
ORIGINAL RESEARCH ARTICLE
published: 23 March 2012

doi: 10.3389/fpls.2012.00048

Adenosine methylation in Arabidopsis mRNA is associated
with the 3′ end and reduced levels cause developmental
defects

Zsuzsanna Bodi , Silin Zhong†, Surbhi Mehra, Jie Song†, Neil Graham, Hongying Li , Sean May and

Rupert George Fray*

School of Biosciences, University of Nottingham, Loughborough, UK

Edited by:

Richard A. Jorgensen,
Project – National Laboratory of
Genomics (LANGEBIO), Mexico

Reviewed by:

Xiangfeng Wang, University of
Arizona, USA
Heriberto Cerutti, University of
Nebraska – Lincoln, USA
Ykä Helariutta, University of Helsinki,
Finland

*Correspondence:

Rupert George Fray , School of
Biosciences, University of
Nottingham, Sutton Bonington
Campus, Loughborough, LE12 5RD,
UK.
e-mail: rupert.fray@nottingham.ac.uk
†Present address:

Silin Zhong, Boyce Thompson
Institute for Plant Research, Cornell
University, Ithaca, NY 14853, USA;
Jie Song, John Innes Centre,
Norwich Research Park, Colney,
Norwich, NR4 7UH, UK.

We previously showed that the N6-methyladenosine (m6A) mRNA methylase is essen-
tial during Arabidopsis thaliana embryonic development. We also demonstrated that this
modification is present at varying levels in all mature tissues. However, the requirement
for the m6A in the mature plant was not tested. Here we show that a 90% reduction in
m6A levels during later growth stages gives rise to plants with altered growth patterns
and reduced apical dominance. The flowers of these plants commonly show defects in
their floral organ number, size, and identity. The global analysis of gene expression from
reduced m6A plants show that a significant number of down-regulated genes are involved
in transport, or targeted transport, and most of the up-regulated genes are involved in
stress and stimulus response processes. An analysis of m6A distribution in fragmented
mRNA suggests that the m6A is predominantly positioned toward the 3′ end of transcripts
in a region 100–150 bp before the poly(A) tail. In addition to the analysis of the phenotypic
changes in the low methylation Arabidopsis plants we will review the latest advances in
the field of mRNA internal methylation
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INTRODUCTION
N 6-methyladenosine (m6A) is a ubiquitous base modification
found internally in the mRNA of most Eukaryotes. Levels of
methylation equivalent to at least 50% of transcripts carrying
m6A are common (Zhong et al., 2008; Bodi et al., 2010), although
its relative abundance may vary between species, or between tis-
sue types within a species (Desrosiers et al., 1974; Adams and
Cory, 1975; Perry et al., 1975; Wei et al., 1976; Beemon and Keith,
1977; Levis and Penman, 1978; Aloni et al., 1979; Kennedy and
Lane, 1979; Nichols, 1979; Haugland and Cline, 1980). Ribonu-
clease fragmentation and labeling studies on mRNA show m6A
to be present only at the central A within the sequence context
GAC and AAC, with a 75% preference for GAC, and this consen-
sus appears to be conserved amongst plants, yeast and mammals
(Wei et al., 1976; Nichols and Welder, 1981; Harper et al., 1990;
Shimba et al., 1995; Zhong et al., 2008; Bodi et al., 2010). Whilst
other types of post-transcriptional base modification, such as
C-to-U editing, or A-to-I conversions result in a change follow-
ing reverse transcription, m6A is recognized as adenosine and so
is not revealed by cDNA sequencing. For this reason it is techni-
cally demanding to map its position in specific messages, and this
has only been achieved in two, relatively abundant, transcripts.

In Rous sarcoma virus a 1865 nt region of the genomic RNA con-
tains seven m6A sites in a GAC context (Kane and Beemon, 1985;
Csepany et al., 1990), and in bovine prolactin mRNA, methyla-
tion occurs at a single AGACU site within the 3′ untranslated
region (UTR; Horowitz et al., 1984). In both cases, this conformed
to an extended consensus sequence RRACH (where R represents
purine, A is the methylation site, and H is any base other than
G), previously proposed by Schibler et al. (1977) Consistent with
this, the partially purified mammalian mRNA methylase shows
strongest activity for GGACU and, to a lesser extent, AGACU
sequences (Harper et al., 1990). Whilst m6A is clearly abundant
within the mRNA pool, very few methylated transcripts have been
identified to date. However, using an anti-m6A immunoprecipita-
tion approach, four Saccharomyces cerevisiae messages, expressed
during early meiosis were recently shown to be methylated (Bodi
et al., 2010). The position of m6A in the meiotic kinase IME2, was
mapped to the 3′ half of the message, a region where the trans-
lational suppressor Khd1 has previously been predicted to bind
(Hasegawa et al., 2009; Bodi et al., 2010).

