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Abstract

DNA methyltransferases establish methylation patterns in cells and transmit these patterns over cell generations, thereby
influencing each cell’s epigenetic states. Three primary DNA methyltransferases have been identified in mammals: DNMT1,
DNMT3A and DNMT3B. Extensive in vitro studies have investigated key properties of these enzymes, namely their substrate
specificity and processivity. Here we study these properties in vivo, by applying novel statistical analysis methods to double-
stranded DNA methylation patterns collected using hairpin-bisulfite PCR. Our analysis fits a novel Hidden Markov Model
(HMM) to the observed data, allowing for potential bisulfite conversion errors, and yields statistical estimates of parameters
that quantify enzyme processivity and substrate specificity. We apply this model to methylation patterns established in vivo
at three loci in humans: two densely methylated inactive X (Xi)-linked loci (FMR1 and G6PD), and an autosomal locus
(LEP), where methylation densities are tissue-specific but moderate. We find strong evidence for a high level of processivity
of DNMT1 at FMR1 and G6PD, with the mean association tract length being a few hundred base pairs. Regardless of tissue
types, methylation patterns at LEP are dominated by DNMT1 maintenance events, similar to the two Xi-linked loci, but are
insufficiently informative regarding processivity to draw any conclusions about processivity at that locus. At all three loci we
find that DNMT1 shows a strong preference for adding methyl groups to hemi-methylated CpG sites over unmethylated
sites. The data at all three loci also suggest low (possibly 0) association of the de novo methyltransferases, the DNMT3s, and
are consequently uninformative about processivity or preference of these enzymes. We also extend our HMM to reanalyze
published data on mouse DNMT1 activities in vitro. The results suggest shorter association tracts (and hence weaker
processivity), and much longer non-association tracts than human DNMT1 in vivo.
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Introduction

DNA methyltransferases establish methylation patterns in cells

and transmit these patterns over cell generations, thereby

influencing each cell’s epigenetic states. (See [1] for an overview

of methyltransferases, and Supplementary Material of [2] for an

introduction to DNA methylation aimed at non-biologists.) Three

primary DNA methyltransferases have been identified in mam-

mals: DNMT1, DNMT3A and DNMT3B [3,4]. Whereas the

DNMT3s are mostly responsible for establishing methylation

patterns during early development and are therefore commonly

known as the de novo methyltransferases, DNMT1 is mostly

responsible for maintaining existing methylation patterns over

somatic cell divisions, and is therefore commonly known as the

maintenance methyltransferase [1].

A central component of the widely accepted model for the

maintenance of DNA methylation in eukaryotes is processive actions

of the maintenance methyltransferase DNMT1 at hemimethylated

CpG dyads shortly after DNA replication (Figure 1; [1]). This model

relies on two properties of DNMT1: substrate specificity (i.e., acting

in different ways or at different rates on different types of substrate)

and processivity (i.e., associating consecutively at multiple sites along

the DNA). These are key properties of DNA methyltransferases and

many other DNA-binding enzymes [1,5], and both properties have

been investigated extensively in vitro.

Regarding substrate specificity, in vitro experiments show that

DNMT1 preferentially adds methyl groups to the cytosines in

daughter-strand CpGs that pair with methylated, rather than

unmethylated, parent-strand CpGs (i.e., hemimethylated CpG

dyads), thus maintaining methylation at these CpG sites over cell

generations [6]. Such a preference for hemimethylated CpG dyads

was predicted for maintenance methyltranferases as early as 1968

[7], and is now commonly measured in terms of the ‘‘hemi-

preference ratio’’. This ratio represents the relative rates with
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which an enzyme methylates hemimethylated and unmethylated

CpG dyads. Reported estimates for DNMT1 in humans and mice,

generally from in vitro experiments, vary widely from 2- to 200-

fold, depending on the DNA sequence context, experimental

conditions and enzyme preparation [6].

Regarding processivity, in vitro experiments suggest that mouse

DNMT1 acts processively, binding to DNA and then remaining

active over a stretch of consecutive nucleotides [1,6]. Both human

and mouse orthologs of DNMT1 have been found to associate

with the DNA replication machinery, which includes proteins

PCNA and UHRF1 [8,9]. The DNMT1s are thus poised to

methylate cytosines shortly after their incorporation into the

nascent daughter DNA strand. However, experiments indicate

that both mouse and human orthologs can also processively

modify hemimethylated dyads in synthetic DNAs in the absence of

the replication machinery [10–14]. This result suggests that the

interaction of the human and mouse orthologs with the replication

machinery may not be essential to enzyme activities.

De novo methyltranferases DNMT3A and 3B [4] are also

important in the preservation of appropriate epigenetic states in

human and mouse somatic cells [15]. The absence of these

methyltransferases can lead to abnormal phenotypes [16,17]. In

vitro experiments have also investigated substrate specificity and

processivity of these enzymes. Regarding substrate specificity, in

contrast to DNMT1, neither DNMT3A nor 3B show preference

for adding methyl groups to hemimethylated CpG dyads over

unmethylated dyads [4,18]. Studies of possible processivity of the

DNMT3s are less extensive than for DNMT1. In vitro

experiments have demonstrated non-processive behavior of mouse

DNMT3A but highly processive behavior of mouse DNMT3B

[19], and processive behavior of human DNMT3A [20].

Despite the availability of significant in vitro data, important

questions remain to be addressed regarding the in vivo properties of

the DNA methyltransferases. Here, we investigate in vivo substrate

preferences and levels of processivity of human DNMT1 and

DNMT3s by analyzing double-stranded DNA methylation patterns

established in vivo, measured using hairpin-bisulfite PCR [21,22].

