
CSRD (2012)27(2): 113–126
DOI 10.1007/s00450-010-0145-x
��

SPECIAL ISSUE PAPER

Reconstituting typeset Marriage Registers using simple software tools

David F. Brailsford

Received ???? 2010 / Accepted ??? 2010

Abstract In a world of fully integrated software applica-
tions, which can seem daunting to develop and to main-
tain, it is sometimes useful to recall that a system of
loosely-linked software components can provide surpris-
ingly powerful and flexible methods for software devel-
opment.

This paper describes a project which aims to re-
typeset a series of volumes from the Phillimore Marriage
Registers, first published in England around the turn of
the last century. The source material is plain text derived
from running Optical Character Recognition (OCR) on a
set of page scans taken from the original printed vol-
umes. The regular, tabular, structure of the Register
pages allows us to automate the re-typesetting process.

The UNIX troff software and its tbl preprocessor are
used for the typesetting itself, but a series of simple
awk-based software tools, all of them parsers and code
generators of one sort or another, is used to bring about
the OCR-to-troff transformation.

By re-parsing the generated troff codes it is possible to
produce a surname index as a supplement to the re-
typeset volume. Moreover, this second-stage parsing has
been invaluable in discovering subtle ‘typos’ in the auto-
matically generated material. With small adjustments to
this parser it would be possible to output the complete
marriage entries in standard XML or GEDCOM nota-
tions.

Keywords Re-typesetting ⋅ OCR ⋅ troff ⋅ parsing ⋅
genealogy ⋅ hyperlinking ⋅ indexing

CR subject classification
���
David F. Brailsford (✉)
Document Engineering Research Group
School of Computer Science
University of Nottingham
Nottingham NG8 1BB, UK
email: dfb@cs.nott.ac.uk

1. Introduction

This paper focuses on the re-typesetting of a series of
printed marriage registers, published by the Phillimore
company, in England, in the early years of the 20th cen-
tury, as an aid to genealogical researchers. These printed
registers were transcribed from the original hand-written
registers, kept in local parish churches throughout Eng-
land and Wales. The Phillimore Marriage Registers con-
tain useful extra material not available in other tran-
scripts taken from the hand-written originals. In particu-
lar, for each parish, there are a few paragraphs of intro-
duction relating to the number of original hand-written
registers that were available, and their physical condi-
tion. The use of local volunteers for the transcription task
meant that many of the more illegible entries could be
annotated with likely interpretations of obscure sur-
names, place names etc.

What follows should be read as a tale of ‘practice and
experience’ which calls upon a combination of tried and
trusted techniques to bring the Phillimore Registers back
to life. The project became a document engineering exer-
cise by automating the re-typesetting (henceforth abbre-
viated to ‘re-setting’) of the Phillimore registers, as a first
step towards indexing them and making their enhanced
content available in structured form via XML and GED-
COM [1] notations (GEDCOM is an acronym for
GEnealogical Data COMmunication).

1.1. English Marriage Registers

In 1538 Thomas Cromwell, the Vicar General to King
Henry VIII, ordered that all baptisms, burials and mar-
riages should be recorded. These records were normally
kept at the local Parish Church. Some 60 years later, dur-
ing the reign of Queen Elizabeth I, an Act was passed
requiring that a copy be made of these records, which
was to be sent to the bishop in whose diocese the parish
was situated. These are known as “Bishop’s Tran-
scripts”. It is interesting to note that in these early days
the ecclesiastical year started and ended with the Feast of
the Assumption of the Virgin Mary (Lady Day) on 25th

FINAL DRAFT

2 David F. Brailsford���

March and this can result in marriages for January,
February and March being recorded with a year looking
like 1659

8, denoting that the event took place in the eccle-
siastical year of 1658 but the secular year of 1659.

For the original registers large and wealthy parishes
could afford professional scribes who wrote up the regis-
ter entries, and the Bishop’s Transcripts, in a beautiful
calligraphic hand, whereas smaller parishes were reliant
on the priest’s own handwriting. Thus the Phillimore
sub-editors assigned to making a transcript of a particu-
lar parish’s records, ready for printing, were often faced
with the challenge of deciphering near-illegible entries.

The next major legal event for Parish registers was
Lord Hardwicke’s Marriage Act of 1754 which ordered,
among many other things, that the year dates of wed-
dings had to follow the secular calendar and not the
ecclesiastical one. The home parish of the bride and
groom was assumed to be that where the marriage took
place, unless explicitly stated otherwise. Finally, after
1812, baptisms, burials and marriages were to be
recorded in separate volumes on standardised pre-printed
forms.

For the next 83 years after 1754 the Hardwicke rules
were followed, but on 1st July 1837 central recording for
births, deaths and marriages was introduced by the gov-
ernment (even though the entries, in the first instance,
would almost always be made by the parish priest). For
many years thereafter the archived parish registers were
retained in the local churches but the enactment of the
Parochial Registers and Records Measure, in 1987,
means that most UK church registers have now been
moved to their respective County Record Offices.

In recent times there have been some attempts to make
the contents of the Bishops’ Transcripts or even tran-
scripts of the parish registers themselves, available
online. These transcripts are of variable quality, often
with many gaps and omissions in the original material,
and the transcription having often been made by volun-
teers with little or no local knowledge of the parish con-
cerned. It is very rare to find, for any parish, a set of tran-
scripts going all the way back to Thomas Cromwell’s
1538 decree.

1.2. The Phillimore Parish Registers

Well before the Internet era, in the period 1890–1922,
the Phillimore company of London conducted a major
effort to transcribe the archived registers that were still
being kept by the parish churches. Phillimore employed
local sub-editors from each of the counties and enlisted
the help of the parish priests themselves in doing the
transcriptions. In this way local knowledge could be
brought to bear in deciphering the hand-written marriage
details. Despite the help of many volunteers the sheer
volume of work, even for the marriage registers, was
overwhelming; the transcribed marriage registers
remained un-indexed and the transcription of baptisms

and burials was not even begun. In recent years several
vendors have made the Phillimore Register material
available as page scans. For example, there is a free set
of scans available at relatively low quality [2], and at
least one set of much better scans is available for pur-
chase on CD [3].

The transcribed material prepared by the Phillimore
volunteers was typeset and issued as a subscription series
of bound volumes. By way of example the size of print
run, for each of the 15 volumes relating to the county of
Derbyshire, was 150 copies. Volume 1 was released in
1906 but Volume 15 did not appear until 1922.

The idea for this project began with my borrowing the
first three volumes of the Derbyshire Phillimore Mar-
riages series from a local Nottingham library. For rea-
sons that will be apparent from the author’s surname, ini-
tial interest focused on Volume 2 which contained
records for the parish of Brailsford1. Figure 1 shows the
title page for the parish of Brailsford, firstly as a bitmap
scan and then in its re-typeset form resulting from the
present work.

The most striking feature of the published entries was
the disciplined tabular nature of the typesetting. All the
records were set on a standard measure of 3.7 inches,
using overflow lines, if needed, with a 6-en indent.

Within each record, the details for groom, bride and
parish were set in a column width of 2.8 inches with the
remainder of the measure allocated to day, month and
year. The names of groom and bride were invariably
linked by an & character and optional subsidiary infor-
mation was indicated either by position (e.g. prefixed
titles such as “Mr.”, “Mrs.”) or by comma delimited sub-
ordinate clauses (e.g. “, yeoman,”, “, of Derby,”). Such
was the regularity that one could write down a context-
free grammar for the entries, thereby prompting the
thought that Phillimore’s original aim of producing per-
volume indexes might be achievable.