Bokar et al. (1997) identified MT-A70 (assigned as METTL3
by HUGO Gene Nomenclature Committee) as the human
mRNA m6A methyltransferase. A phylogenetic analysis of proteins
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homologous to METTL3 has identified conserved orthologs
among most sequenced eukaryote genomes, including mammals,
fish, amphibians, insects, plants, and some fungi (S. cerevisiae;
Bujnicki et al., 2002). In S. cerevisiae, the METTL3 homolog
(IME4) is only expressed in starved, diploid cells. Under these
conditions, sporulation would normally occur, but disruption of
IME4 abolishes mRNA methylation and prevents the initiation
of this developmental pathway (Clancy et al., 2002; Bodi et al.,
2010). Arabidopsis thaliana homozygous for an insertional knock-
out of the METTL3 homolog (MTA) arrest at the globular stage
of embryonic development and the poly(A) RNA purified from
these embryos lacks m6A (Zhong et al., 2008). More recently,
a deletion of the Drosophila METTL3 homolog (Dm ime4) was
shown to inhibit oogenesis, though the methylation status of the
wild type or knockout flies was not reported (Hongay and Orr-
Weaver, 2011). The consequence of knockout or silencing of the
mammalian METTL3 is currently not known, and may well be
lethal. However, in a recent paper (Jia et al., 2011) it is shown that
the primary function of the human fat mass and obesity asso-
ciated protein (FTO) is to remove the methyl groups from N 6
methylated adenosines in mRNA. Overexpression of FTO (imply-
ing reduced methylation) is associated with obesity, diabetes, and
risk of Alzheimer’s. Thus there is an intriguing link between nutri-
tion and mRNA methylation in both yeast and mammals. This
link may also exist in plants, as AtFIP37 (a protein partner of the
Arabidopsis MTA) is the only known target of Arabidopsis FKBP12,
a component of the target of rapamycin (TOR) pathway – a con-
served pathway that regulates cellular responses to growth factors
and nutrient availability in Eukaryotes.

Whilst an association between mRNA methylation and stress,
particularly nutrient, signaling may exist, the function that m6A
performs at a molecular level remains a mystery. Tuck et al. (1999)
proposed that the presence of m6A in a message increases trans-
latability. These authors observed an in vitro methylated dihy-
drofolate reductase message translated more efficiently than the
non-methylated transcript in an in vitro translation assay. Roles
in mRNA nuclear export or splicing have also been suggested. A
role in splicing was also supported by the interaction between A.
thaliana FIP37 (FKBP12 interacting protein) and MTA (Zhong
et al., 2008), as AtFIP37 is a homolog of Drosophila female-
lethal(2)d, required for sex-specific splicing. However, in yeast
none of the methylated messages identified so far are spliced (Bodi
et al., 2010) and no involvement of AtFIP37 in splicing has so far
been demonstrated. Other functions for mRNA methylation could
also be envisaged, such as regulating siRNA or miRNA suscepti-
bility, sub-cellular localization, nonsense mediated decay (NMD)
or message turnover.

In this manuscript we demonstrate that Arabidopsis plants with
decreased m6A levels show reduced apical dominance, abnormal
organ definition, and increased number of trichome branches. In
addition, a global transcriptome analysis revealed that groups of
messages involved in localization and establishment of localiza-
tion are significantly down regulated, whilst genes associated with
response to external and internal stimuli are up-regulated in these
plants. We also demonstrate that globally, the m6A is predom-
inantly positioned toward the 3′ end of transcripts in a region
100–150 bp before the poly(A) tail.

MATERIALS AND METHODS
CONSTRUCTION OF MTA PARTIAL COMPLEMENTATION PLANTS
The MTA cDNA was cloned into the plant binary vector
pGHABI3GWG (GenBank accession number FM177581) via an
LR clonase (Invitrogen) reaction from a pENTR/D-TOPO (Invit-
rogen) vector containing the full MTA coding sequence (Zhong
et al., 2008). After transfer to Agrobacterium tumefaciens C58, this
vector was used for floral dip transformation of A. thaliana eco-
type Columbia (Col) plants heterozygous for the SALK_074069
insertion. Transgenic seedlings were selected on hygromycin,
and lines heterozygous for the SALK_074969 were identified by
the production of a 1050-bp fragment following amplification
with oligonucleotides Lba1 (TCGTTCACGTAGTGGGCCATCG)
and A63UTRR (GACATTGGCTTTGTTTTTTTTGGAATTGAA).
After self-pollination, T2 plants homozygous for SALK_074969
were identified by the absence of the wild type 1080 bp frag-
ment obtained following PCR amplification with oligonucleotides
A63UTRR and A6E4F (GACTTGCAAATACGTGCATTACG) and
the presence of the 1050 bp fragment obtained with oligonu-
cleotides Lba1 and A63UTRR (Figure 1). In each case the presence
of the transgene was confirmed by amplification of a fragment
of 799 bp after PCR amplification with oligonucleotides A6rev
(CTAAGCTGTGATTGAGTCAATAG) and A6E4F.