Previous analyses of some of these double-stranded patterns [2,23]

yielded estimates of CpG site-specific rates of maintenance

methylation and parent- and daughter-strand de novo methylation.

However, these previous analyses aimed at quantifying the outcome

of the methylation process, without consideration of the enzymes

invovled. Here, we develop a novel Hidden Markov Model (HMM)

to account for the properties of the DNMTs responsible for the

methylation process. Our HMM includes parameters that capture

both substrate specificity and processivity of each enzyme, and

hence allows inference of these parameters from observed data. In

addition to these in vivo analyses, we also apply the HMM (suitably

modified) to re-analyze several published in vitro data sets, and

compare with our in vivo results.

An important feature of our analyses is that they are based on a

statistical model, which quantifies processivity as a probability, thus

allowing for statistically testing whether processivity exisits, and

which assesses the statistical uncertainty in the estimate of this

probability, thus facilitating comparison of inferred levels of

processivity among data sets. Our HMM also explicitly accounts

for potential measurement errors in the observed data; these errors

have been generally unaccounted for in other in vivo and in vitro

studies. Additionally, this HMM can also be used to infer the set of

enzymatic activities that most likely gave rise to each observed

methylation pattern, and to infer, probabilistically, which strand in

each double-stranded methylation pattern is the parent strand, and

which is the daughter strand (this information is not directly

measurable in the hairpin-bisulfite experiment), allowing for

investigation of strand-specific behavior of these enzymes (Figure 2).

Results

A hidden Markov model (HMM) for processivity and
other properties of the DNMTs

We model the observed double-stranded methylation patterns as

having arisen from a process where the methyltransferases (DNMT1

Figure 1. Model for processivity of methyltransferase DNMT1 following DNA replication. Newly synthesized daughter strands (red,
mostly, and pale green) are initially unmethylated. Following DNA replication, DNMT1 (purple) binds to the hemimethylated CpG dyads, perhaps with
the aid of the replication protein complex (yellow), which includes proteins PCNA and UHRF1 [1]. DNMT1 is proposed to move processively along the
molecule from the 59 end to the 39 end of the daughter strand. Note that the leftmost CpG dyad at the top is hemimethylated, because DNMT1 has
not reached it yet. Methylation by DNMT1 is not perfect (e.g., the CpG in pale green remains unmethylated), because DNMT1 either fails to add
methyl groups (denoted by letter M) to its associated CpG dyads, or is unassociated with the DNA at those sites.
doi:10.1371/journal.pone.0032225.g001
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and the DNMT3s) were either associated or not associated with the

DNA at a CpG site. We model these association/non-association

states as a Markov process along the DNA. The model for the

observed data based on these unobserved (‘‘hidden’’) states is then a

Hidden Markov Model (HMM [24]). For in vivo data, we cannot

rule out that other (perhaps unidentified) enzymes than DNMT1

and the DNMT3s may have also contributed to the observed

methylation patterns. To allow for this, our references to DNMT1

could be interpreted broadly as referring to the enymes whose

activities are primarily maintenance methylation, and references to

DNMT3s could be interpreted broadly as enzymes whose activities

are primarily de novo methylation.

More specifically, the hidden Markov process in the HMM can

be decomposed into three independent Markov processes: the first

representing association of DNMT1, which we assume to act only

on the daughter strand [10], the second representing the association

of the DNMT3s on the parent strand, and the third representing the

association of the DNMT3s on the daughter strand. We use the

subscripts 1d , 3p and 3d to refer to each of these processes. We

characterize each Markov process by two transition probabilities:

the reassociating probability per bp, t, that unassociated molecules

of the methyltransferase become associated with DNA over 1 bp,

and the dissociating probability per bp, r, that associated molecules

of the methyltransferase become unassociated from DNA over 1 bp.

The transition probability matrix over 1 bp for each Markov

process can then be written as in Eq. (1).

0 1

G1~
0

1

1{t t

r(1{t) (1{r)zrt

 !
:

ð1Þ

The transition probability matrix between two CpG sites k bp apart

is then Gk~Gk
1 .

Under this parameterisation, two events contribute to the

probability of a methyltransferase staying associated at two

consecutive sites 1 bp apart (i.e., the bottom right entry in G1):

(i) processivity, whereby the methyltransferase stays associated

from site 1 to site 2 without ever dissociating from DNA. This

happens with probability 1{r; and (ii) dissociation-reassociation

events, whereby the methyltransferase is associated at site 1, then

‘‘falls off’’, but becomes re-associated with DNA at site 2. This

happens with probability rt. We quantify the strength of

processivity, which corresponds to event (i), by the dissociating

probability r: the value r~1 corresponds to ‘‘no processivity’’,

where the methyltransferase dissociates from DNA at every base

pair and the association state is independent at each site (i.e., the

two rows of G1 are identical); values of rv1 correspond to

processive behaviour, and the smaller the value of r, the stronger

the processivity. This parameter translates into the expected length

of each association tract of 1=r bp, which is a more conventional

measure of processivity and quantifies processivity directly in terms

of tract length. Because r concerns only enzyme molecules that are

already associated, this mean length of association tracts excludes

multiple dissociation-reassociation events at consecutive CpG sites,

which could be mistaken for processivity. Similarly, the expected

length of non-association tracts, which are gaps between

association tracts, has mean 1=t bp. Unlike r, the reassociating

probability t could be driven principally by concentrations of

unassociated methyltransferase molecules in the nucleus.

