in 

a range of fields including biological simulations and 

social sciences representing people as interacting agents 

in environments (Zellner, 2008)(Siebers et al., 2010). 

 

VARIANCE IN EPIDEMIOLOGICAL SYSTEMS 

Early Mathematical models for epidemiology such as 

those by Bernoulli in 1766 (Dietz and Heesterbeek, 

2002) were useful deterministic models that could be 

used to determine „what-if‟ scenarios such as the change 

in life expectancy following the introduction of 

inoculation against smallpox. Further models followed 

including those for SIR proposed by Kermack and 

McKendrick which were stochastic (McKendrick, 1926) 

and deterministic (Kermack and McKendrick, 1927).  

   Early opinions for mathematical modelling of 

epidemic models were that deterministic models gave an 



 

 

average outcome of a corresponding stochastic model 

and that for large populations, it was the average that 

mattered. A more recent understanding is that both 

deterministic and stochastic models have their strengths 

and weaknesses. 

   Traditional deterministic models of epidemiology 

assume heterogeneity of mixing. It is assumed that 

individuals have the same rate of contact with others and 

recovery from infection takes the same time. In reality, 

contact rate is affected by transport networks and 

individual lifestyle and recovery from infection can 

depend on age and other factors so these are not take 

into account. Sometimes this data is difficult to ascertain 

but in smaller population sizes it may be possible to 

obtain this information and build a model that is a closer 

representation to reality. 

   One of the underlying reasons why epidemiological 

systems exhibit variation is due to the complex way that 

the individuals in a population have contact with each 

other. Infection levels can coincide with transport 

networks such as road and rail so individuals in areas 

with high levels of such transport links are more 

susceptible to catching infection. At a much lower level, 

random variation exists due to Brownian motion of the 

interaction between molecules (Gaspard, 2005). 

 

AGENT BASED MODELLING AND SYSTEM 

DYNAMICS 

Agent Based Modelling (Macal and North, 2008) is a 

more recent addition to the set of tools for simulations 

compared to classical mathematical models. ABM uses 

agents, which are discrete autonomous entities 

containing characteristics and rules which govern their 

behaviour and interaction with other agents. Agents can 

be programmed to adapt and learn from previous 

interactions. An ABM can have closer affinity with the 

system being modelled as the notable entities and their 

significant properties can be captured making the 

simulation more intuitive and closely resembling the real 

system. In System Dynamics (Sterman, 2004), complex 

non-linear systems are represented using feedback loops 

and delays by creating stocks which represent quantities 

over time, flows which measure the transition from stock 

to stock and factors which influence the values of the 

flows. 

 

VARIANCE EXPERIMENT FOR ABM AND SD 

In order to show how the variance differs in ABM and 

SD two models are built. One using SD with Monte 

Carlo simulation (to drive variation) and one using 

ABM which has variance built into the design. A basic 

Susceptible-Infected-Recovered (SIR) model, originally 

proposed by Kermack and McKendrick is used for both 

types of modelling paradigms. The SIR model is a 

simple but effective model of infection that has been 

used to represent a wide range of epidemics including 

influenza, tuberculosis, chicken pox, rubella and 

measles (Enns, 2011). 

In the basic SIR model, each person is in a state of: 

 Susceptible 

 Infected 

 Recovered 

A person who is susceptible has never been infected. As 

soon as they are infected by way of contact with an 

infected individual, they are set to the Infected state. 

After a period of time, during which the immune system 

is able to recover from the infection, an individual 

moves from the Infected to the Recovered state. Once in 

a Recovered state, the individual is immune to further 

infections. 

 

SIR Data 

The experimental data used in this paper is obtained 

from the Russian Influenza epidemic in Sweden between 

1889 and 1890 (Skog, 2008). After the outbreak of 

Russian Flu in Sweden, questionnaires were sent to 

Swedish physicians to determine ascertain information 

about the flu in their region. Answers were received by 

398 physicians for over 32,600 individuals. The 

information returned from the postcard included the 

following for each district: 

 Date of first influenza case detected 

 Peak of epidemic 

 Percentage affected 

The information returned from the questionnaire 

included the following for each household: 