The plan that emerged was, first, to acquire plain and
unformatted text from OCR treatment of bitmap Philli-
more Register pages. The pages would then be re-
formatted, and the tabular records re-set, using UNIX-
based software tools, as a first step towards checking the
internal structure and consistency of the records. An inci-
dental benefit of doing this is that a PDF version (or even
a hard-copy, bound, version) of each re-set volume
would be straightforward to produce. Moreover, after
re-setting, further content enhancement and repurposing
would become relatively easy. However, if re-setting is
to be a step on the way to syntactic verification, and
greater abstraction, then we need to review, briefly, the
usual techniques available for re-setting a book that has
gone out of print.

������������������
1 Brailsford is a Derbyshire village situated about half way be-
tween the city of Derby and the town of Ashbourne.

FINAL DRAFT

Reconstituting typeset Marriage Registers using simple software tools 3���

1.3. Resetting a published book

A large amount of the book-length material still available
as hard-copy volumes was created prior to the era of
standardised text processing software, and the availabil-
ity of PostScript. Some of it may have been set on a vari-
ety of second- and third-generation typesetting machines,
some will have been set on hot-metal machines and yet
more will have been hand typeset. It would certainly be
possible to re-key and re-set a Phillimore volume, pro-
vided the necessary typefaces could be identified, using
software such as Quark Express or Adobe InDesign. But
this is a seriously labour-intensive process and one has to
constantly cross refer to the original material to check
that line spacing, measure and general layout characteris-
tics are being faithfully reproduced. It is also a problem
in WYSIWYG page layout programs that tabular layout
capabilities are not generally as powerful as those found
in markup-driven systems such as troff / tbl and LATEX.

An alternative way to achieve some form of ‘elec-
tronic’ product is simply to scan in the pages of the book
to a standard format such as JPG or TIFF. Type legibility
then largely depends on the quality of the original mate-
rial and then on the resolution of the scanner and the
degree to which file compression has been applied within
lossy formats such as JPG. Until relatively recently the
drawback for electronic books consisting just of bitmap
pages has been their lack of full-text searchability. In the
mid-1990s Adobe Systems Inc announced a product
called Capture, which capitalised on the fact that the
PDF format could not only display conventionally type-
set pages but could also handle bitmap pages, by import-
ing TIFF images into PDF’s internal equivalent of the
PostScript bitmap format.

Capture starts from a set of bitmapped PDF pages and
applies an Optical Character Recognition (OCR) engine
to the task of acquiring the underlying text. There is then
a second software engine capable of analysing the fonts
in use within the document. With the aid of an interac-
tive interface Capture replaces bitmapped text with the
typeset equivalent in the appropriate font. The user is
prompted to supply corrected words for all partially-
recognised ‘suspects’. Any suspects not replaced in this
way are left as bitmap inserts in the surrounding re-
typeset text.

Given sufficient time and persistence Capture can
recreate a very close approximation to the original. How-
ever, such is the level of editing effort required that it
occupies a niche market; the stand-alone Capture product
has not developed beyond the 3.0 version, which was
issued in 2000. Instead, a very popular, reduced-
functionality, version has been added as a plugin to
Acrobat itself. When used on a PDF file consisting of
bitmapped pages the Acrobat Capture plugin has an OCR
facility and a rough ability to gauge the metrics of the
fonts in use. However it lacks the detailed font recogni-
tion and editing facilities of the full Capture product.
When the plugin is invoked it OCRs the bitmapped pages

to hidden typeset text, using generic fonts that are metri-
cally similar to the scanned bitmap glyphs. Accurate
page coordinates are calculated for each recognised word
and the hidden text is then placed in exact registration
with the original bitmapped text (technically, PDF talks
about rendering this hidden material in Text Mode 3).

Once the OCR is complete the PDF document
becomes searchable, limited only by the quality of the
OCR recognition; the search function highlights the
place on the screen where the search phrase occurs in the
hidden text. Provided that registration is accurate, the
perceived effect of the highlighting is to illuminate the
corresponding area in the visible bitmapped text. In this
way Capture seemingly achieves the near-miracle of
‘searchable bitmapped text’.

For the present project the use of Acrobat Capture
would be wholly inappropriate. The full Capture product
with its in-built suspects editor could be equipped with
the correct fonts but there is no way that it could be
trained to exploit the repeated regular structure of the
marriage register pages. By contrast the tbl pre-processor
for UNIX troff, or the tabular environment in TEX and
LATEX, are well suited to this kind of material. Most
important of all the troff and tbl coding is auto-generated
from sed and awk scripts working on OCR-acquired raw
text. In this way the various replacement rules for ‘sus-
pects’ can be made explicit rather than residing in hidden
data structures inside an integrated document recognition
application such as Capture.

2. TOOLS AND TECHNIQUES
2.1. Typeface choices

If a book is to be completely reset then achieving a
high-quality result depends on being able to find appro-
priate fonts for all of the pages in the original. Any mate-
rial that can be replicated only by insertions of scanned-
in bitmap will greatly degrade the overall appearance of
the product.

Analysis of an original Phillimore Register page, as
shown in Figure 1(a), shows three typefaces in use. The
body text was identified (from the structure of the & and
A characters, and from other clues) as being Caslon, set
at 10 pt. on 11.5 pt. line spacing. Now, given that the
matrices for typecasting Caslon on Monotype machines
were not cut until 1914 it seems likely that the early Phil-
limore volumes (Derbyshire Marriages Volume 2 is
dated 1907), were hand set. The body typeface selected
for the re-setting exercise was Caslon 540 from the
Adobe Type Library — this particular variant of Caslon
being chosen because the Old Style figures and Small
Capitals, used in the original material, were all available.
The Fraktur typeface used in the ‘Derbyshire Marriage
Registers’ heading was submitted to “What the Font” [4]
for identification. A strong match came back for Fordor
Incised NF, which was revived in digital form by Nick
Curtis in 2005. Finally, the bold face used for the head-

FINAL DRAFT

4 David F. Brailsford���4 David F. Brailsford��

Derbyshire Parish Registers.

Marriages at Brailsford,
1653 to 1812.

Note.–The village of Brailsford is situate on the high road between
Derby and Ashburne, and is about half way between those two
places. The Church stands alone in a field to the left of and
about half a mile from the village. This isolated position is said
to be owing to the fact it was originally erected for the joint use of
two manors, the manor of Brailsford and the manor of Ednaston. The
Church is still used by the village or hamlet of Ednaston, which is
about a mile distant from Brailsford, as well as by the village of
Brailsford.

The earlier Registers have been lost. Of those now existing,
Volume I consists of parchment leaves, measuring 141⁄2 ins. by 7 ins.
It is bound in parchment, and the Marriages are mixed with the
Baptisms and Burials. It extends over the period 1651 to 1695. It is
in fair condition, though some pages are torn.

Volume II, from 1706 to 1753-4, is also of parchment and parch-
ment bound. It measures 18 ins. by 7 ins.

Volume III, 1754 to 1807, measures 15 ins. by 9 ins. Volume IV,
1808 to 1811, measures 15 ins, by 101⁄2 ins. Both are the usual
volumes of printed forms.

The Marriages have been extracted by the Hon. Frederick Strutt,
and are now printed under his supervision by leave of the Rev. C. H.
Fairfax, Rector of Brailsford.

Volume I.
Georgius Potter & Anna Wood … … 1 June 1653
Nicholas Sleigh & Janna Miles … … 12 Aug. 1654
Johannes Roulston & Anna Morley … 20 Dec. ,,
Johannes Hind & Dorothea Bond … … 27 Dec. 1655
Richardus Squire, of Weston, co. Stafford, &

Bennet Smith, of Mickleover, co. Derby 9 Nov. 1656
Robert Alt & Janna Millington … … 12 Nov. ,,
William Frost & Sarah Robts … … 2 Dec. ,,
Anthony Browne & Maria Marsh … … 5 Nov. 1657
Robert Jeffries & Maria Jackson … … 3 May 1658
Hugo Folt & Janna Wilson … … 3 May ,,
Johan’s Millington & Dorothea Hotfield … 1 July ,,
Jacobus Cooke & Alicia [] … … 8 July ,,

Figure 1(a), Original title page Figure 1(b) Re-typeset title page

ing ‘Marriages at Brailsford’ did not exactly match any
typeface known to “What the Font”, but it showed simi-
larities to ITC Bookman Bold and Bitstream’s Romana
Bold. The Bookman face was a slightly better match for
weight but Romana was ultimately chosen because of the
closer similarities of its letter shapes to those in the origi-
nal material.