MAPPING m6A DISTRIBUTION IN THE mRNA POOL
Total RNA was extracted from Arabidopsis tissue samples using
the method of Chomczynski and Sacchi (1987). Poly(A) RNA

FIGURE 1 | Confirmation of the homozygous nature of the

SALK_074069 insertion in plants containing the ABI3MTA

complementation cassette. (A) Structure of the MTA locus showing the
location of the SALK_0749069 insertion (a rearranged T-DNA insertion line
with two left borders) and the oligonucleotides used in the analysis. (B) The
presence of the SALK_074069 insertion was confirmed by the presence of a
band of 1050 bp following PCR amplification with oligonucleotides a (Lba1)
and c (A63UTRR) (lanes 1–4). The homozygosity of the SALK insertion was
confirmed by the lack of the 1080 bp wild type band seen after amplification
with oligonucleotides b (A6E4F) and c (A63UTRR) (lanes 6–9). Lanes 1 and
6 wild type, 2 and 7 Line 8, 3 and 8 Line 10, 4 and 9 Line 14.
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was purified using oligodT-Cellulose columns (Fluka) following a
standard protocol (Sambrook and Russel, 2001). The oligo(dT)
chromatography was carried out at least three times on each
sample and the quality of the mRNA was checked on an RNA
6000 LabChip, with Agilent Bioanalyzer (Ambion). The alkaline
fragmentation of the mRNA samples was carried out using a 100-
mM carbonate/bicarbonate buffer system. The buffered mRNA
samples had 60 mM Na2CO3 and 40 mM NaHCO3 as final con-
centrations, and were incubated at 60˚C. The size of fragments
was determined by the time of incubation, which was calculated
according to the following formula:

t = (Lo − Lt )

k (LoLt )

where Lo = initial length of transcript (in kb)
Lt = desired RNA fragment length (in kb)
k = constant = 0.11 kb/min
t = time (min)

The initial length of the mRNA was approximated as 1.2 kb
thus a desired fragment length of 150 nt was achieved by a 53-min
incubation time. The fragmentation was stopped by adding 3 M
sodium acetate, one tenth of the original volume, and three vol-
umes of absolute Ethanol. After overnight precipitation (−20˚C)
the RNA pellet was obtained by centrifugation, washed with
80% ethanol, and resuspended in water. The size of fragments
was checked on an RNA 6000 LabChip, with Agilent Bioanalyzer
(Ambion). To prevent unwanted labeling of free 5′ ends, the frag-
ments were phosphorylated using 20 units of T4 polynucleotide
kinase (PNK; Fermentas) in the presence of 10 mM cold ATP and
1X PNK buffer in a final volume of 40 μL at 37˚C for 1 h. The
fragments containing poly(A) tails were purified away from the
non-polyadenylated species by using oligo(dT) magnetic beads,
PolyTtrack System 1000 (Promega). These were released by elution
with 20 μL water. The m6A content of this sample was measured as
previously described (Zhong et al., 2008). The unbound fraction,
representing the 5′ end and middle region of the mRNA pool,
was separated from the excess ATP using a micro-spin column
(BioRad) with a 6 nt cut-off. This step was also used for buffer
exchange (Tris–HCl). An aliquot of these fragments was used for
m6A quantification. The rest of the sample was further processed
for the analysis of fragments from caped 5′ ends. This sample was
digested with 1 μL Terminator™ nuclease (Epicenter Biotechnolo-
gies) in a final volume of 70 μL with 1X reaction buffer at 30˚C for
1 h. The reaction mixture was put through a micro-spin column
and extracted with phenol–chloroform to stop the reaction. After
ethanol precipitation, the RNA was resuspended in 7 μL of water
and the m6A content was determined.