 Number of infected persons 

 Gender 

 Age 

Some of the important findings are used as the 

parameter values. This included the duration of the 

disease which was found to be between 2.3 and 9.4 days 

and affected 61% of the population. For the purpose of 

the experiment, a single area, Österlövsta, was chosen 

for analysis. This area has a profile which shows a 

typical raise and decline of infection population counts 

over a period of 15 weeks. The complete data for 

Sweden can also be used but this will extend the ABM 

simulation time. The data obtained is shown in Figure 1.  
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Figure 1: Russian Influenza in Sweden – Data 



 

 

Data was taken from parishes surrounding one of the 

regions, Österlövsta, based on original work by Linroth 

over a period of 15 weeks. The total population size is 

52910 and is used in the experiments. The other 

parameters for the models are based on the main 

findings of the study with the illness duration set to 4.2 

and the probability of infection set to 0.065. This 

produced a best fit for the selected region of Österlövsta. 

 

System Dynamics Model 

The SD model is based on the original SIR model 

proposed by Kermack and Kendrick (Kermack and 

McKendrick, 1927). The model captures the spread of a 

contagious disease in a closed population over time. 

Three coupled, ordinary differential equations are used 

to represent the rate of change of the three different 

states of the people in a given population. The equations 

in the model are shown which the rate of change for 

each of the components of SIR. 

 

                 (1) 

The meaning of the parameters is shown in Table 1. 

Table 1: Parameter Description for SIR Equations 

Parameter Description 

a Infection rate 

b Recovery rate 

S Susceptible population 

I Infected population 

R Recovered population 

 

From the equations, a System Dynamics model is built 

in AnyLogic with stocks labelled as Susceptible, 

Infectious and Recovered and flows labelled as Infection 

Rate and Recovery Rate as shown in Figure 2. 

 

Figure 2: Stocks and Flows for the System Dynamics 

Model 

 

The system dynamics model produces the results shown 

in Figure 3. 
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Figure 3: Results for the System Dynamics Model 

 

Agent Based Model 

In the ABM model, each person is in a state of 

Susceptible, Infectious or Recovered. A person in the 

Susceptible state moves to the Infectious State on 

receipt of a message representing the transfer of the 

infection from one person to another. 

The infection is passed from one agent to another 

randomly connected agent in the network to another at a 

fixed contact rate and an individual recovers from the 

infection using a recovery rate. A state chart is used to 

model the state of the agent as shown in Figure 4. 

 

Figure 4: State Chart for the Agent Based Model 

As per the System Dynamics model, a population count 

of 52910 is used in the model based on the Russian 

Influenza epidemic in Sweden. Individuals (agents) are 

connected using a small world (Watts and Strogatz, 

1998) network topology. This is chosen as it represented 

a suitable route of transmission of the infection with 

many close connections in the network coupled with 

distant connections. The distant connections may be 

perceived as transportation links such as those by rail or 

sea. The small world network has been used in 

epidemiology (da Gama and Nunes 2006) with a number 

of studies using it as part of the models (Boots and 

Sasaki, 1999). A single randomly connected agent is 

chosen to kick-start the spread of infection. 

   A feasibility study is carried out for the modelling 

software and AnyLogic by XJ Technologies chosen as a 

suitable choice for modelling SIR in System Dynamics 

and Agent Based Modelling. One of the features of 

AnyLogic is that it has inherent support for combining 

different modelling paradigms into a single model. 

   In total, 100 experiments are carried out in AnyLogic. 

The experiments are carried out on a PC running 

Windows 7 with 3GB memory and an Intel Core 2 

P8700 microprocessor. Output from the experiments is 

imported into MatLab to generate the box plots. The 

result for the ABM is shown in Figure 5. 
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Figure 5: Agent Based Model Results 

As per the SD model, the AB model is also validated 

against the data from the Influenza epidemic. The ABM 

simulation takes a total of 13 hours to complete. 

 

SD Monte Carlo Simulation 

The Monte Carlo simulations are used to determine how 

infected population counts change when the input 

parameters to the SD model are varied. Monte Carlo 

simulation uses repetitions of random sampling of the 

input parameters to determine the result. The 

randomness is applied „outside‟ of the internal workings 

of the system as it is the parameters to the system being 

sampled. 

   One of the limitations of using the Monte Carlo 

method applied to simulations is the time taken to 

perform the simulation over a very large number of 

iterations. Therefore in areas such as Probability 

Sensitivity Analysis, the Monte Carlo solution is not 

always a viable method for complex models such as 

those for healthcare, involving thousands of patients 

(O'Hagan et al., 2007). 