Figure 1(b) shows how well the substitutes performed
in practice. Fortunately, Caslon 540 has a smaller x-
height, and slightly smaller set widths, than the original
Caslon font of Figure 1(a). So, for the 9 pt. descriptive
material about the Brailsford parish, it was possible to
stretch the lines to fit the measure using the troff \p
command. Equally, as described in section 2.3, the troff
‘fields’ facility enabled each line in the tabular material
to be padded and justified.

Having identified the three main typefaces needed for
the Phillimore Marriage Register series, it was with a
slight sense of dismay that yet another font challenge
was discerned in Volume 5 of the Derbyshire Marriages.
In this volume the registers for the parish of Norton go
back to 1559 and at the start of the very first register is
an inscription, in Latin and in a calligraphic hand,
recording that the marriage entries were commencing in
the second year of the reign of Queen Elizabeth and
would be recorded, in perpetuity, as laid down in the
edict of Henry VIII in 1538. The Phillimore editors and
printers took up the challenge of replicating this opening

page as best they could and a scanned version of what
they produced appears in Figure 2(a). A cursory glance
shows that the typeface is some sort of cursive blacklet-
ter, much like the early types used for English printing
by Caxton in the late 15th century. Now, the style of
handwriting on which Caxton’s types were based is
called Bâtarde, and more particularly, Burgundian
Bâtarde, owing to its popularity among the scribes of the
Duchy of Burgundy. The Bâtarde terminology denotes
that it is cursive, or semi-cursive, and hence bastardized,
in comparison to the upright, fully hexagonalized, black-
letter typeface found in the Gutenberg Bible.

Blackletter digital typefaces are certainly available
that mimic Gutenburg’s originals, or which follow the
Fraktur style. But faces that emulate Caxton’s blackletter
are very few and far between and are unlikely to exactly
replicate the face used in this particular Phillimore regis-
ter of 1909. (The typeface was undoubtedly obtained
from one of the English type foundries of the day.) For-
tunately a modern re-interpretation of the Bâtarde style is
available in the form of Lucida Blackletter from Bigelow
and Holmes which has rather more ornate capital letters
than the original material but otherwise bears a remark-
able resemblance to it. With permission from Bigelow
and Holmes the stems of the lower-case letters b, l, h
and d were altered, in Fontographer, to give a better
match to the original face. The results are shown in Fig-
ure 2(b).

FINAL DRAFT

Reconstituting typeset Marriage Registers using simple software tools 5���

M A R R I A G E S .

Register No. I., 1559–1653.

������

Maritagia solemnizata apud Norton in comitatu

Derbiae ex secundo anno regni Elizabethae reginae

nunc Angliae usque ad quadragesimum secundum

beatissimi ejus regni annum, et deinde imperpetuum

in hoc registro inscribenda, secundum statutum per

Henricum octavum nobilissimae memoriae editum

anno domini 1538.

Figure 2(a), Original Norton parish title page Figure 2(b) Re-typeset page using Lucida Blackletter

2.2. Scanning and OCR

A series of 300 dpi, bitonal, TIFF test scans, from the
chosen Phillimore volume, were made on an HP Scanjet
8250 flatbed scanner. Two possible OCR programs were
tested. Firstly the TIFF pages were imported into Adobe
Acrobat, converted to PDF bitmap format, and then sub-
jected to OCR analysis via the Capture plugin.

The quality of the resultant ‘hidden text’ could be
analysed by saving it from Acrobat as plain text. For
comparison, the TIFF pages were also OCR-analysed
using the Read Iris Pro OCR software supplied with the
8250 scanner. The recognition performance of the two
OCR engines was broadly similar but the Capture soft-
ware had to be rejected because of the simple fact that
there was no way to disable its page zoning and struc-
tural analysis features. About 50% of the time a typical
page would be represented as a single text block.
Another 40% of the time it would recognise the tables as
two-column text, with main material in the left column
and the final three tabular columns rolled up into a single
textual column. For the remaining 10% of the scanned
pages a wide variety of bizarre page structures were
inferred, which led in turn to some equally bizarre read-
ing orders within the saved text. Whether rendering order
is the same as reading order is usually of little concern in
PostScript and PDF, so long as the final displayed page
“looks right”. But if saved plain text from an OCR pro-
cess is being analysed and re-processed then correct
reading order is essential.

For all the above reasons the serious OCR work for
this project was conducted using ReadIris Pro, in which
it was possible to drag out a single-block template and
apply it to all scanned pages, prior to OCR processing
into plain text. Like many programs of this sort, ReadIris
offers an interactive option to signal suspect words or
phrases that lie outside the confidence limits for recogni-
tion. After correcting the suspect one can either ask that

this correction be ‘learned’, in which case it will be
applied silently thereafter, or that it be ‘not learned’
which means that the same correction will be proposed if
the suspect recurs, but it will require confirmation on
every occasion. In practice this latter style of correction
is the option that has to be chosen most of the time; the
former sort requires complete confidence that it is always
safe, in all contexts, to make the indicated correction.
Even if such universal replacement rules are valid they
become part of the knowledge-based data structures hid-
den inside the recognition software. Just as in Adobe
Capture there is no way to externalise these rules, nor to
have close control over the degree to which they are con-
text free or context sensitive.

Thus, after some experimentation it was decided to
dispense with interactive suspect editing during OCR
and to simply scan the pages to plain text, followed by
processing with the sed and awk scripts described in a
later section. The division of labour between sed and
awk allows exactly the level of context-free/context-
sensitive control that has just been referred to.

2.3. Core typesetting software

The choice of UNIX ditroff [5] (the device-independent
version of troff), for the re-setting work, rather than the
equally suitable TEX or LATEX, was largely for historical
reasons. In the early 1980s I led a project to perform, ‘in
house’, the typesetting of all examination papers for the
University of Nottingham [6]. At the time there was
much debate as to whether troff or TEX should be chosen
for this task. TEX was available for free but it needed a
DEC VAX (which we did not possess) in order to run
successfully. On the other hand the ditroff suite cost
$4000 (a substantial sum at the time) but the software
could run quite happily on the PDP 11/44 and PDP 11/70
machines we already possessed. Thus, our decision in
favour of the troff suite was confirmed by simple eco-
nomic considerations.

FINAL DRAFT

6 David F. Brailsford���
1804] Brailsford Marriages 19

William Roome, of Mackworth, & Elizabeth
Kirkland … … … … 15 Nov. 1796

Thomas Beresford & Hannah Keeling … 20 Dec. ,,
William Beeson & Mary Yates … … 26 Jan. 1797
Samuel Marsh & Hannah Yates … … 17 Apr. ,,
Hezekiah Clark & Catherine Froggatt … 19 June ,,
Matthew Rollins, of Bradley, & Hannah Cooper 9 Oct. ,,
Robert Johnston, of Mugginton, & Elizabeth