Parameters r and t together determine the average frequency

with which the methyltransferase is associated with the DNA at

each CpG site. Using p to denote this frequency, we have

Figure 2. Four most informative FMR1 methylation patterns and inference for each of them under HMM. Each pattern contains a pair of
parent and daughter strands; which is the parent strand and which is the daughter strand is not known directly. Our HMM infers probabilistically the
strand assignments for each pattern. These posterior probabilities are shown in green for the indicated parent and daughter strand assignment
(indicated by letters P and D in green). These patterns from our FMR1 data contain long runs of hemimethylated CpG dyads with their methyl groups
present on the same strand. The top two most likely explanations, among all 1039 possible explanations, are shown for each pattern. Symbols indicate
possible states and activities of the methyltransferases. Not all symbols are used here. The effect of these four patterns on parameter estimation is
further shown in Supplementary Figure 13 in Materials S1.
doi:10.1371/journal.pone.0032225.g002
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p~t=(tzr(1{t)): ð2Þ

In addition to these parameters relating to processivity, our

model also has parameters for the methylation activities of the

methyltransferases when they are associated with DNA, and

parameters for the measurement errors that can result from

bisulfite conversion (see Materials and Methods for detail).

Together these parameters, the ‘‘emission probabilities’’ of the

HMM, describe how association or non-association states of

methyltransferases give rise to observed methylation states on the

pairs of parent and daughter strands, subject to measurement

errors (see Materials and Methods for detail). We allow the

methyltransferases to methylate daughter CpGs at associated

hemi-methylated sites with probability m1d for DNMT1 (or m3d for

the DNMT3s) and at associated unmethylated sites with

probability d1d for DNMT1 (or d3d for the DNMT3s). The ratios

m1d=d1d and m3d=d3d are termed the ‘‘hemi-preference ratios’’ for

DNMT1 and the DNMT3s, respectively. For the parent strand,

we make the simpler assumption that the DNMT3s always add a

methyl group to the associated CpG.

The above model is very general, allowing for a complex

combination of behaviors of the methyltransferases. In applica-

tions, it can be helpful to constrain this model in various ways,

either to deal with data collected from particular experimental

conditions, or to make parameters more identifiable. For example,

imposing the constraint m3d~d3d~1 yields a more parsimonious

model in which the DNMT3s always methylate the associated

daughter-strand CpG. This is the model we use for most analyses

presented here. However, to attempt to estimate the hemi-

preference ratio for the DNMT3s, we impose a different constraint

t1dw0:05 and t3dv0:05 onto the general model. This constraint

reflects the setting where DNMT1 is the primary maintenance

enzyme, and helps to distinguish the DNMT1 process and the

daughter-strand process of the DNMT3s, which would have been

indistinguishable otherwise (see Materials and Methods for detail).

To analyze the in vitro data on DNMT1 under the same model,

we estimate parameters only associated with the DNMT1 process,

and fix the reassociating probabilities r3p and r3d to be 0 and the

dissociating probabilities t3p and t3d to be 1; these constraints

reflect the in vitro setting where the DNMT3s are absent.

We fit the HMM to the data in a Bayesian inference framework

[25], using Markov chain Monte Carlo (MCMC) to produce

samples from the joint posterior distribution of all parameters in

the model given the data (see Materials S1 for details, including

specification of relevant prior distributions). At the core of our

implementation is the standard forward-backword algorithm in

each MCMC iteration for computing the joint likelihood of the

parameters given observed methylation patterns. The computa-

tional complexity of the forward-backward algorithm for all N

patterns across S CpG sites in each MCMC iteration is O(82NS),
where 8 (~2|2|2) is the number of hidden states at each site,

with 2 being the two states (associated and unassociated) of each

Markov process. We summarize the posterior distributions of the

parameters from the Bayesian inference by the posterior median

and 80% credible intervals (80% CIs; 10- and 90-percentiles); 80%

intervals were used, rather than more conventional 95% intervals,

to reduce the impact of the heavy tails of some distributions. This

inference procedure accounts for the uncertainty in the data

regarding which enzymatic activities produced each observed

double-stranded pattern by using a dynamic programming

algorithm to sum over all possibilities, weighting each possibility

by its probability (Figure 2; see also Materials S1).

Runs of hemi-methylated dyads provide information on
processivity

As mentioned above, both processivity and multiple dissocia-

tion-reassociation events may give rise to runs of fully methylated

dyads. When the observed patterns contain only runs of fully or

un-methylated dyads, we cannot tell these two mechanisms apart.

Presence of hemimethylated dyads (‘‘hemis’’ hereinafter) provides

additional information. Whereas randomly-distributed hemis in

the data suggest that the methyltransferases may have been

associated with or dissociated from the dyads randomly, clustered

hemis suggest nonrandom enzyme activities. In particular, runs of

hemis of the same orientation (i.e., methylated CpGs appearing on

the same strand), if observed more often than expected by chance,

provide evidence for processivity. For example, the in vitro data on

mouse DNMT1 from Goyal et al. [11] (their Fig. 3A) shows

multiple very long runs of hemi-methylated sites of the same

orientation. Some of these runs contain as many as 20

hemimethylated dyads, with the parent strands being methylated

prior to the reaction with DNMT1. These long runs are extremely

unlikely if DNMT1 were to associate with the DNA independently

at each site. In our in vivo data, similar runs of hemis, although

much shorter, also suggest the presence of processivity: indeed a

permutation test based on correlations at adjacent CpG sites

produces a p value of 0.002, suggesting that these runs of hemis

occur more often than expected by chance; see Supplementary

Figure 1 in Materials S1. Observations like this motivated the

HMM described above, and results from the HMM confirm that

these runs of hemi-methylated sites are likely due to DNMT1

being unassociated with the DNA for several sites in succession (see

Figure 2 for the top two explanations our HMM inferred for four

patterns collected at the FMR1 locus).