   Monte Carlo simulations are carried out using the SD 

model to see the effect of varying each parameter and 

the effect of varying all parameters. In total, 100 

simulations are carried out for each experiment to match 

the ABM. Parameter variation is carried out by 

randomly selecting values for each of the parameters 

taken from a standard normal distribution based on the 

mean value. 

   The following Monte Carlo simulations are carried 

out: 

 Illness Duration variation 

 Contact rate variation 

 Infection rate variation 

 Illness duration, contact and infection rate 

variation 

Each SD experiment, comprising 100 simulations, takes 

a total of 9 seconds. The box plot for the SD Monte 

Carlo model with illness duration variation is shown in 

Figure 6. The infected population peaks at 21,442. 

   In the case where the contact rate is varied, the result 

is shown in Figure 7. In this case, the inter-quartile 

range is larger than the simulation where the illness rate 

is varied and clearly visible in weeks 3 to 7 inclusive. 
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Figure 6: System Dynamics Model - Illness Duration 

Variation 
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Figure 7: System Dynamics Model - Contact Rate 

Variation 

The SD Monte Carlo model where the infection rate is 

varied is shown in the box plot in Figure 8.  
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Figure 8: System Dynamics Model - Infection Rate 

Variation 

The box plot for the experiment where multiple 

parameters are varied is shown in Figure 9. The results 

show that with multiple parameters being varied the 

infected population peaks at 24,725 which is a 

substantial increase compared with the SD version 

without Monte Carlo simulation which peaks at 13,025. 

Therefore compared with experiments where variations 

of contact rate and infection rate are altered to introduce 

randomness, the variation of multiple parameters has the 

undesired effect of scaling up the infected population 

counts. 
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Figure 9: System Dynamics Model - Infection, Illness 

and Contact Rate Variation 

 

Validation against Influenza data 

The Wilcoxon signed rank test (Wilcoxon, 1945) is used 

to compare the simulation results against the Influenza 

data. This is a non-parametric paired test that tests the 

null hypothesis that the means for the two data sets are 

the same versus the means from the two data sets differ. 

The SD result without any Monte Carlo simulation is 

compared directly against the Influenza data. For ABM 

and SD with Monte Carlo, the median values for each 

experiment are obtained for each week. 

   The Wilcoxon rank sum test for the experiment is 

calculated using MatLab version R2010b. The results 

are summarized in Table 2. A 5% significance level is 

used. 
 

Table 2: Wilcoxon Signed Rank Test for experiments 

Simulation p Value 

SD 0.3013 

ABM 0.4648 

SD – Vary illness duration 0.2661 

SD – Vary contact rate 0.2036 

SD – Vary infection rate 0.0244 

SD – Vary illness, contact, infection rate 0.0269 

The h value for the tests is 0 and the p values of 0.0244 

and 0.0269 indicate that the null hypothesis can be 

rejected for the experiment where infection rate is varied 

and for the version in which combined parameters are 

varied. 

   The Wilcoxon rank sum tests show that the SD 

without Monte Carlo and the ABM has equivalent 

overall fits with the experimental data. The ABM 

experiment, with natural variation between different 

simulations, due to the contacts between the agents, is in 

agreement with the Influenza data. 

   When the Monte Carlo simulation is applied to the SD 

model, the overall results of the simulation are in 

agreement with the Influenza data for illness duration 

variation and contact variation but for variations of 

infection rate and the combined variation the results are 

no longer in agreement. The last, combined Monte Carlo 

simulation, has the overall effect of scaling up the 

median values overall. 

Variance in ABM and SD Experiments 

Variance for each of the Monte Carlo experiments are 

taken from the box plots and compared against the 

variance of the ABM experiment. In order to compare 

the variances, the inter-quartile range (IQR) is 

calculated using the MatLab for the ABM experiment 

and SD Monte Carlo experiments. The IQR for the 

ABM is shown in Figure 10. The ABM experiment 

produces a broadly symmetric result reflecting 

variations of the uptake of the infection which occurs at 

different times in the simulations but producing the same 

shape of the infection curve. 
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Figure 10: Agent Based Model - IQR 

The IQR for the SD Monte Carlo simulation with 

variations in the illness duration is shown in Figure 11. 

The chart shows that there is less variation at the height 

or peak of infections. This is because the variation is 

created by the random connections that the individuals 

have in the simulations and critical parameters such as 

infection rate and illness are kept constant. 