MICROARRAY ANALYSIS
Trays of wild type and homozygous SALK_074069 ABI3MTA
plants were grown in parallel for 3 weeks, at which point the 3rd
to 6th rosette leaves were taken from each of four plants and these
were pooled for RNA extraction. Three biological repeats of the
wt and reduced m6A samples were prepared. The Affymetrix Ara-
bidopsis ATH1 GeneChip® Genome Array was used for microarray
analysis. Hybridizations were carried out at the NASC’s Affymetrix

service (Nottingham Arabidopsis Stock Centre, University of Not-
tingham, UK). Total RNA samples were labeled, hybridized, and
scanned following the standard protocol from the manufacturer
(GeneChip Expression Analysis, Affymetrix1). The GeneChip
Command Console Software (AGCC;Affymetrix) was used to gen-
erate “.cel” files for each of the hybridizations. These are available
from the NASCArrays database (accession ID: NASCARRAYS-
6122) and from GEO (accession ID: GSE349243). The raw chip
data were normalized using the Robust Multichip Average (RMA)
pre-normalization algorithm (Irizarry et al., 2003) in the Gene-
Spring GX (version 11; Agilent Technologies) analysis software
package. Following RMA pre-normalization, the signals were fur-
ther normalized by standardizing the signal value of each probe-set
to the median of that probe-set across all hybridizations. Dif-
ferentially expressed probe-sets were identified using a two-step
process (i) fold-change ≥1.5 between mutant and wild type and
(ii) a t -test (p ≤ 0.05) using the Benjamini and Hochberg multiple
testing correction (Benjamini and Hochberg, 1995). All further
analysis was carried out using different functions in GeneSpring
GX. Gene Ontology analysis was performed using the GO analy-
sis function in GeneSpring GX, with the p-value calculated using
a hypergeometric test with Benjamini–Yekutieli correction (Ben-
jamini and Yekutieli, 2001). The significance of gene list overlaps
was calculated using a hypergeometric distribution test4.

RESULTS
COMPLEMENTATION OF MTA HOMOZYGOUS LINES WITH THE MTA
cDNA UNDER THE CONTROL OF THE ABI3 PROMOTER
We previously reported that the SALK_074069 T-DNA insertion
in the AT4G10760 (MTA) gene in homozygous form results in an
arrest at the globular stage during embryonic development (Zhong
et al., 2008). This embryo lethality can be successfully rescued by
a constitutively expressed MTA cDNA. All mature tissues tested
were also shown to contain m6A in their mRNA and we wished to
test if this was also performing an important or essential function.
The role of mRNA methylation in normal mRNA metabolism is
not known, and it remains possible that methylation plays a posi-
tive or negative role in post-transcriptional gene silencing; for this
reason we wished to avoid an RNAi based approach for reducing
MTA levels. Instead, we used the MTA cDNA under the control
of the embryo-specific ABI3 promoter to rescue the homozygous
embryo-lethal phenotype of the SALK_074069. This promoter
construct directs the expression of MTA during embryonic devel-
opment but limits the production of MTA beyond this stage. The
expression of ABI3 has previously been extensively characterized
and the promoter has been used to rescue other embryo-lethal
mutations in order to study vegetative gene function (Rhode et al.,
1999; Despres et al., 2001).

The full length MTA cDNA expressed under the control of the
ABI3 promoter was used to transform plants hemizygous for the
SALK_074069 insertion. Three transgenic lines that contained the
SALK insertion were selected and allowed to self-pollinate. Among

1www.affymetrix.com
2http://affymetrix.arabidopsis.info
3http://www.ncbi.nlm.nih.gov/geo/
4http://stattrek.com/Tables/Hypergeometric.aspx
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the progeny of each of these plants were individuals homozygous
for the SALK_074069 insertion (Figures 1A,B), demonstrating
that this construct was able to complement the embryo-lethal
phenotype. Reduced levels of m6A methylation were assayed using
thin layer chromatography (TLC) for separation and quantifica-
tion of radio labeled nucleotides (Zhong et al., 2008). As expected,
the m6A to A ratio in the seeds was similar to that of the wild
type plants. However, in leaves, and in flowers there was a 90–93%
reduction when the homozygous SALK_074069 insertion plants
were compared to wild type (Figure 2A). This was consistent with
the lower level of expression of the MTA cDNA on the Affymetrix
ATH1 GeneChip (Tables S1 and S4 in Supplementary Material)
and verified by qRT-PCR (Figure A1 in Appendix).

Less than one quarter of the T2 generation was homozygous
for the SALK_074069 insertion, and all of these had various
developmental defects. Most of the observed plants had reduced

inflorescence internode lengths, and a small, but bushy rosette
compared to wild type plants. A general increase in the number
of rosette leaves was also observed (Figure 2B) and these were
more crinkled. However, the severity of the phenotypes varied
between and amongst the three lines. This is probably due to
variations in the copy number of the complementing ABI3MTA
construct, since one third of homozygous plants are expected to
have two copies of the construct. The architecture of flowers is
also affected (Figure 2C), particularly in the first flowers of the
inflorescence, where stamens often showed partial conversion to
petals. Reduced seed set was also observed, but viable seed were
recovered.