Strong processivity and high hemi-preference ratio of in
vivo human DNMT1 at two inactive X (Xi)-linked loci

The methylation patterns at the FMR1 and G6PD loci share

many similarities: 77–82% of the CpG sites are fully methylated,

whereas only 6–9% are hemimethylated, some of which form a

few relatively long runs of hemimethylated dyads (Table 1).

Analyses of these two data sets under our HMM also produce

similar estimates of the key parameters.

We find that the methylation patterns at both of these Xi-linked

loci provide strong evidence for substantial processivity of

DNMT1: the estimated dissociating probability for the DNMT1

process, r1d , is concentrated on small values near 0 (Table 2;

Figure 4(A1)). To investigate the robustness of the estimates, we

further ran our HMM on the FMR1 data with different prior

distributions assigned to r. The estimates were similar across these

runs (Supplementary Figure 2 in Materials S1). These estimates of

r1d at these two loci imply a mean association tract length of

around 600 bp, which is equivalent to about 90 CpG sites (note

that there is considerable uncertainty in these estimates, and the

80% CIs span almost 200–2000 bp; Table 2). This inferred length

is much greater than the genomic regions covered by our data

(142 bp at FMR1 and 122 bp at G6PD; Table 1), as it reflects the

expect length of DNMT1 association, had we measured

methylation over a much longer genomic region (Figures 2 and

3). Interpreting estimated processivity in terms of tract length

allows us to compare our estimates directly with other estimates

reported in the literature. On the other hand, we estimate at both

loci with strong evidence that the reassociating probability t1d is

not high, with the median being 0.12 at FMR1 and 0.07 at G6PD
and the 80% CIs being narrow (Table 2; also see Supplementary

Figures 3 and 4 in Materials S1). This estimate is also robust to

Statistical Inference of Properties of the DNMTs
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different priors (Supplementary Figure 5 in Materials S1). The

high association tract length and low reassociating probability for

these two hypermethylated loci imply that strong processivity,

rather than random association, of DNMT1 accounts for most of

the runs of fully methylated CpG dyads.

Recall that our HMM also allows that DNMT1, when

associated with the DNA, adds a methyl group to the daughter

strand with probability m1d if the parent strand is methylated, and

with probability d1d if the parent strand is unmethylated. We

estimate m1d to be close to 1 at both loci (Table 2) and d1d to be

just a few percent, with the median being 0.02 at FMR1 and 0.06

at G6PD (Table 2), consistent with a very low (not excluding 0)

level of de novo activity by DNMT1. These estimates indicate that

DNMT1 acting in vivo has a strong preference for hemi-

methylated CpG dyads over unmethylated dyads. Our estimates

of the hemi-preference ratio m1d=d1d (58 for FMR1 and 15 for

G6PD) fall within the aforementioned range of estimates obtained

in vitro (2–200-fold), but the posterior distributions exclude the

lower end of this range (Supplementary Figures 3 and 4 in

Materials S1). Note that, because the data do not exclude very

small values for d1d , they also cannot exclude extremely large

values for the hemi-preference ratio. For this reason Table 2 gives

80% lower confidence bounds, but not upper bounds for this

quantity.

Low association level of in vivo human DNMT3s at two
Xi-linked loci

At both Xi-linked loci, we estimated that the average frequency

of association (p3p and p3d ) of the DNMT3s is at most a few

Table 1. Features of the three loci and summary statistics of the methylation patterns in the four human in vivo data sets.

FMR1 G6PD LEP

In Fat In Blood

Genomic location ChrX: 146,800,867-1,008 ChrX: 153,775,537-698 Chr7: 127,881,204-375

Region length (bp) 142 122 172

No. of CpG sites 22 19 21

Median distance (bp) 6.7 6.5 7.5

between CpG sites

No. of ds patterns 169 75 80 34

% of M, H, U* (82, 6, 12) (77, 9, 14) (16, 4, 80) (40,5,55)

Runs of 2 hemis** 11 4 6 1

Runs of 3 hemis 1 1 1 0

Runs of 4 hemis 3 1 0 0

Runs of 5 hemis 0 1 0 0

Runs of w5 hemis 0 0 0 0

*Percentages of methylated, hemimethylated and unmethylated dyads.
**Consecutive hemimethylated CpG dyads with methylated groups appearing on the same strand.
doi:10.1371/journal.pone.0032225.t001

Figure 3. Three most informative G6PD methylation patterns and inference for each of them under HMM. Symbols are as in Figure 2.
doi:10.1371/journal.pone.0032225.g003
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percent, if non-zero, on either the post-replication parent strand or

the daughter strand (Table 2). Such a low average level of

association is consistent with a low reassociating probability t for

the DNMT3s: the estimated reassociating probability of the

DNMT3s is also not much different from 0 on either strand (Table

2). Because only a limited number of observed methylation events

could be attributed to the DNMT3s, there is not much

information regarding their processivity or hemi-preference ratio.

The posterior distributions of the dissociating probabilities r3p and

r3d of the DNMT3s are not much different from the uniform prior

distribution we assumed (Figure 4(A2)–(A3)), indicating that the

data were not informative enough to alter this prior. Thus, these

results suggest that the DNMT3s were not very active during the

process the observed methylation patterns were formed, and that

our data at the two Xi-linked loci are not informative about the

processivity, or the lack thereof, of the DNMT3s. Moreover, when

we estimated, with additional constraints in the HMM, the hemi-

preference ratio for the DNMT3s from the FMR1 data (Materials

S1), we found that its posterior distribution is essentially the same

as its prior (Supplementary Figure 6 in Materials S1), which

indicates that our data are uninformative also about the preference

ratio of the DNMT3s.

