
Grey Sets and Greyness

Yingjie Yang∗, Robert John

Centre for Computational Intelligence, School of Computing, De Montfort University, The
Gateway, Leicester, LE1 9BH, England

Abstract

This paper discusses the application of grey numbers for uncertainty represen-

tation. It highlights the difference between grey sets and interval-valued fuzzy

sets, and investigates the degree of greyness for grey sets. It facilitates the rep-

resentation of uncertainty not only for elements of a set, but also the set itself as

a whole. Our results show that a grey set could be specified for interval-valued

fuzzy sets or rough sets under special conditions. With the notion of grey sets

and their associated degrees of greyness, various set operations between grey

sets are discussed.
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1. Introduction

The information contained in a real-world database is usually incomplete

and vague. Non-deterministic information systems [12, 24, 29, 31] are devel-

oped to deal with incomplete information, and fuzzy sets [56] are applied to

describe vague information. However, non-deterministic information systems

and fuzzy systems adopt completely different representations and are usually

applied separately from each other. There have been some efforts to combine

the two different uncertainties in one model, such as the non-deterministic fuzzy

classification systems [11] and interval-valued fuzzy sets [38]. However, the non-

deterministic fuzzy classification systems consider the non-deterministic feature
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only in aggregation operators, and interval-valued fuzzy sets can not represent

limited options of membership values in a discrete set. Therefore, a system-

atic representation of both vagueness (fuzziness) and incompleteness appears

attractive.

Grey systems have emerged as an effective model for systems with partial

information [14, 23, 25, 26]. They provide an alternative for representing uncer-

tainty in systems in addition to the mainstream models like fuzzy sets and rough

sets. Grey sets apply the basic concepts of grey numbers in grey systems, and

consider the characteristic function values of a set as grey numbers. If we restrict

characteristic function values within [0,1], grey sets can be considered as an ex-

tension to fuzzy sets. Grey numbers and intervals have some similarity and grey

sets are considered to be the same as interval-valued fuzzy sets [15]. With the

increasing applications of grey systems, the combination of grey sets with fuzzy

sets and rough sets have been investigated recently [40, 42]. However, all these

research works considered grey sets using interval grey numbers only, and such

a restriction makes grey sets and interval-valued fuzzy sets equivalent. With-

out understanding the difference between grey sets and interval-valued fuzzy

sets, grey sets would appear as simply a different name for interval-valued fuzzy

sets. In fact, a grey number has some special features which are not shared

by intervals, and the same applies to grey sets. Compared with interval-valued

fuzzy sets, grey sets provide better coverage for partial information dealt with

by non-deterministic information systems. Obviously, it is necessary to give a

clear definition of a grey set and investigate their differences to other extensions

of fuzzy sets. The degree of greyness of a grey number is another important

feature of grey numbers different from intervals, and the degree of greyness of

a grey set has not been investigated sufficiently to date. Therefore, this paper

focuses mainly on the difference between grey numbers and intervals, grey sets

and interval-valued fuzzy sets and the degree of greyness of a grey set in set

operations.

The paper is structured as follows. In the next Section a brief overview

of fuzzy sets, rough sets and grey numbers is provided. Section 3 extends the
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definition of grey numbers to cover wider situations and defines a new whiteni-

sation function for grey numbers. Section 4 then defines grey sets and proves

their properties in relation to interval-valued fuzzy sets and rough sets. Section

5 discusses various operations on grey sets and the corresponding degrees of

greyness. Finally, in Section 6 we draw out the conclusions.

2. Preliminaries

We first define some relevant concepts.

Definition 1 (Fuzzy sets [56]). Let U denote a universe of discourse. Then

a fuzzy set A in U is defined as a set of ordered pairs

A = {〈x, µA(x)〉 : x ∈ U}

where µA : U −→ [0, 1] is the membership function of A and µA(x) is the grade

of belongingness of x into A.

The membership function value [21] can be any real number between 0 and 1

which implies a fuzzy concept or graded set boundary [19].

A fuzzy set with interval values as its membership values is called an interval-

valued fuzzy set.