It was previously reported that overexpression of AtFIP37, the
interacting partner of MTA (Zhong et al., 2008) increases trichome
branching in Arabidopsis (Vespa et al., 2004). Trichomes have been
used as a model for cell shape and polarity control in plants, and the

FIGURE 2 | Homozygous SALK_074069 plants complemented with

the ABI3MTA transgene have reduced mRNA methylation and

associated developmental defects. Samples were collected from three
different plants from Line 8 transgenic plants. m6A measurements were
carried out using the TLC method. Error bars represent SD of three
replicates. Levels of m6A within mRNA is reduced by more than 90% in

the leaves and flowers of the SALK_074069 ABI3MTA transgenic lines (A).
Plants with reduced levels of m6A are more compact, have leaf crinkling,
shorter inflorescence, and reduced apical dominance (B). Floral defects
are common in the reduced m6A plants. Some stamens show partial
conversion to petals [(i,ii), sepals and petals removed for clarity] and organ
order is also sometimes affected (iii) (C).
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degree of branching may also be an indication of endoreduplica-
tion levels, as appeared to be the case with AtFIP37 overexpression
(Vespa et al., 2004). Interestingly, the reduced m6A plants showed a
trichome phenotype similar to that of the AtFIP37 over-expressing
lines. The fraction of trichomes with four or more branches is
increased from 24 to 60% in the low methylation plants (Figure 3).

GLOBAL GENE EXPRESSION ANALYSIS IN THE LOW LEVEL
METHYLATION PLANTS
Transcriptional changes in the reduced m6A plants compared to
wild type were determined by hybridizing RNA from 3-week-old
rosette leaves to the Affymetrix Arabidopsis ATH1 GeneChip. We
identified 1537 differentially expressed genes (fold-change ≥1.5,
corrected p ≤ 0.05). The differentially expressed gene set had 883
up-regulated and 654 down-regulated genes (Table S1 in Supple-
mentary Material). Gene Ontology analysis was performed on the
up and down-regulated genes separately to identify over repre-
sented terms. The most significantly enriched GO categories were
“response to stimulus,” “response to stress,” “response to other
organism,” and “response to biotic stimuli” 36, 28, 14, and 14%
respectively of the up-regulated genes falling in these groups, this
was followed by “response to external stimulus” 11%. This may

FIGURE 3 | Altered levels of trichome branching in 3-week-old

seedlings. The third and fourth leaves from 3-weeks-old seedlings of wild
type and homozygous SALK_074069 ABI3MTA plants were examined for
changes in their trichome phenotypes. Light micrographs of trichomes from
plants with low m6A levels and from wild type plants (A). The low m6A
plants are characterized by a higher proportion of trichomes with four or
more branches. Trichomes from the abaxial side were analyzed for the third
and fourth leaves from four wild type and four low m6A plants, each from
different transgenic lines (554 and 521 trichomes respectively). Sixty-three
percentage of trichomes from low methylation plants had four or more
branches compared to just 24% in wild type (B). Error bars represent SD of
the replicates.

suggest a function for mRNA methylation in the proper execu-
tion of responses to external, environmental and internal stimuli,
or may be the consequence of a perceived stress due to reduced
methylase activity. We also observed that there are a significant
number of up-regulated genes involved in metabolism (58%),
response to carbohydrate stimulus (4%), or carbohydrate binding
(4%; Table S2 in Supplementary Material). The most significant
GO terms enriched in the down-regulated set were associated
with“establishment of localization,”“localization,”and“transport”
(22% each). As well as “phospholipid biosynthetic process,”“phos-
pholipid metabolic process,”“cellular lipid metabolic process”(4%
each) “nitrate metabolic process,” and “nitrate assimilation” (2.5%
each) were also represented (Table S3 in Supplementary Mater-
ial). It is possible that loss of methylation in the vegetative state
may interfere with localization of proteins, organelles, or mRNA.
However, gene expression changes in the low methylation plants
are likely to be a complex combination of superimposed secondary
and primary outcomes of the lack of mRNA methylation in the
mature plant.

We were particularly interested in genes which belong to GO
categories such as RNA methyl transferase activity, RNA metabolic
processes, vegetative to reproductive transmission, and meristem
maintenance (Table S4 in Supplementary Material). Not surpris-
ingly, the MTA gene was the most significantly down-regulated
member of the RNA metabolic processes and methyl transferase
activity groups.

The flowering time regulator FLOWERING LOCUS T (FT )
gene was also found as a significant down-regulated gene in the
vegetative to reproductive transmission group. We also found
that ATFIP37, the only documented interacting partner of MTA
(Zhong et al., 2008), is significantly up-regulated. This is consistent
with our observation of increased trichome branch number.