Burton … … … … 30 Oct. ,,
George Orme, of Longford, & Mary Saunders, lic. 10 Nov. ,,
George Palmer, of Edlaston, & Alice Woodhouse 25 Dec. ,,
Joseph Morley & Elizabeth Morley, lic. … 15 Apr. 1798
John Morley, of Langley, & Hannah Morley, lic. 14 June ,,
James Duke & Ann Meats … … 6 Aug. ,,
John Morley & Hannah Hallam, lic. … 4 Oct. ,,
John Slater & Mary Salt … … 30 Oct. ,,
Samuel Smith & Martha Crooks … … 5 Nov. ,,
Thomas Cotton & Sarah Ault … … 22 Nov. ,,
John Royall & Anne Boyde … … 10 July 1799
Thomas Adkin & Hannah Etherington, lic. … 25 Dec. ,,
Philip Burton, of this p., & Mary Grattidge,

of Longford, lic. … … … 19 June 1800
Jonathan Hulland & Mary Stone, both of

Ednaston, in this p., lic. … … 27 June ,,
John Ratcliffe & Sarah Barns … … 27 Oct. ,,
William Harrison & Frances Foster … 10 Nov. ,,
Thomas Smith & Anne Holmes … … 15 Oct. 1801
Henry Thornley & Elizabeth Yates … 3 Nov. ,,
Thomas Orpe & Esther Pedley … … 24 Nov. ,,
John Wilcockson Sowter, of the p. of

St. Peters, Derby, joiner, & Martha
Holmes, lic. … … … 15 Mar. 1802

Matthew Fearn, of Rodsley, p. of Longford,
& Anne Moss, lic. … … … 15 Nov. ,,

Robert Hawksley & Mary Hough … … 17 Feb. 1803
Richard Farmer, of Stone, co. Stafford, &

Millicent Hicklin, lic. … … 28 Nov. ,,
Edward Potts & Hannah Pedley … … 26 Dec. ,,
Edward Stone, of this p., & Frances Milward,

of Longford … … … 2 Jan. 1804

Figure 3(a), Original sample page Figure 3(b) Re-typeset sample page

In the subsequent 25 years a large amount of expertise
has been built up with the ditroff suite generally, and
hence also with the tbl pre-processor, so essential to the
present project. Expertise and experience with one’s cho-
sen software is every bit as important as the software
itself in a project of this kind, in which a large number of
subtle typographical effects are required if the original
material is to be replicated accurately.

The tbl template for the register entries was:
lf1w(2.8i) 2 nf3 1 lf1 1 lf3.

in which f1 denotes use of the standard Caslon 540 font
and f3 the variant of Caslon 540 containing Old Style
figures and small capitals. The 2.8 inch width of the first
column can clearly be seen, and the letters l or n,
attached to each column specifier, denote either left or
‘numeric’ justification, respectively. The interleaved dig-
its such as 2 and 1 show the widths of the inter-column
gutters, measured in ens.

Figures 3(a) and 3(b) show, respectively, an original
page from the Brailsford register and its re-set version.
Even though these figures are reduced in size, close
inspection reveals that the measure on the re-set version
is slightly wider than on the original (3.9 inches as
opposed to 3.7 inches). The reason for this is that even
though Caslon 540 sets more tightly than the original
Caslon, huge problems arose in automating the resetting
of the tables due to the occasional line that had virtually
no inter-word spacing (the entries for George Orme,

George Palmer and John Morley of Langley, in Figure
3(a), show this very clearly). In relaxing the measure by
0.2 inches most padding problems could be overcome, as
recounted in the next sub-section.

A sample of the tbl encoding for the first few lines of
Figure 3(b) is shown in Figure 4. The first feature of note
is the use of .fc # ˆ, which is a troff ‘field’ com-
mand [7] denoting that, between the outer delimiters of
#, the inner ˆ markers are to be padded with equal
amounts of space, so as to fit the declared column width
of 2.8 inches. Now it was a considerable leap of faith to
hope that this approach would work because fields are a
troff facility and not a built-in feature of tbl. Given that
tbl acts as a pre-processor for troff, and compiles tbl cod-
ings into lengthy streams of raw troff commands, it was
by no means certain that the use of fields, within a table,
would not interfere, in some subtle way, with the low-
level coding generated by tbl itself. Indeed, this trick is
the typesetting equivalent of trying to interleave raw
assembler code with the output from a C compiler, and is
almost certainly every bit as dangerous. Mercifully it
worked well because, as we shall see, being able to auto-
mate spatial padding is an invaluable bonus in develop-
ing scripts for generating correct leader-dot patterns.

Further features to note are the way in which overflow
lines are inset by using the *(6s pre-defined string to
insert a 6-en space and the use of *c to call a pre-
defined string for the abbreviation lic., which denotes a

FINAL DRAFT

Reconstituting typeset Marriage Registers using simple software tools 7���

marriage by special licence. The string call *(0q is
used to insert ditto marks, consisting of two commas,
whenever a year date of a wedding is the same as that on
a previous line.

However, most significant of all for replicating the
original material was the need for leader-dot patterns to
be inserted into column 1 of the table, to complete each
under-length line. Careful measurement on the original
pages showed that the simplest of these leader patterns
was just an ellipsis character (…) and so this has been
pre-defined at the head of the marriage register troff file
as the string p1, which is in turn, invoked by the call-
out of *(p1. The pattern p2 is just two ellipsis charac-
ters separated by a 6-en space; more generally the leader
pattern pn consists of n ellipsis characters with n - 1
sets of interleaved 6-en spaces. The p4 pattern is the
most complex one that is needed.

A more detailed discussion of how these leader pat-
terns are calculated appears in the next sub-section.

2.4. Transformation tools

The plain-text output from the OCR process has to be
processed in three stages as follows:

1. correction of frequently recurring OCR mis-reads
2. final, context-sensitive, OCR corrections plus impo-

sition of the basic tbl framework
3. enhancement of the tbl code to insert leader-dot pat-

terns and to induce field-based spatial padding of
the material in the first column of each table.

Software tools such as Perl and Python can potentially
integrate a variety of text transformation tasks at varying
levels of abstraction. The adoption, in this case, of the
classic UNIX tools, sed and awk, was not for reasons of
nostalgia but was prompted, instead, by memories of
how well a pipeline of such processes enforces a clear
separation of tasks, and enables simple inter-task debug-
ging to take place.

More specifically, the first of the above tasks is per-
formed by a sed script in which the rules correct the
great majority of the frequently recurring mis-reads in
the OCR process. The rule-base was progressively
expanded as more knowledge was gained from many
dozens of page scans. It has now stabilised at about 300
simple rules. The original printed registers use Old Style
figures, which have varying heights and some of which
descend below the baseline. These factors cause frequent
mis-readings by the OCR software resulting in the need
for substitution rules such as s/r6og/1609/.

To keep things simple, any context sensitivity in the
sed rule-base is limited to specifying that certain substi-
tutions should occur at line beginnings (ˆ) and line end-
ings ($) only (the more complex substitutions being
saved for later awk scripts). Examples of this kind of rule
might include s/"$/,,/ to correct a common OCR
mis-reading of the two-comma ditto marks at many line

ends. Another good example is the rule
s/ˆ\]ohn/John/, which essentially says that: “ ... a
closing square bracket at the start of a line is a mis-read
capital J provided it is followed by ohn”. Small-scale
features, such as the ellipsis dots used in the leader pat-
terns, are frequently mis-read, but this ‘noise’ has to be
removed prior to a full recalculation of the correct leader
pattern. No fewer than 40 sed rules have been accumu-
lated to cope with this cleanup.

The second task in the list given above is performed
by an awk script, imaginatively named ascript. One
of its main tasks is to separate those lines that end with a
marriage-date structure from those that do not. The dated
lines are highly significant because they denote the end
of a complete marriage record. Such lines can be filtered
out very quickly given that the Phillimore Registers use
the month names of May, June, July in full, and all
other months have a four-character standard abbreviation
such as Jan. . A few extra rules are needed to ensure
that date-free lines containing surnames such as May or
Mayfield do not get misinterpreted. This particular
awk script then emits the first four table-header lines
shown in Figure 3 and inserts the inter-column tab char-
acter @ between the day, month and year components of
dated lines.

Task 3 in the above list is tackled by the most complex
awk script of all, called dotscript. The first step is to
calculate the line length, for each of the marriage
records, of the material that resides in the first column of
the table i.e. the names of groom and bride and ancillary
details of occupation, parish etc. To do this requires
dotscript to have declarations for the troff character
width (at 10 pt.) of every character in the Caslon 540
Roman font. At this stage inter-word spaces are the stan-
dard 0.5 en width but their positions in the string are
detected using awk’s index command [8] and are
stored as possible padding points.