   The results show that ABM is able to maintain stable 

peak infection values whilst at the same time exhibiting 

the type of randomness one may expect between 

different populations. 
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Figure 11: System Dynamics Model – Illness Duration 

IQR 

The chart in Figure 12 shows the IQR where the Contact 



 

 

Rate is varied in the SD Monte Carlo simulation. 

   The chart shows that the counts at the height of 

infection vary significantly between simulations 

compared to the ABM. In the ABM experiment, the 

contact rate is constant among the simulations and 

therefore in those simulations there is less difference of 

the counts at the height of infection. 
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Figure 12: System Dynamics Model – Contact Rate IQR 

The chart for the IQR for the infection rate variation for 

the SD Monte Carlo simulation is shown in Figure 13. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

2000

4000

6000

8000

10000

12000

Weeks

In
fe

c
te

d
 P

o
p
u
la

ti
o
n

System Dynamics Model - Infection Rate IQR

 
Figure 13: System Dynamics Model - Infection Rate 

IQR 

The chart for the IQR in the case where multiple 

parameters are varied in the SD Monte Carlo simulation 

is shown in Figure 14. 
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Figure 14: System Dynamics Model - Infection, Illness 

and Contact IQR 

Unlike the Monte Carlo simulations where a single 

parameter is varied, in this case, with multiple parameter 

variations, there is an overall significant increase in the 

variation. Table 3 shows the total variation (the sum of 

IQR values) for the different experiments. 

 

Table 3: Total variation for the SIR experiments 

Simulation Total 

Variation 

ABM 16050 

SD – Vary illness duration 10223 

SD – Vary contact rate 19956 

SD – Vary infection rate 26452 

SD – Vary illness, contact,  infection rate 36569 

 

The least total variation for the simulation is obtained 

for the Monte Carlo experiment where the illness 

duration is varied. The Monte Carlo experiment where 

combined parameters are varied has more than twice the 

total variation of the ABM experiment. 

   Results from the ABM simulation showed that the 

overall peak total infection remained stable between 

simulations. The shape of the output curve for each 

simulation has a closer fit with the curve for the 

empirical data. The ABM simulations only differed with 

the initial delay before the uptake of infection which 

may also arise due to natural variation of the contact rate 

between individuals and their transport networks. 

   In contrast, for the SD model, the effect on the 

variation of the parameters has the effect of altering the 

rate at which the infection spread within the population.  

 

DISCUSSION AND CONCLUSION 

   Although variations of SD models exist which are able 

to integrate random elements (Tuckwell and Williams, 

2007)( Volz and Meyers, 2007) they produce a different 

kind of variation compared to ABM. Whereas in 

stochastic models there is a random element applied to 

the equations, in ABM the randomness is inherent and 

more natural, following the rules of the underlying 

system being modelled. 

   The ABM and SD experiments for the SIR data show 

that ABM is able to capture natural variation without 

recourse to modification of any parameters for a 

simulation. The classic SD model has no variation. The 

SD with Monte Carlo simulation has variation but it is 

very sensitive to parameter changes and in the case 

where multiple parameters are varied, it produces 

variation and infected population counts which no 

longer match up against the experimental data. 

Therefore an ABM of SIR with built-in randomness is 

able to capture the natural variation in SIR better than a 

classic SD model with Monte Carlo simulation. The 

source of variation for the ABM is the contact between 

the agents between the different experiments. 



 

 

   Several comparative studies between ABM and SD 

have been undertaken (Jaffry and Treur 2008). Some 

notable discussions in these studies include the issue of 

computing power and control. As concluded in this 

study, the ABM is computationally expensive compared 

to classical mathematical models although this may be 

overcome in future by highly parallel computing 

architectures (Tang et al., 2008). The ABM does 

however provide more control over how individual 

agents interact and could be viewed as a more „faithful‟ 

interpretation of the processes being modelled. 

   As the ABM is built using autonomous individuals, it 

could be extended to include connections between 

individuals across different regions to understand the 

effect of disrupting the spread of the epidemic by 

shutting down major transport links for example. Further 

work could include the effect of the use of different 

network topologies. 

   Stochastic computer simulation is being used for 

biochemical network dynamics (Wilkinson, 2009). 

   The use of ABM with its inherent and intuitive 

representation of natural variation and interaction among 

components can help to bridge the gap between 

computer simulation and biological systems and provide 

insight of how local level interactions bring about global 

system outcomes. 
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