We compared gene lists generated from the methylation defi-
cient plants data and a published data set of trichome expressed
genes (Jakoby et al., 2008). In total, 28 (p < 0.01) overlapping genes
(Figure 4) were identified and are listed in Table S5 in Supplemen-
tary Material. The most frequently represented categories in the
trichome gene list are genes involved in responses to external or
internal stimuli.

FIGURE 4 | Venn diagram showing overlapping expression changes of

genes between low methylation plants and a trichome specific set. For
the overlap search all genes with significant change were used from the
low methylation versus wild type dataset (1537 genes). The central region
corresponds to genes with changed expression in both trichomes and low
methylation plants. The gene list is in Table S5 in Supplementary Material.

www.frontiersin.org March 2012 | Volume 3 | Article 48 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Bodi et al. N6 methyladenosine in mRNA

m6A IS ENRICHED IN THE 3′ END OF THE TRANSCRIPT
The 5′ cap and the 3′ poly(A) tail of Eukaryotic mRNA have
a well recognized function in translation and RNA processing.
The adjacent 5′ and 3′ UTRs may also contain binding sites
for regulatory proteins or (particularly in animals) microRNAs.
Nucleotide modification in these regions might alter RNA–protein
interactions and so could impact upon gene expression. In order
to determine if m6A is randomly distributed in the body of a
transcript or shows a positional bias, we fragmented mRNA and
separated the fragments into those derived from the 3′, 5′, or 5′
and middle of the transcripts. The amount of m6A in the different
fractions was then determined using the previously described TLC
quantification method (Zhong et al., 2008).

Poly(A) RNA was prepared from Arabidopsis wild type
seedlings and was subjected to alkali hydrolysis using a sodium
carbonate/hydrocarbonate buffer system. This method allowed a
controlled fragmentation of the mRNA, where the fragment size
was determined by the length of incubation time. An average
180 or 120 nt fragment size was achieved under our conditions,
which was confirmed by RNA6000 LabChip (Agilent; Figure A2
in Appendix).

Following the hydrolysis, the exposed 5′ ends were polished
using PNK and an excess of cold ATP to prevent subsequent
labeling of the free ends. The fragments containing a poly(A)
tail were obtained by hybridization to an oligo(dT) column, and
the remaining 3′ end depleted fraction was considered to be a
mixture of fragments from the 5′ end and middle part of the tran-
scripts. An aliquot of this depleted fraction was further treated
with terminator nuclease which eliminated all fragments with a 5′
monophosphate end and left only the 5′ caped fragments behind.
This fraction was regarded as representing the 5′ end of the tran-
scriptome. The enrichment of these three fractions was confirmed
by hybridization to labeled probes from the 3′, 5′, and mid region
of an ATP synthase cDNA (AT1G15700; Figure A2 in Appendix).
All three fractions were then assayed for their m6A content in a
GA context using the established TLC method (Zhong et al., 2008).
When the mRNA was fractionated to 120 or 180 nt, the majority of
the m6A was observed in the most 3′ fragments (m6A:A ratios of
3.5 and 4.7% respectively; Figures 5A,B). When mRNA was frag-
mented to 90 nt or less, this 3′ bias was no longer apparent, possibly
due to the inefficient enrichment of the respective fractions. Thus,
globally at least 85% of the m6A appears to be in the 3′ end of the
transcripts. Using a PATMATCH (TAIR5) search for the GGACU
expanded methylation consensus established in mammals, we
identified a list of 1159 genes with at least one GGACU in the last
200 nt of their 3′ UTR. This list was compared to the list of differ-
entially expressed genes from low methylation plants for overlaps.
In total, 99 genes in the differentially expressed genes were iden-
tified (Figure 6; Table S6 in Supplementary Material). This is a
significant enrichment (p < 0.01) of 3′ UTR GGACU containing
messages and may indicate that the expanded GGACU consensus
is also favored in plants. Many of the transcripts that change in
abundance in the low methylation plants are likely to change as
an indirect consequence of altered expression of other messages,

5http://www.arabidopsis.org/cgi-bin/patmatch/nph-patmatch.pl

FIGURE 5 | N6-methyl adenosine is enriched in the 3′ end of

transcripts. Fragmented high purity mRNA was fractionated into 3′,
middle + 5′ and 5′ regions and the m6A content was measured for each
fraction using the published TLC based method. The positions of m6A, A
and C are indicated in the left hand panel. The spot corresponding to m6A is
enriched on the TLC carried out on the 3′ end, compared to the 5′ and
5′ + middle samples (A). (The example is from mRNA fragmented to 180
nt). The graph shows the distribution of m6A for three different
fragmentation experiments (B). When the fragment size is 90 nt or less,
m6A enrichment associated with polyadenylated fragments is no longer
seen.