The next step is the complicated task of padding out
the first column with the appropriate leader-dot pattern
and extra spacing. The four cases that can arise, for
material in column 1 of the table, are as follows;
1. The material is so wide that it is over-length for the

column if standard word-spaces are used. In this
special case padding has to be attempted using
troff’s 1/6 em or 1/12 em thin spaces (\| or \ˆ).

2. The material is just wide enough to fit elegantly into
the column, with troff’s field-based ˆ padding.
There is no need for any leader pattern.

3. The material fits the line with leader pattern of pn
(where n ranges from 1 to 4) and with en-width
(\0) inter-word spaces.

4. The material is too wide if rule 3 is used but it does
still fit the column, with leader pattern of pn, if
field-based padding is used at points marked ˆ.

At first glance it might appear that rule 4 could always
be used in place of rule 3 but if this is done some wide,

FINAL DRAFT

8 David F. Brailsford���

.TS
center,tab(@);
lf1w(2.8i) 2 nf3 1 lf1 1 lf3.
.fc # ˆ
#WilliamˆRoome,ˆofˆMackworth,ˆ&ˆElizabeth#@@@
#*(6sKirklandˆ*(p4#@15@Nov.@1796
#Thomas\0Beresford\0&\0Hannah\0Keelingˆ*(p1#@20@Dec.@*(0q
#William\0Beeson\0&\0Mary\0Yatesˆ*(p2#@26@Jan.@1797
#SamuelˆMarshˆ&ˆHannahˆYatesˆ*(p2#@17@Apr.@*(0q
#Hezekiah\0Clark\0&\0Catherine\0Froggattˆ*(p1#@19@June@*(0q
Matthew\|\|Rollins,\|\|of\|\|Bradley,\|\|\ˆ&\ˆ\|\|Hannah\|\|Cooper@\09@Oct.@*(0q
#RobertˆJohnston,ˆofˆMugginton,ˆ&ˆElizabeth#@@@
#*(6sBurtonˆ*(p4#@30@Oct.@*(0q
George\|\|Orme,\|\|of\|\|Longford,\|\ˆ&\|\ˆMary\|\|Saunders,\|*c@10@Nov.@*(0q
George\|\|Palmer,\|\|of\|\|Edlaston,\|\|&\|\|Alice\|\|Woodhouse@25@Dec.@*(0q
#Joseph\0Morley\0&\0Elizabeth\0Morley,\0*cˆ*(p1#@15@Apr.@1798
John\|\|Morley,\|\|of\|\|Langley,\ˆ\|\|&\ˆ\|\|Hannah\|\|Morley,\|\|*c@14@June@*(0q

Figure 4. Sample tbl coding for the marriage register page shown in Figure 3(b)

and ugly, inter-word spacing can result. Rules 3 and 4
seem to be a good approximation to the algorithm used
by the compositors in hand-setting the original material.

Figure 4 illustrates all of the above four rules in
action. Rule 1 is used in the line for Matthew Hol-
lins; rule 2 is used in the line for William Roome;
rule 3 is used for the William Beeson line (together
with the p2 leader pattern); rule 4 is used in the line for
Samuel Marsh.

Although the table structure in the Marriage Registers
is, for the most part, very regular there are occasional
editorial comments inserted. These are on separate lines
and are invariably enclosed in square brackets, with the
text being set in italics. An example might be:

[The above three entries are almost illegible].
The start character of [enables these lines to be
detected, and the padding routines of dotscript can
then be skipped, but detailed positioning and correction
has to be done by hand.

2.5. Proof-reading

Despite all of the automated table setting performed by
the sed and awk scripts it is still essential to proof-read
each page carefully. The OCR software is often confused
by ink-bleed on the original material and yet the resultant
mis-scan can still be perfectly plausible. For example the
surname Marton might be mis-recognised as Morton,
but since both are valid surnames one cannot devise an
error-proof substitution rule. Only careful proof-reading
can correct errors of this sort.
Another example is afforded by the already-described
appearance of dates such as ‘165 9

8’ in the original mate-
rial. Dates having this structure were so frequently mis-
recognised, during OCR, as 165: or 165; that
dotscript was designed to keep track of the current
year from the most recently parsed previous date (1658
in the present example) and then to confect ‘165 9

8’ auto-
matically, via the eqn coding of 165$8above9$.

However, very occasionally, a date such as ‘1651’ would
also be mis-recognised as 165: and would then be erro-
neously typeset as ‘165 9

8’. Here again, careful proof-
reading is the only answer.

3. Parsing the Register records

A noteworthy feature of the entries in all the Phillimore
registers is the grammatical regularity that is displayed
by well over 90% of the entries. It is clear that firm rules
were laid down by the Phillimore editors concerning the
allowed sub-clauses of extra information that might be
associated with the groom and the bride, or even with the
wedding as a whole. Although these Registers were type-
set almost 60 years before Chomsky’s classification of
phrase-structure grammars [9], it turns out that the stan-
dard ordering of the possible sub-clauses, which is
adhered to assiduously, makes the grammar for a mar-
riage record very close to regular (Chomsky Type 3).

Nowadays programming language compilers can be
developed with the help of parser generators such as
YACC [10] or, within the framework of XML, from a
metasyntactic specification expressed as a Document
Type Definition (DTD) or an XML Schema. In all these
cases the grammars that can be handled extend to a class
known as ‘deterministic context-free’ (Chomsky Type
2), and this class has the regular grammars as a proper
subset. However, in all cases, it is the responsibility
either of the grammar designer, or of the grammar trans-
formation system within the parser-generator, to try and
make the grammar deterministic, which amounts to say-
ing that the parser must be able to determine which pars-
ing action to take based on only a very limited amount of
look-ahead on the input string. Almost any standard text-
book [11] on the parsing of computer languages give
proofs that all Type 3 languages can be made determinis-
tic whereas the Type 2 languages (which allow self-
embedding recursion, as well as left and right recursion)
can only be made deterministic if any self-embedding

FINAL DRAFT

Reconstituting typeset Marriage Registers using simple software tools 9���

recursion has a deterministic ‘mid-point’. The determin-
istic subset of Type 2 grammars corresponds exactly to
the class of grammars that are LR(k) parsable i.e. on a
left-to-right-scan of the input string, to produce a right
parse, it is necessary to look only k input symbols ahead.

Many programming languages succeed in being
almost context-free, apart from a few small context-
sensitive cases, which are handled via special-case pro-
gramming in the parser. The grammar for our marriage
records is no exception. In essence it is a very simple,
non-recursive, regular grammar but with just a few
context-sensitive features. A simplified skeleton version
of the grammar, in a metasyntax close to that used by
YACC, might be:

%token DAYNO /* validated integer from tokenizer

in range 1-31 */

%token WORD /* single word i.e. arbitrary text

string delimited by spaces */

wedrec: ginfo ’&’ binfo suppinfo date

ginfo: gfname* gsname place county occup marstat

binfo: bfname* bsname place county occup marstat

gsname|gfname|bfname|bsname : WORD

place: ’,’ ’p.’ WORD+ | ’,’ ’of’ WORD+ | EMPTY

suppinfo: ’,’ ’lic.’ | ’,’ ’both of’ WORD+ county

| EMPTY

county: ’,’ ’co.’ WORD+ | EMPTY

occup: ’,’ WORD+ | EMPTY

marstat: ’,’ ’b.’ | ’,’ ’sp.’ | ’,’ ’w,’ | EMPTY

/* the above denote bachelor, spinster and

widow/widower respectively */

date: DAYNO month year

month: ’Jan.’ | ’Feb.’ | ’Mar.’ … |’Dec.’

year: ’1’ ’[5-9]’ ’[0-9]’ ’[0-9]’ | ’,,’ |

Figure 5. Simplified grammar for a marriage record

An example of a typeset entry in accordance with the
above grammar might look like:

Richard Garrett, p. Norton, joiner, w. &
Anne Reid Banks, of Mansfield,
co. Nottm., seamstress, sp., lic. … 12 Oct. 1812

A parse tree for this sample marriage record, parsed with
the above grammar, is shown in Figure 6.