Behavior of in vivo human methyltransferases at
autosomal locus LEP

Compared with the two Xi-linked loci, the human LEP
promoter region is much less methylated and is tissue-specific in

the data considered here: the overall methylation density is 18% in

the adipose tissues (fat) and 42% in the peripheral blood leukocytes

(blood), much lower than 85% at FMR1 and 82% at G6PD.

However, most of the methylated CpG dyads are fully methylated:

the percentages of fully methylated and hemimethylated dyads are

only 16% and 4%, respectively, in fat, and 40% and 5%,

respectively, in blood (Table 1). These two LEP data sets also

contain only a few short runs of hemimethylated dyads (Table 1).

Our analysis of these data shows that, although the LEP promoter

region is sparsely methylated in these tissues, DNMT1 still plays

the major role and the rate of maintenance methylation is close to

1 (Table 1; Supplementary Figures 7 and 8 in Materials S1).

However, the data are uninformative about what types of process

Table 2. Parameter estimates under our HMM for the four human in vivo data sets.

LEP (Chr 7)

Parameter FMR1
ffiffiffi
2
p

(Chr X) G6PD (Chr X) In Fat In Blood

Mean association

length (bp):

of DNMT1 597 (219–1521) 673 (238–1874) 9 (2–88)� 9 (2–89)�

of DNMT3s on parent 2 (1–6)� 1 (1–3)� 5 (1–17)� 1 (1–4)�

of DNMT3s on daughter 4 (1–14)� 1 (1–3)� 2 (1–14)� 2 (1–3)�

Dissociating

probability:

r1d 0.002 (0.000–0.005) 0.001 (0.001–0.004) 0.11 (0.01–0.53)� 0.11 (0.01–0.63)�

r3p 0.65 (0.16–0.93)� 0.71 (0.35–0.94)� 0.20 (0.06–0.82)� 0.68 (0.28–0.92)�

r3d 0.28 (0.07–0.79)� 0.72 (0.38–0.95)� 0.49 (0.07–0.93)� 0.66 (0.29–0.92)�

Reassociating

probability:

t1d 0.12 (0.07–0.21) 0.07 (0.03–0.12) 0.81 (0.21–0.96)� 0.91 (0.60–0.98)�

t3p 0.01 (0.00–0.03) 0.03 (0.00–0.08) 0.00 (0.00–0.00) 0.00 (0.00–0.01)

t3d 0.01 (0.00–0.03) 0.03 (0.00–0.10) 0.00 (0.00–0.00) 0.01 (0.00–0.02)

DNMT1:

Maintenance probability 0.99 (0.97–1.00) 0.98 (0.96–1.00) 0.95 (0.91–0.99) 0.98 (0.95–1.00)

De novo probability 0.02 (0.00–0.05) 0.06 (0.01–0.14) 0.00 (0.00–0.01) 0.01 (0.00–0.02)

Hemi-preference ratio 58 (w25) 15 (w8) 628 (w208) 94 (w50)

Average association level

p1d 0.99 (0.98–1.00) 0.98 (0.96–0.99) 0.96 (0.89–1.00) 0.99 (0.96–1.00)

p3p 0.02 (0.00–0.05) 0.04 (0.00–0.10) 0.01 (0.00–0.02) 0.01 (0.00–0.02)

p3d 0.05 (0.01–0.08) 0.05 (0.01–0.12) 0.00 (0.00–0.02) 0.01 (0.00–0.03)

Measurement error

probability (c) 0.02 (0.01–0.03) 0.02 (0.01–0.03) 0.02 (0.01–0.05) 0.02 (0.01–0.04)

Medians and 80% credible intervals (CIs) of the posterior distribution of the parameters under our HMM are reported. The lower and upper limit of the 80% CI represent
the 10- and 90-percentile, respectively. For hemi-preference ratios, one-sided 80% CIs are reported; that is, the lower limit is the 20-percentile of the distribution.
Measurement error probability c refers specifically to the inappropriate bisulfite conversion probability per CpG per strand (see Materials and Methods for detail). Except
for mean association lengths and hemi-preference ratios, estimates reported here were obtained under a uniform (0,1) prior. Entries with an � are sensitive to the choice
of the prior distribution; in other words, the data are less informative about these parameters.
doi:10.1371/journal.pone.0032225.t002
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(processive or multiple dissocation-reassociation events) gave rise

to this high maintenance methylation rate.

Specifically, the LEP data are uninformative about the

dissociating probability r1d and reassociating probability t1d of

DNMT1 in fat and blood, as the posterior distributions of both

parameters cover the entire support of (0,1) (Table 2; Figure 4(B1);

Supplementary Figures 7 and 8 in Materials S1). Furthermore, we

estimated the maintenance activity probability of DNMT1 to be

very close to 1 and its de novo activity probability to be very close

to 0 (Table 2; also see Supplementary Figures 7 and 8 in Materials

S1). Thus, the estimated hemi-preference ratio of DNMT1 at LEP
is essentially consistent with that at the Xi-linked loci: this ratio is

significantly higher than 1, supporting a preference for hemi-

methylated CpG sites (Table 2). The median and lower-bound

estimates of this ratio at the LEP locus is much wider in fat (80%

CI: 157–3536) than that in blood, which again suggests that the

estimation of this ratio is sensitive to the estimation of the de novo

activity probability of DNMT1, and that this ratio can be much

higher than the values available in existing literature.

Similar to the FMR1 and G6PD data, the LEP data are also

uninformative about the DNMT3s on either strand: the posterior

distributions of the dissociating probabilities r3p and r3d are not

substantially different from the uniform prior distribution (Table 2;

Figure 4(B2)–(B3)). This uninformativeness may have stemmed

also from a low level of enzyme activities: the average association

frequencies p3p and p3d are not substantially different from 0.