Definition 2 (Interval-valued fuzzy sets [38]). Let D[0, 1] be the set of all

closed subintervals of the interval [0,1]. U is the universe of discourse, x is an

element and x ∈ U . An interval-valued fuzzy set in U is given by set A

A = {〈x,MA(x)〉 : x ∈ U}

with MA : U → D[0, 1].

The membership of an individual element is thus reflected by an interval

instead of a single value. An intuitionistic fuzzy set [2] is mathematically equiv-

alent to an interval-valued fuzzy set although some semantic differences still

exist [4–6, 9, 15, 17, 39].
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Definition 3 (Intuitionistic fuzzy sets [2]). An intuitionistic fuzzy set A

in U is given by

A = {〈x, µA(x), νA(x)〉 |x ∈ U}

where

µA : U → [0, 1] , νA : U → [0, 1]

and

0 ≤ µA(x) + νA(x) ≤ 1 ∀x ∈ U.

For each x, the numbers µA(x) and νA(x) are the degree of membership and

degree of non-membership of x to A respectively.

Type-2 fuzzy sets allow membership grades that are type-1 fuzzy sets. These

are sometimes referred to as “fuzzy-fuzzy” [10, 27]. This is a general extension

to fuzzy sets, and interval-valued fuzzy sets can be considered as a special case

of type-2 fuzzy sets.

Definition 4 (Type-2 fuzzy sets [27]). A type-2 fuzzy set A is character-

ized by a type-2 membership function µA(x, u), where x ∈ U and u ∈ Jx ⊆ [0, 1],

i.e.,

A = {〈(x, u), µA(x, u)〉 |∀x ∈ U,∀u ∈ Jx ⊆ [0, 1]}

in which 0 ≤ µA(x, u) ≤ 1. A can also be expressed as

A =

∫
x∈U

∫
u∈Jx

µA(x, u)/(x, u) Jx ⊆ [0, 1]

where
∫ ∫

denotes union over all admissible x and u. For discrete universes of

discourse
∫

is replaced by
∑

.

Independent from fuzzy sets, a non-deterministic information system is ap-

plied to represent incomplete information.

Definition 5 (Non-deterministic information systems [29]). A non-deterministic

information system is a quadruplet (OB,AT, {V ALa|a ∈ AT}, g), where OB is

a finite set whose elements are called objects, AT is a finite set whose elements

4



are called attributes, V ALa is a finite set whose elements are called attribute

values, g is a mapping from OB × AT to a power set of ∪a∈ATV ALa, i.e.,

g : OB × AT → P (∪a∈ATV ALa). g(x, a) is interpreted as if there is an actual

value in this set but it is not known.

Obviously, non-deterministic information systems do not employ fuzzy mem-

berships and hence it cannot reveal fuzziness. In the same time, g(x, a) could

be represented by a finite set which is not representable by interval values in

the interval-valued fuzzy sets.

Another model for uncertainty is rough sets. Rough sets were put forward

firstly by Pawlak in 1982 [30]. Rough set theory does not directly consider

the uncertain status of individual elements, but it focuses on the approximate

sets. When a set A can not be described in a precise way the lower and upper

approximations are used instead.

There are many different interpretations of the notion of rough sets [3, 20,

32, 41, 51, 53, 55, 57]. Similar to [28], we adopt the set-oriented interpretation

of rough sets [20, 28, 30, 32, 36, 46, 47, 51, 52] and define a rough set as a pair

of definable sets.

Definition 6 (Rough sets [32, 51]). Let pair apr = (U,B) be an approx-

imation space on U and U/B denote the set of all equivalence classes of B.

B is an equivalence relation on U . A set which is a union of the empty set

∅ and elements of U/B is called a definable set. The family of all definable

sets in approximation space apr is denoted by Def(apr). Given two subsets

A,A ∈ Def(apr) with A ⊆ A, the pair (A,A) is called a rough set.

The pair (A,A) approximates a set A, and A ⊆ A ⊆ A. A is the lower

approximation of A, and A is the upper approximation of A. The significance

of uncertain elements is measured by the roughness of a rough set.

Definition 7 (Roughness of approximation [32]). The roughness R◦(A)

for a set A approximated by (A,A) is defined as the significance of the un-
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certain elements to the set.