FIGURE 6 | Venn diagrams representing overlapping genes between

the list of cDNAs with GGACU in the last 200 nt of the 3′ UTR and the

differentially expressed genes in the low methylation plants.

Ninety-nine Genes from the low methylation plants had at least one
GGACU in the last 200 nt end of their 3′ UTR. Genes with no annotated 3′

UTR were not analyzed.

rather than as a direct outcome of methylation deficiency in the
transcripts themselves. Thus, an over-representation of 3′ UTR
GGACU containing transcripts in the messages that change fol-
lowing reduced methylation, may be even more significant than
our overlap search suggests.
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DISCUSSION
The Arabidopsis MTA gene encodes a close homolog of the mam-
malian mRNA methyltransferase and is required for the synthesis
of m6A in planta. Disruption of MTA by T-DNA insertion results
in embryo arrest at the globular stage (Zhong et al., 2008), how-
ever wild type plants have mRNA methylation in all tissues, and in
order to study the role of this methylation during normal growth
and development alternative approaches have to be employed. We
used the ABI3 promoter to drive embryonic-expression of an MTA
cDNA in order to bypass the embryo-lethal effects of the homozy-
gous mutation (Rhode et al., 1999; Despres et al., 2001). Using this
method allowed us to recover mature plants homozygous for the
disrupted MTA gene and avoided RNAi based approaches which
might themselves have been affected by altered methylation lev-
els. Strong gene expression under the control of ABI3 promoter is
restricted to embryonic development, however, low level expres-
sion can occur during different quiescent states, depending on light
conditions (Rhode et al., 1999). We achieved a 90–93% decrease in
m6A levels in the mature plant leaf and floral tissues. The remain-
ing small amount of m6A most probably results from the low
level basal expression of the MTA cDNA from the ABI3 promoter.
Indeed full knockout of MTA in mature tissues may well be lethal
as is suggested by certain inducible RNAi constructs (not shown).
It is also possible that some of this remaining low level of m6A may
be a result of mRNA methylation being carried out by the related
methylase AT4G09980. AT4G09980 is a member of the MT-A70
family sub-lineage B (Bujnicki et al., 2002) that is also found in
most Eukaryotes. Homozygous knockout of this methylase in Ara-
bidopsis also results in embryo lethality, however, a role in mRNA
adenosine methylation for this sub family has yet to be demon-
strated. It also remains a possibility that, in addition to its role
in mRNA methylation, MTA may also have an as yet unidenti-
fied function that is required for normal gene expression in these
tissues.

The phenotypic changes in the leaf and flower structures of
the reduced methylation plants indicate a reduced apical dom-
inance and suggest problems with organ definition. We also
observed significant changes in trichome branching. Trichomes
have been used as a model for cell shape and polarity control
in plants, and the degree of branching may also be an indi-
cation of changed endoreduplication (Hülskamp et al., 1994).
Endoreduplication is the first developmental step in trichome
development after cell division ceases (Hülskamp et al., 1994).
It was previously reported that overexpression of AtFIP37, the
interacting partner of MTA (Zhong et al., 2008) increases tri-
chome branching in Arabidopsis (Vespa et al., 2004) as a result
of increased endoreduplication levels. The overlap of messages
that change in the low methylation plants and with trichome-
associated genes does not reveal any of the genes which are
involved in the trichome branch determination processes, or in
trichome cell differentiation. Though this is perhaps not surpris-
ing, as these cells would have contributed a very small proportion
of the leaf RNA analyzed and these messages are likely expressed
at a low level. Nevertheless, ATFIP37 is up-regulated in the low
methylation plants, and this is consistent with the previous obser-
vation that overexpression of ATFIP37 causes increased branching
(Vespa et al., 2004). Those trichome-associated messages which

are also increased in the low methylation plants are mostly asso-
ciated with stress related processes. Indeed, there was a gen-
eral enrichment among the overexpressed genes for GO terms
related to stress responses and responses to stimuli, both external
and internal. It is not possible to determine if the overexpres-
sion of stress and stimuli response genes is a direct or indirect
effect of the loss of methylation, as the plant morphology is so
severely affected. However, there are parallels with yeast, where
methylation of mRNA is induced by nutritional stress and sub-
sequently leads to new developmental pathways (meiosis and
sporulation).

The GO term analysis of the genes down regulated in the
low m6A plants indicates an enrichment of genes associated with
“phospholipid,” and nitrate biosynthesis, as well as with transport
and localization. Since gene expression changes in a methylation
deficient plant are likely to be a complex overlay of direct and indi-
rect results of the lack of m6A in mRNA it is not realistic to pick
single genes or a gene list as potential methylation candidates from
this dataset. If the observed levels of m6A found in wild type plants
is distributed evenly between transcripts, then more than 50% of
all messages should be methylated (Zhong et al., 2008). Thus, it
is likely that the phenotypes seen in the low methylation plants
are a result of global changes in mRNA processing, transport, or
translatability rather than the result of changes to just a few key
transcripts.