Estimates and impact of measurement errors
Bisulfite conversion used in the experiment can give rise to two

types of measurement errors [2,26] (also see Materials and

Methods for details on how we define and incorporate these

errors in our analysis). In all the analyses here, we fixed the

probability of failure of bisulfite conversion, b, to be 0:003 as in

our previous analysis [2]. We estimated the probability of

inappropriate bisulfite conversion, c, by taking advantage of the

result that this probability has little variation across CpGs in our

data set [2]. Our estimates for c are essentially the same in all the

data sets, with the posterior median being 2% and narrow 80%

CIs (Table 2; also see Supplementary Figure 9 in Materials S1 for

the posterior distribution of c estimated for the FMR1 locus). This

appreciable error rate is expected under the low-molarity bisulfite-

conversion protocol [26] used to collect our data. Note that the

results on processivity and substrate preference given above are

robust to different assumptions on the measurement error rates:

indeed, setting the error rates to be 0 did not qualitatively impact

our inference of the hemi-preference ratio or processivity, except

producing a slight reduction in the estimated hemi-preference

ratio (Supplementary Figure 10 and Table 1 in Materials S1).

Another source of possible measurement errors is PCR crossover,

which can occur during PCR amplification with probability less

than 1% per molecule [27], leading to ascertained patterns that are

hybrids of two molecules [27]. A crossover between one densely

methylated and one sparsely methylated molecule may produce a

methylation pattern with one of its ends being mostly hemimethy-

lated dyads, and could affect statistical inference on processivity.

Take the FMR1 data for example. The probability of having at least

1 of 169 patterns produced by a single crossover is 80% under a

binomial distribution. Therefore, pattern #82 from this data set

(Figure 2), one of the four most informative patterns and the only

pattern with a long run of hemimethylated dyads at an end, may

Figure 4. Posterior distributions of dissociating probability r from in vivo methylation data at several loci. From top to bottom, each
row indicates r1d for DNMT1 on the daughter strand, r3p for the DNMT3s on the parent strand, and r3d for the DNMT3s on the daughter strand.
(A1)–(A3) are estimated for the FMR1 locus. Estimates for G6PD, the other Xi-linked locus, show similar distributions and are not displayed here.
(B1)–(B3) are estimated for the autosomal LEP locus in the fat tissue. Estimates for the same locus in the blood tissue show similar distributions and
are not displayed here. (C) is estimated from the data in Goyal et al. [11], one of the four in vitro data sets on mouse DNMT1 we analyze here. Dark
lines indicate the density of a uniform (0,1) prior distribution. Except for the plots in red, which have most probability mass around small values, all
the other plots are displayed on the same support of (0,1).
doi:10.1371/journal.pone.0032225.g004
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have arisen from a crossover. The other three patterns in Figure 2

have runs of hemimethylated dyads in the middle of the pattern. If

these runs were due to crossovers, two events would have had to

occur for each molecule. The probability of having at least 1 out of

169 patterns produced by two crossovers is at most 2%. Removing

pattern #82 and re-analyzing the rest of the FMR1 data produced

results nearly identical to those for the complete data set

(Supplementary Figure 11 in Materials S1). We conclude that

PCR crossover errors likely have a negligible impact on our analysis.

Strong processivity of in vitro mouse DNMT1
Most previous studies of DNTM1 were conducted in vitro and

investigated mouse DNMT1 [10,11,28,29]. These studies did not

consider bisulfite-conversion errors, nor did they distinguish

genuine processivity from multiple dissocation-reassociation events

at consecutive sites. As explained earlier, these data, containing long

runs of as many as 20 hemimethylated dyads, suggest a high level of

processivity. We re-analyzed double-stranded methylation patterns

from Goyal et al. [11] and Vilkaitis et al. [10] under our HMM,

setting the association levels of the DNMT3s to 0, and obtained

estimates for the processivity of purified mouse DNMT1 acting in

vitro (Supplementary Figure 12 in Materials S1; estimates

summarized in Supplementary Table 2 in Materials S1). Consistent

with the more descriptive analyses in Goyal et al. [11] and Vilkaitis

et al. [10], our statistical analyses also estimated a high level of

processivity from these in vitro data on mouse DNMT1, with

narrow 80% CIs indicating strong evidence from the data (Figure 5).

Although both in vivo and in vitro data show strong levels of

processivity, there are noticeable quantitative differences between

the two sets of estimates: our estimates from these published in

vitro data suggest a shorter mean association tract length (Figures

4 and 5A) and a much longer mean non-association tract length

(Figure 5B) than do our estimates of human DNMT1 in vivo (see

numeric summaries in Table 2 here and Supplementary Table 2

in Materiails S1). These disparities could be due to differences

between human DNMT1 and mouse DNMT1, as well as to

differences among the experimental conditions in these studies.

Disparities could also result from differences between in vivo and

in vitro conditions, indicating a role for the replication machinery

in modulating enzyme activities. Inferences here and elsewhere

[10–14] suggest that the replication machinery is not essential for

preserving the association of maintenance methyltranferases with

the DNA once they are bound. The replication machinery may,

however, play a role in keeping unbound DNMT1 poised to re-

associate with DNA. This could explain the much shorter non-

association tract length and the longer stretches of processive

activity inferred here from patterns established in vivo.