Inspection of Figures 5 and 6 shows the following
principal features: each record must terminate with the
date of the marriage, which is a simple sub-grammar; the
major sub-tree linking groom and bride information is
rooted on the & character and it is this sub-tree which
forms the focus of the next section when indexing is dis-
cussed; forenames and surnames for groom and bride are
space delimited but when sub-clauses of extra informa-
tion are given they are comma delimited. Any, or all, of
the groom or bride forenames may be absent, but sur-
names must be present. Furthermore, parsing is greatly
helped by the fact that, for both bride and groom, any
ancillary information must be given strictly in the fol-
lowing order: place of residence, county of residence,

occupation and current marital status. However, any or
all of the sub-clauses can be absent (denoted by EMPTY
in Figure 5) and this fact complicates the look-ahead to
determine, for each sub-clause, which of the non-
terminals on the right-hand side of the ginfo, or
binfo, grammar rules it should belong to. Fortunately,
extra help is at hand in that non-terminals such as
place, county, and marstat all start with a particu-
lar finite set of fixed tokens such as p., of, co. and w..
Indeed, the only remaining sub-clause lacking such an
indicative token is that for occupation (occup) but its
very token-free uniqueness, and its position in the sub-
clause sequence, yield sufficient clues to enable it to be
identified.

It is clear from the foregoing analysis that, with some
effort, a deterministic parser could be built for these mar-
riage records, either by adapting the grammar of Figure 5
manually so that it is deterministic (an SGML or XML
parser approach would generally insist on this) or by
using a tool such as YACC to transform the grammar
automatically to a deterministic form. In this latter case
great care has to be taken to investigate any reported
shift-reduce and/or reduce-reduce conflicts to ensure that
the parse tree produced will truly be the desired one.

Although it might be possible to develop a fully-
deterministic, hand-generated or YACC-generated,
parser for these marriage records it remains the case that
parsers made in this way tend to be better suited to the
long-range syntax of a conventional programming lan-
guage, where nested structures can stretch over several
pages. For the Phillimore material the structure is very
short range; all marriage records are independent of one
another and none of them spans more than five lines.

Two final factors must now be considered. Even when
a grammar can be reduced to LR(1) form, with parser
speed in mind, the set of grammar rules is often made
much simpler if expressed in a form implicitly requiring
a k symbol lookahead—exactly as in Fig. 5. Secondly,
and related to this first point, is that in real life the LR(k)
ideality of a grammar is often spoiled by just a few
context-sensitive issues. Just one example will show that
the grammar of Figure 5 is no exception to this. Within
the suppinfo grammar rule there is a ‘both of’ alterna-
tive which allows a clause to be added to the effect that
groom and bride, prior to the wedding, were both resi-
dent at the same place, or in the same parish. Of course,
this ‘both of’ clause, within suppinfo, is illegal if
either the groom, or the bride, has already had a place
entry in their own part of the marriage record.

The above analysis leads us to the view that a parser
based on string processing of a complete marriage record
(with the implicit look-ahead that this implies) will offer
much greater flexibility and adaptability even if it does
suffer just a little in terms of speed. In the next section
we describe an awk-based parser for making the surname
index for a marriage register. However, the very fact that
the records are fully parsable along the lines suggested in

FINAL DRAFT

10 David F. Brailsford���

wedrec

ginfo & binfo suppinfo date

DAYNO month year

12 Oct. 1812

, lic.

gfname gsname place county occup marstat

Richard Garrett , p. Norton EMPTY , joiner , w.

bfname bfname bsname place county occup marstat

Anne Reid Banks , of Mansfield , co. Nottm. , seamstress , sp.

Figure 6. Parse tree for a typical marriage register record

Figs. 5 and 6 shows that it would be perfectly feasible to
reprocess the records into GEDCOM or XML-based
notations as discuseed in Section 6.

4. Making an index

The Preface to almost all of the original Phillimore vol-
umes includes a statement to the effect that indexing
would begin once all the parish marriage registers in the
country had been transcribed. In the event, these indexes
never materialised. However, the discussion in the previ-
ous section indicates that scripting languages such as
awk would be ideally suited to the creation of a parser
for indexing.

In addition to its other capabilities awk has already
been much used for making indexes [12, 8], and the sec-
ond of these references makes the point that indexing
commands can be silently embedded within the typeset-
ting code itself. However, the grammatical regularity of
Phillimore records means that the job of creating an
index keyed on the surnames of bridegrooms and brides
will be much simpler than a general indexing task. Fur-
thermore, Figure 4 shows that the coding for the tables is
already detailed and cluttered enough, which led to a
general reluctance to embed extra indexing code.

Instead, the approach taken was to write yet another
awk script (indexclean) that processes the troff cod-
ing for a given register and ignores everything except for
the groom and bride part of the marriage record, rooted
around the & character. In other words, only the text in
column 1 of the table needs to be parsed (this is where
the surnames must reside). Routine processing such as
stripping out the embedded formatting characters (e.g. #
and ˆ) is very straightforward in awk, as also is the join-
ing of multi-line records into a single line. Once each
record has been reduced to a clean, space-separated, for-
mat the parsing rules for picking out surnames can be
applied.

Parsing begins by removing any sub-strings corre-
sponding to personal titles such as Mr., Mrs. and
Rev.. Next, the record is split into two parts around the
& character, which links the groom’s information to the
bride’s information. For each of these two parts any
comma-separated sub-clauses, detailing occupation,
home parish etc., are also removed via awk’s split and
sub commands. What remains is a simpler record, con-
sisting of the groom’s full name, an & character, and the
bride’s full name. The word at the right-hand end of this
simplified record is the bride’s surname; the word imme-
diately preceding the & is the groom’s surname. The

FINAL DRAFT

Reconstituting typeset Marriage Registers using simple software tools 11���

indexclean script puts out each name in the form of a
surname, followed by a comma and two spaces, followed
by a first name and any middle names, then two more
spaces followed by the page number where that mar-
riage is recorded. Updating of page numbers is made
easy for indexclean by the fact that the troff coding
for the to update the pagenumber register uses the
explicit .bp, break page, command between pages.

Once indexclean has done its job, the output it
produces is sorted on a primary key of surname, a sec-
ondary key of first name and a tertiary key of page num-
ber. Another simple awk script inserts typesetting and
hyperlinking codes (see next sub-section) into the sorted
list.

Quite apart from the advantages of having a proper
index to a Phillimore volume, the very act of processing
the tbl records for the index proved to be an excellent
way of detecting further errors and inconsistencies in the
re-set material. The indexclean script is a parser for
the records and the appearance of rejected records sig-
nalled a variety of problems. Perhaps the most intriguing
of these was that no fewer than 6 records, out of the 750
or so in the Brailsford register, failed to parse simply
because they included no & character — the word and
had been typeset instead. It may say something deeply
significant about the human cognitive system that all
these instances were missed in my careful proofreading
largely, I suspect, because the error was made by the
original compositors and did not show up as a difference
between original and reset material.

4.1. Hyperlinking the Index

A draft PDF version of the re-set Brailsford marriage
register is available for download [13]. It contains the
re-set first few pages of preliminary material, including
Phillimore’s signature and the logo of his company
(these were inserted using the psfig pre-processor [14]
for troff), followed by 20 pages of marriage records, fol-
lowed by the surname index. On the second page of this
index it can be seen, at once, that precisely two people
surnamed Brailsford actually got married at Brailsford
church over the 150-year period covered by the register.
If one then moves the Acrobat cursor over these, or any
other, index entries it will be seen that each entry is a
hyperlink. Clicking on the link will jump the user back to
the page where that name occurs.