The location of m6A within a transcript could give an indica-
tion of the possible role of the modification. Methylation has been
found within the body of transcripts from Rous sarcoma virus,
but this may not be representative of the modifications occur-
ring in the endogenous messages of the host cell. In an in vitro
assay a methylation competent cell extract was found to methy-
late a synthetic mouse dihydrofolate reductase transcript at three
unmapped sites toward the 5′ end (Rana and Tuck, 1990). How-
ever, as similar extracts have been shown to be capable of efficiently
methylating any RNA oligonucleotide containing a GGACU or
AGACU consensus (Harper et al., 1990), such experiments may
not reflect the true distribution of m6A within messages in vivo.
Precise (Horowitz et al., 1984) or partial (Bodi et al., 2010) map-
ping of methylation in endogenous cellular transcripts has only
been reported for two transcripts (bovine prolactin and yeast IME2
respectively). In bovine prolactin the methylation was located in
the 3′ UTR (Horowitz et al., 1984), and in the yeast IME2 the
m6A is located within the 3′ half of the message (Bodi et al.,
2010).

Using a controlled alkali fragmentation approach followed by 3′
and 5′ fragment enrichment, we show a general preferential local-
ization of m6A toward the 3′ end, of messages, probably within
the last 100–150 nt before the poly(A) tail. We found an over-
representation amongst the differentially expressed genes of the
low methylation plants for transcripts containing a GGACU site
within 200 nt before the end of their 3′ UTR. This may indicate
that in plants as in mammals the extended RRACH methylation
consensus is preferred and would support the preferential location
for methylation that we observe. This enrichment could be even
more significant as our gene set overlap search used sequences only
which contained the extended consensus in the 3′ UTRs. Therefore
genes without 3′ UTRs were not considered in the overlap search.
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We have previously suggested that in yeast the methylation in the
3′ half of the IME2 transcript may prevent the binding of Khd1
protein (Bodi et al., 2010), which is a translational suppressor, and
is involved in message localization and asymmetric translation in
yeast (Hasegawa et al., 2009). The global 3′ enrichment of m6A in
an mRNA population is consistent with a similar general role in
the regulation of translatability and localization.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at http://www.frontiersin.org/plant_genetics_and_genomics/10.
3389/fpls.2012.00048/abstract

Table S1 | Differentially expressed genes.

Table S2 | GO enrichment in upregulated gene set.

Table S3 | GO enrichment in down regulated gene set.

Table S4 | Differentially expressed genes in GO:0008173 RNA

methyltransferase activity. Differentially expressed genes in GO:0016070 RNA
metabolic process. Differentially expressed genes in GO:0010228 vegetative to
reproductive phase transition. Differentially expressed genes in GO:0010073
meristem maintenance.

Table S5 | Differentially expressed genes also found in trichome specific

(top 5%) gene list.

Table S6 | Differentially expressed genes with GGACU in the last 200 nt

region of their 3′UTR.
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APPENDIX

FIGURE A1 | Measuring levels of MTA in ABI3 promoter driven

transgenic plants. Reverse transcription was carried out using SuperScript
II reverse transcription kit (Invitrogen). Real-time PCR was carried out using
the MX3005P qPCR machine and the Brilliant SYBR Green qPCR master
mix (Stratagene). MAXPro software was used for data analysis. Primers
used were, MTA primers: 5′-GGAACCTTTGGAGTTGTTATG-3′ and
5′-CAAAGCTCCAAACATTCACG-3′, and the β-actin2 (normalizer gene)
primers: 5′-GTACAACCGGTATTGTGCT-3′ and 5′-ATCAGTAAGGTCACGT
CCA-3′. Total RNA was isolated from young buds of three wild type plants,
and three MTA homozygous T-DNA insertion lines complemented with the
ABI3 promoter driven construct. The error bars are representing SD of three
replicates.

FIGURE A2 | Quality control of fragmented mRNA. The poly(A) RNA
used for the fragmentation experiments was purified using oligo(dT) at
least three times, the quality of the mRNA was confirmed by RNA6000
LabChip (Agilent) (A). After fragmentation the average fragment size was
confirmed by RNA6000 LabChip (Agilent) (B). A dot-blot was used for
confirming that the fragments after fractionation were enriched in the
predicted parts of the mRNA pool. Probes were made from the 5′, the
middle and the 3′ regions of the ATPC mRNA and it was hybridized to
membrane bound RNA pools of the different fractionated fragments (C).
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