Discussion

In this article, we have developed a novel hidden Markov model

to infer complex methyltransferase activities from double-strand

methylation patterns established in single molecules. This model

complements our earlier model [2] that focuses on estimating the

CpG site-specific rates of methylation events, regardless of the

methyltransferases. Under our HMM, we can estimate reassociating

and dissociating probabilities of the enzymes, as well as probabilities

of maintenance and de novo activities, inferring association/non-

association tract lengths and hemi-preference ratio. Whereas it is

possible that the DNMTs may carry out methylation activities in

Figure 5. Estimated processivity and non-association tract lengths for human DNMT1 in vivo and mouse DNMT1 in vitro under our
HMM. Each curve is the posterior distribution of the (A) mean association (processivity) and (B) non-association tract lengths on the log10 scale.
Vertical lines indicate the boundaries of the 80% CIs. Black curves indicate estimates from our in vivo human FMR1 data. Magenta and green curves
are based on our re-analysis of the in vitro mouse DNMT1 data in Goyal et al. [11] and Vilkaitis et al. [10] (Supplementary Figure 12 in Materials S1).
doi:10.1371/journal.pone.0032225.g005
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multiple passes during a round of DNA replication, the processivity

our HMM infers here is effectively the ‘‘cumulative’’ processivity. It

is also unclear how to incorporate multiple passes of methylation

with an unknown number of passes into the statistical modeling.

Our model is applicable to in vivo data for which possibly both

DNMT1 and the DNMT3s were at work. It is also applicable to in

vitro data in which only one type of methyltransferase was present.

Since the core of our implementation of the inference of our HMM

is the standard forward-backward algorithm, the computing time

needed for analyzing these data is linearly proportional to the

number of patterns and to the number of CpG sites.

Applying our model to four in vivo human data sets collected at

three loci, we find strong evidence for a high level of processivity of

DNMT1 at two Xi-linked loci, with the mean association tract

lengths being a few hundred to a few thousand bp, whereas the

methylation patterns at the autosomal locus LEP are not informative

about processivity. Due to a limited number of loci studied, it is

unclear whether the strong processivity of DNMT1 is associated only

with the inactive X chromosome. Additionally, the LEP locus may

not be representative of autosomal loci, because the data were

derived from tissue that is composed of different types (adipose tissue

contains adipocyte precursors, blood vessels, and stromal cells

besides the mature adipocytes). Although the methylation patterns at

the LEP locus have different densities in the two tissue types, our

analysis shows that most of the methylation events at this locus are

the maintenance methylation activities due to DNMT1 in both tissue

types. At all loci examined here DNMT1 showed a strong preference

for hemi-methylated CpG sites over unmethylated sites (point

estimates ranged from 15 to 628; obtaining precise estimates is

difficult because the denominator of the hemi-preference ratio is the

probability of de novo methylation events, and these events are rare

in our in vivo data dominated by maintenance methylation events).

Our analysis of in vivo data suggests low contributions from the

DNMT3s in these in vivo somatic cells. To study the properties of

the DNMT3s, an alternative is to analyze double-stranded

methylation patterns from in vitro experiments. Such data are

indeed available at least for DNMT3A [30,31]. However,

structure analysis suggested that DNMT3A may form a tetramer

with DNMT3L, in the form of DNMT3L-DNMT3A-DNMT3A-

DNMT3L, which may bind to more than one CpG in a single

binding event [32]. We (AQF and MS) are currently extending our

HMM to allow for such possibility and carrying out additional

analysis for these DNMT3A data in separate work.

Materials and Methods

Additional details of the Hidden Markov model
Emission probabilities for modeling activities of

methyltransferases associated with. DNA. Consider the j-
th CpG site on the i-th double-stranded methylation pattern. Let

Qij be the methylation state of the post-replication parent CpG at

this site and Dij be that of the daughter CpG. Also let Mij , RP
ij and

RD
ij be the association or non-association states of the Markov

process of DNMT1 at the daughter CpG, and of the DNMT3s at

the parent CpG and the daughter CpG, respectively. The emission

probabilities, given as Pr (Qij ,Dij jMij ,R
P
ij ,R

D
ij ), are conditional

probabilities and computed for the j-th site as in Table 3.

Each entry in Table 3 sums over two states: methylation and

no methylation at the pre-replication parent CpG, with probability

mj and 1{mj , respectively. For example, consider the

following entry near the bottom right of Table 3,

Pr ((Qij ,Dij)~(1,1)j(Mij ,R
P
ij ,R

D
ij )~(1,1,0))~(1{mj)d1dzmjm1d .

In this case, DNMT1 and the DNMT3s are both associated with

the CpG dyad, with the former at the daughter CpG (i.e., Mij~1)

and the latter at the parent CpG (i.e., RP
ij ~1, RD

ij ~0). Either of

two events occurred for the formation of the observed fully

methylated CpG dyad (i.e., (Qij,Dij)~(1,1)): (i) DNMT1 carried

out a maintenance methylation event on the daughter CpG of the

dyad where the parent CpG had been methylated before replication.

This event has probability mjm1d ; or (ii) the dyad, unmethylated

before replication with probability 1{mj , became methylated de

novo on the daughter strand by DNMT1 with probability d1d and

on the parent strand by the DNMT3s with probability 1. This

double de novo methylation event has total probability (1{mj)d1d .

We made two assumptions in the calculation of the emission

probabilities: (i) measurement errors did not occur in the collection of

our data; relaxation of this assumption to incorporate error is

described below; and (ii) there is no active removal of methyl groups

on the parent strand when DNA is replicated [2,21,23,33], which

Table 3. Emission probabilities of the HMM.