The automated hyperlinking technique was able to
draw on experience gained from the CAJUN pro-
ject [15], which was one of the very earliest projects in
automated PDF hyperlinking for electronic journals.
Over the years there has been a notable increase in the
number of possible PDF pdfmark [16] commands,
which can add many forms of annotation ‘hyperstruc-
ture’ into PDF files. This is done by placing the appropri-
ate pdfmark commands into a PostScript output stream,
prior to distilling it to PDF. Most of the extra pdfmark

sophistication proved unnecessary because the surname
index entries have the great virtue of being backwards-
going links and so the page to jump to is already known.
Thus, the very simplest form of /LNK pdfmark could
be used, having the general syntax:

[/Rect [button coords.] /Border [0 0 0]

/Page pageno /View [dest. view] /LNK pdfmark

in which the [0 0 0] after /Border indicates that
link buttons are not to have a visible border.

Now, arbitrary PostScript strings can be inserted into
the ditroff output stream using the \X command [14]. A
troff macro, named LK, was defined in order to encapsu-
late all the \X commands that were needed to build up a
/LNK pdfmark of the type outlined above. The macro
has just a single argument, corresponding to the destina-
tion page number. By placing a call of .LK between
each sorted index entry the macro can establish the
PostScript currentpoint and then adjust it by the
known line spacing and type size so as to work out the
Rect co-ordinates appropriate for an index entry on the
subsequent line.

5. Problems encountered

The accumulation of circumstantial evidence, for the first
sed script, about OCR mis-scans was tedious but posed
no great intellectual difficulties. Equally, emitting the
basic tbl coding from ascript was straightforward.
The major difficulty encountered in developing and test-
ing the automated re-setting process was the emergence
of inconsistent table widths on successive pages of the
output. It is an unfortunate fact of tbl’s code generation
for troff that a requested column width (such as
w(2.8i), seen at the top of Figure 4) is treated as a
minimum, which will be silently expanded if the material
in the first tabular column goes over-length.

Thus the major work of this project, so far, has been in
refining dotscript to make the character widths as
accurate as possible so that, in turn, the calculated pad-
ding and leader patterns are exactly correct. Many frus-
trating hours were spent in detecting the (now obvious)
fact that troff’s \p and ‘field’ facilities cannot insert
packing spaces any smaller than the width of the font’s
word-space character. Therefore, for very tightly set
lines, the field mechanism has to be dropped in favour of
the insertion of multiple thin spaces (see Figure 4).

The 2.8 inch width of the first table column amounts to
some 4145 internal troff units and the summation of
character widths, for the groom and bride details, is com-
pared to this upper limit. But the whole decision of
switching from one set of padding and leader patterns to
another is quite extraordinarily sensitive to a variation of
just a few units in this total string width. As the fine-
tuning of these adjustments continued it was difficult not
to envy the original compositors, who could achieve the
desired effect with just a few thin pieces of lead.

FINAL DRAFT

12 David F. Brailsford���

Surprisingly, the creation of a surname index, which
would have required hours of index-card sorting and
careful typesetting if it had been done in 1907, was sim-
plicity itself. The indexclean script and the LK
macro, which creates the hyperlinked index from the
index.trf file, were created in less than a day.

6. Future work

Work is now complete for all of the Phillimore Volumes
1–4 (Derbyshire), including indexing, and a start has
been made on volume 5. Volumes 1 and 2 are now in
print, and available, thanks to the print-on-demand facili-
ties of Lightning Source UK. Up-to-date news of print-
ing progress and the availability of Vols. 1 and 2 from
Amazon (UK) can be found via reference [13]

Other volumes in the Phillimore Derbyshire series can
now be attempted, as time permits, both as an end in
themselves and also as an aid to refining still further the
sed and awk transformation scripts. If the author has the
fortitude to complete all 15 Phillimore (Derbyshire) vol-
umes then a comprehensive cross-volume surname index
could readily be built.

For the longer-term goal of processing Phillimore
material into more abstract and interchangeable formats
it is interesting to note that the genealogical community
has had the hierarchical and structured GEDCOM [1]
data format available to it for many years. GEDCOM
was developed by the Church of Christ of Latter Day
Saints (LDS) and in favourable circumstances it can be
used as a data exchange format between the various
genealogical software packages that support it. It pro-
vides a multitude of tags for defining family and marital
relationships and it seems likely that most of the optional
subordinate clauses in a Phillimore register entry could
be represented via some GEDCOM tag or other.

GEDCOM denotes its hierarchies by tagging its ele-
ments with the hierarchical level at which they occur (the
tree root is at level zero). and Figure 7 shows an example
of a marriage between two individuals, annotated
according to the GEDCOM 5.5 standard.

The HEAD element contains details of the source
(SOUR) of the information and also an indication that the
character set in use is American Standard Extended Latin
(ANSEL). (GEDCOM 5.5, the default de facto standard
in the genealogical community, is still not Unicode com-
patible). Thereafter, the notation very much centres
around individuals and family groupings. Each individ-
ual is given a unique ID (e.g. 0 @I01@ INDI) within
the GEDCOM file and a subsidiary tag records the
‘event’ of a birth (BIRT), with second-level tags for the
details of place and date. In the example of Figure 7 the
record for each individual finishes with a pointer (1
FAMS @F1@) to a family grouping where that individual
belongs. This grouping is encoded further down the file
(0 @F1@ FAM) and the immediately following tags are
back pointers to the individuals that are participating in

this family group, with the roles of husband and wife.
The marriage ‘event’ (1 MARR) has subsidiary tags to
record date and place of marriage. Notice that the lack
of hierarchical containment in GEDCOM requires a final
tag of 0 TRLR to show where the tree structure ends.

0 HEAD
1 SOUR FTW
1 DEST PAF
1 DATE 21 Oct 1997
1 CHAR ANSEL
0 @I01@ INDI
1 NAME Michael Howard /KING/
1 SEX M
1 BIRT
2 DATE 11 May 1953
2 PLAC Hannover, Germany
1 FAMS @F1@
0 @I02@ INDI
1 NAME Penelope Mary /PHELAN/
1 SEX F
1 BIRT
2 DATE 24 Sep 1956
2 PLAC Cheltenham, Glos, England
0 @F1@ FAM
1 HUSB @I01@
1 WIFE @I02@
1 MARR
2 DATE 10 Apr 1982
2 PLAC Cheltenham, Glos, England
0 TRLR

Figure 7. A GEDCOM 5.5 example

<GED>
<HEAD>
<SOUR>FTW</SOUR>
<DEST>PAF</DEST>
<DATE>21 Oct 1997</DATE>
</HEAD>
<INDI ID="I01">
<NAME>Michael Howard <S>KING</S></NAME>
<SEX>M</SEX>
<EVEN EV=’BIRT’>
<DATE>11 May 1953</DATE>
<PLAC>Hannover, Germany</PLAC> </EVEN>
<FAMS REF="F1"/>
</INDI>
<INDI ID="I02">
<NAME>Penelope Mary <S>PHELAN</S></NAME>
<SEX>F</SEX>
<EVEN EV=’BIRT’>
<DATE>24 Sep 1956</DATE>
<PLAC>Cheltenham, Glos, England</PLAC> </EVEN>
<FAMS REF="F1"/>
</INDI>
<FAM ID="F1">
<HUSB REF="I01"/>
<WIFE REF="I02"/>
<EVEN EV=’MARR’>
<DATE>10 Apr 1982</DATE>
<PLAC>Cheltenham, Glos, England</PLAC>
</EVEN>
</FAM>
</GED>

Figure 8. The material of Figure 7 in GedML form

FINAL DRAFT

Reconstituting typeset Marriage Registers using simple software tools 13���

In 1999 Michael Kay proposed GedML [17] as a con-
tribution towards moving GEDCOM into XML-
compatible notation. Figures 7 and 8 are adapted from
this reference and Figure 8 shows the material of Figure
7 re-encoded as GedML. Note that the
availability of attributes in XML metasyntax means that
births, deaths and marriages can all be classified as
attributed types of a single element called EVENT.
Notice also that GEDCOM’s TRLR element is not
needed in GedML, which can use XML’s implicit con-
tainment notation, <GED/>, to denote the end of the
tree structure.

Since 1999 others have developed Kay’s proposal, and
there is even a very early draft of an XML-based GED-
COM 6.0. However, this standard is not “recommended
for implementation” and, at the moment, none of the
popular genealogical packages supports it. The reason
for lack of progress seems to be that GEDCOM 5.5 is
already in difficulty as a result of differing opinions as to
what each tag should actually mean and what it should
imply. Already there are a number of vendor-specific
additions to GEDCOM 5.5 which compromise its use as
a data-exchange format.

It is clear from section 3 that transforming Phillimore
material to GEDCOM 5.5, or GedML should pose few
problems but the next section makes clear the advantage
of using an explicitly XML-based intermediate notation
to bring this about.

7. Conclusions

It is worth emphasizing that there is nothing unique to
sed, awk, troff and tbl in being suitable for the sort of
work in this paper—it could equally well have been
done using other low-level software tools such as Perl
and TEX. Nevertheless, I am not aware of any previous
work that has attempted to re-set, and enhance, already
published work using a similar set of transformational
and typesetting tools to those described here.

The real value of this exercise has been to re-visit tried
and tested techniques from computer science and to
realise, yet again, that the field of document engineering
is an excellent one for illustrating computer science fun-
damentals in novel and illuminating ways. In terms of
applicability and general interest, the availability of a
limited print run for each of the volumes shows that is
more than just an academic exercise. Indeed, the re-
setting of century-old marriage registers is not at all the
niche interest it might seem. Within the UK, at least,
genealogy is a hugely popular hobby, due in part to the
successful BBC television series Who Do You Think You
Are?, and all forms of published and indexed genealogi-
cal material find a ready market.

Although the Phillimore Registers for Derbyshire run
to just 15 volumes the total number of available Philli-
more marriage volumes is well over two hundred. The
consistent standards for transcription and typesetting,

across the entire series, seem to show that the techniques
developed here would be widely applicable. More gener-
ally, there must be a wealth of printed tabular material,
from the Victorian era and earlier, that might be amen-
able to the sort of treatment described in this paper (court
records, ships manifests, sales ledgers, catalogues and so
on). The twin requirements are that the tabular displays
should be of regular size, and repeated on dozens or hun-
dreds of pages to make the task worthwhile. Secondly,
the entries in each table should conform to a sufficiently
rigid set of rules that some form of grammar can be
devised. If this is the case then automated indexing and
XML-based tagging of content both become feasible.

The project so far has shown clearly, for regular and
structured material of the sort under discussion, that the
efforts of one keen programmer, armed with suitable
programmer-friendly software tools and typesetting pro-
grams, can indeed substitute for the efforts of a small
army of workers attempting to re-set the material from
scratch with the aid of WYSIWYG software. Crucial to
success is the need to take great care with the quality of
the page scans so as to minimise both the proofreading
burden and the number of corrections that have to be
made.

The idea of imposing the discipline of re-setting, and
indexing, an already-published marriage register, in
order to correct and validate the original material, was
far more successful than I had ever imagined. As the
processing scripts have matured much of the routine
work becomes less onerous but one cannot stress too
strongly the continued need for accurate proof-reading.

Another job for the future is to convert all the re-set
material into the most general XML-based tag notation
that can be devised, firstly so that extra consistency
checks can be applied and secondly so that, with the aid
of XSLT scripts, conversions can be undertaken, not
only to standard genealogical formats such as GEDCOM
but also into any other desired format.

Acknowledgements In writing this paper I have drawn
heavily on the experience of others in the following
areas: awk, Adobe Capture, GEDCOM, genealogy,
OCR, pdfmarks, ReadIris Pro and typography. For
help with one or more of the above topics thanks are due
to Dennis Auter, Steve Bagley, Chuck Bigelow, Kerrie
Brailsford, Matthew Hardy, Duff Johnson, Michael Kay,
Brian Kernighan, Dennis Nicholson and Mike Parker.

The idea for this project was sparked by the complete
sets of original Phillimore Marriage Registers, for both
Derbyshire and Nottinghamshire, held by Bromley
House Library in Nottingham. The librarians there have
kindly let me borrow a succession of the original vol-
umes as this work has progressed.

Special additional thanks are due to Chuck Bigelow
and Kris Holmes for permitting me to alter some of the
stems on five lower-case letters of their elegant Lucida
Blackletter font, as shown in Figure 2(b), so as to better

FINAL DRAFT

14 David F. Brailsford���

match the original material of Figure 2(a). That the
revised font has already been nicknamed “Bâtarde”
bears eloquent testimony both to the typeface family it
sprang from and also to my own well-intended, but
essentially amateur, efforts.

References

1. GEDCOM.
http://en.wikipedia.org/wiki/GEDCOM

2. Phillimore Parish Registers. uk-
genealogy.org.uk/Registers/index.html

3. S & N Genealogy Supplies, Phillimore Parish
Registers.
http://www.genealogysupplies.com/index.htm

4. Myfonts.com, WhatTheFont: font identification
software.
http://new.myfonts.com/WhatTheFont

5. B. W. Kernighan, ‘‘A Typesetter Independent
TROFF,’’ Computing Science Technical Report
No. 97, Bell Laboratories, Murray Hill, New Jer-
sey 07974, March 1982.

6. D F Brailsford, ‘‘In-house production of Examina-
tion Papers using troff, eqn and tbl,’’ in Proceed-
ings PROTEXT I Workshop, Dublin, p. 21–28,
Boole Press, October 1984.

7. J. F. Ossanna, ‘‘NROFF/TROFF User’s Manual,’’
Computing Science Technical Report No. 54, Bell
Laboratories, Murray Hill, New Jersey 07974,
11th October, 1976.

8. Alfred V. Aho, Brian W. Kernighan, and Peter J.
Weinberger, The AWK Programming Language,
Addison-Wesley, 1988.

9. N. Chomsky, ‘‘On certain formal properties of
grammars,’’ Information and Control, vol. 2, p.
137–167, 1959.

10. S. C. Johnson, ‘‘YACC—Yet Another Compiler
Compiler,’’ Computer Science Technical Report
32, Bell Laboratories, Murray Hill, New Jersey,
1974.

11. A. V. Aho and J. D. Ullman, The Theory of Pars-
ing, Translating and Compiling, Vol. I: Parsing,
Prentice Hall, Englewood Cliffs, New Jersey,
1972.

12. Jon L. Bentley and Brian W. Kernighan, ‘‘Tools
for Printing Indexes,’’ Electronic Publishing —
Origination, Dissemination and Design, vol. 1, no.
1, p. 3–17, April 1988.

13. Brailsford Marriage Register (draft version).
http://www.cs.nott.ac.uk/~dfb/bmr-README

14. N. Batchelder and Trevor Darrell, Psfig — A Ditr-
off Preprocessor for PostScript files, Computer
and Information Science Dept., University of
Pennsylvania, 1988. Internal Report.

15. Philip N. Smith, David F. Brailsford, David R.
Evans, Leon Harrison, Steve G. Probets, and Peter

E. Sutton, ‘‘Journal Publishing with Acrobat: the
CAJUN project,’’ Electronic Publishing —
Origination, Dissemination and Design, vol. 6, no.
4, p. 481–493, December 1993.

16. Adobe Systems Incorporated, pdfmark Reference
Manual (version 8), November 2006.

17. GedML: Genealogical data in XML.
http://users.breathe.com/mhkay/gedml/

FINAL DRAFT