(Qij ,Dij )

(Mij ,R
P
ij ,RD

ij ) (0,0) (0,1) (1,0) (1,1)

(0,0,0) 1{mj 0 mj 0

(0,0,1) (1{mj )(1{d3d ) (1{mj )d3d mj (1{m3d ) mjm3d

(0,1,0) 0 0 1 0

(0,1,1) 0 0 (1{mj )(1{d3d )zmj(1{m3d ) (1{mj )d3dzmjm3d

(1,0,0) (1{mj )(1{d1d ) (1{mj )d1d mj (1{m1d ) mjm1d

(1,0,1) (1{mj )(1{m3d )(1{d3d ) (1{mj )(m3dzd3d{m3d d3d ) mj (1{m1d )(1{d1d ) mj (m1dzd1d{m1d d1d )

(1,1,0) 0 0 (1{mj )(1{d1d )zmj(1{m1d ) (1{mj )d1dzmjm1d

(1,1,1) 0 0 mj (1{m1d )(1{d1d )z(1{mj )(1{m3d )(1{d3d ) mj (m1dzd1d{m1d d1d )z(1{mj)(m3dzd3d {m3d d3d )

Subscript i denotes the i-th methylation pattern, and j the j-th CpG site. Note that (Mij ,R
P
ij ,R

D
ij ) denotes the association (1) or non-association (0) state of DNMT1,

parent-strand DNMT3s, and daughter-strand DNMT3s, respectively. Also, (Qij ,Dij ) denotes the methylated (1) or unmethylated (0) state of CpG on the parent strand and
daughter strand, respectively. Additionally, mj denotes the probability of the j-th CpG site being methylated before DNA replication, which is equivalent to the
methylation density of the j-th site. m1d and m3d are the probability of the maintenance activity of DNMT1 and the DNMT3s, respectively, at associated daughter-strand
CpG, whereas d1d and d3d are that of the de novo activity of DNMT1 and the DNMT3s, respectively. The measurement error rates (see Materials and Methods and Table
4) are assumed to be 0 here. This HMM allows for estimation of the hemi-preference ratio for both DNMT1 and the DNMT3s, although additional constraints are needed
for this simultaneous estimation. See text for details.
doi:10.1371/journal.pone.0032225.t003
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means that a CpG methylated before replication remains methylated

after replication. Although active removal of methyl groups has been

reported during early development, in cancer cells (see [34] for

review), and for transcriptionally active loci under perturbation

[35,36], this phenomenon seems uncommon, if it occurs at all, in

somatic cells in normal individuals, which are the cell types we study

here.

To distinguish between the DNMT1 process and the DNMT3

process on the daughter strand, in the simplest version of the HMM

we draw on the existing evidence that the two classes of

methyltransferases exhibit different substrate preferences

[4,6,7,18,37,38]. When the DNMT3s are associated with the

daughter strand, we assume that they add a methyl group with

probability 1 (m3d~d3d~1) at both hemimethylated and unmethy-

lated CpGs. That is, association is synonymous to methylation for the

DNMT3s on the daughter strand. In contrast, when DNMT1 is

associated with the daughter strand, we allow it to methylate CpGs at

hemimethylated sites and at unmethylated sites with different

probabilities m1d and d1d , respectively, with the ratio m1d=d1d being

the hemi-preference ratio. To also estimate the hemi-preference ratio

for the DNMT3s on the daughter strand, m3d=d3d , we use a different

set of constraints, namely t1dw0:05 and t3dv0:05 (Materials S1).
Incorporating measurement errors due to bisulfite

conversion. We consider two types of measurement errors

due to bisulfite conversion [2,26]: failure of bisulfite conversion,

which occurs with probability b per CpG, and inappropriate

bisulfite conversion, which occurs with probability c per CpG (see

definitions in Table 4). We assume that these errors occur

independently across CpGs and DNA strands [2]. Denote Q’ij and

D’ij as the observed methylation states at the parent and daughter

CpGs, respectively, on the i-th methylation pattern at the j-th
CpG dyad, with possible measurement error. Emission

probabilities accounting for these measurement errors are:

Pr (Q0ij ,D
0
ij jMij ,R

P
ij ,R

D
ij )~X

Qij~0,1

X
Dij~0,1

Pr (Q0ij jQij) Pr (D0ij jDij) Pr (Qij ,Dij jMij ,R
P
ij ,R

D
ij ), ð3Þ

where Pr (Q’ij jQij) and Pr (D’ij jDij) are functions of measure-

ment error probabilities b and c (Table 4), whereas

Pr (Qij ,Dij jMij ,R
P
ij ,R

D
ij ) is previously defined as the emission

probability without measurement error (Table 3).
Software implementing the HMM. The models and

analyses presented here are implemented in the computer

program MethylHMM, which can be downloaded from http://

stephenslab.uchicago.edu/software.html. This program includes

also all the data sets analyzed here.

Human in vivo double-stranded methylation data
We used hairpin-bisulfite PCR [21] to collect double-stranded

methylation patterns of single molecules from the promoter region

of genes FMR1 and G6PD, two loci on the inactive X

chromosome, and gene LEP on Chromosome 7. Molecular

barcodes and batchstamps were used to help identify and remove

contaminant and redundant methylation patterns [22]. To capture

the variation in methylation patterns across cells, we collected

multiple patterns from each individual sampled (Table: 1). Each

pattern (see examples in Figure 2) consists of methylation states at

CpG sites on the parent and daughter strands at this locus in an

individual cell, with no direct information as to which is the parent

strand and which is the daughter. The FMR1 and G6PD data were

collected on the hypermethylated, inactivated X chromosome in

somatic lymphocytes from human females. The LEP data were

collected from fat tissues (abdomen and breast) and peripheral blood

leukocytes. The FMR1 data were previously analyzed in Fu et al.

[2] under a different statistical model that assumed the methylation

events at different CpG sites to be independent. The LEP data were

publised in Stöger [39]. Features of the loci and summary statistics

of the methylation data are presented in Table 1.

Supporting Information
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