R◦(A) =
|A−A|
|A|

Rough sets and fuzzy sets are two different theories capturing two distinct

aspects of imperfection in knowledge: indiscernibility and vagueness [18]. How-

ever, as a concept induced from fuzzy sets, shadowed sets [35] have a close

relationship with rough sets as well. Considering a fuzzy set A ∈ U, we elevate

those membership values that are high enough to 1 and reduce those substan-

tially low membership values to 0, and represent those values in between as

[0, 1], then we have transformed the fuzzy set to a shadowed set [35].

A : U −→ {0, 1, [0, 1]}

Here, each element x is associated with 0, 1 or [0, 1]. The elements for which

A(x) attains 1 constitute its core, and the elements where A(x) = [0, 1] form a

shadow where uncertainty exists. Shadowed sets do not require precise member-

ship values, and partition the elements of a fuzzy set into three categories: Yes

(1), No (0) and Unknown ([0, 1]). In this sense, shadowed sets are conceptually

close to rough sets.

A rough set approximates a subset using two definable sets, and its repre-

sentation actually forms a set of subsets. Generalising this idea, we get a more

generalised set: interval sets.

Definition 8 (Interval sets [50, 54]). Let U be the finite universe, and 2U

be its power set. A subset of 2U of the form

A = [A1, A2] = {A ∈ 2U |A1 ⊆ A ⊆ A2}

is called a closed interval set, where it is assumed A1 ⊆ A2.

Obviously, the rough set model might be interpreted as a special case of

interval sets.
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As a different model for uncertainty representation, grey systems were pro-

posed by Professor Julong Deng in 1982 [13]. In grey systems, the information

is classified into three categories: white with completely certain information,

grey with insufficient information, and black with totally unknown information.

Grey numbers are the basic concepts in grey systems.

Definition 9 (Grey numbers [13, 25]). A grey number is a number with

clear upper and lower boundaries but which has an unknown position within

the boundaries.

A grey number for the system is expressed mathematically as [7]

g± ∈ [g−, g+] = {g− ≤ t ≤ g+}

where g± is a grey number, t is information, g− and g+ are the upper and lower

limits of the information. The arithmetic of grey numbers is very similar to

interval values [1].

Definition 10 (Degree of greyness of a grey number [13, 25]). The sig-

nificance of the interval to the unknown number represented by a grey number

is called the degree of greyness.

It can be expressed as

g◦(g±) = f(g−, g+)

Here, f is a function to determine the significance of the interval to g±.

Let D = [dmin, dmax] be the domain of values represented by a grey number

g± ∈ [g−, g+], then we have dmin ≤ g−, g+ ≤ dmax and f(g−, g+) = g+−g−
dmax−dmin

.

There are two special situations for g±:

• If g− = g+, then we call g± a white number

• If g− = dmin and g+ = dmax, then we call g± a black number
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Obviously, a white number is a single crisp value where we have full knowl-

edge. On the contrary, a black number is a grey number we know nothing about

it.

It should be noted that grey numbers could be discrete when the candidate

values are finite [25]. For example, if a grey number can only be one value

among the integers 1, 2, 3, 4 and 5, it would be represented as:

g± ∈ {1, 2, 3, 4, 5}

Both traditional crisp sets and fuzzy sets need a clearly defined membership

or characteristic function value. Rough sets have a rough membership function

representing the probability of an element being a member of the set [22]. How-

ever, this clearly defined number is difficult to know in certain situations. This

raises the question of how to determine this crisp membership value: how to

determine such a crisp value for a fuzzy element? Interval-valued/Intuitionistics

fuzzy sets have successfully expressed this situation in the case of fuzzy sets. For

epistemic uncertainty, an interval representation means that any value within

the interval is a possible value. However, we may know that the possible value

can only be one of a finite number of values within the interval. For this situa-

tion, an interval representation cannot help.

Type-2 fuzzy sets tackle the difficulty of determining a membership value by

replacing it with another fuzzy set. This helps but there is still an issue with the

secondary grade. This problem comes from the circle of explaining one fuzzy set

with another fuzzy set. The uncertain membership value needs a representation

that can express both the possible values and the fact that it is a single value

as defined in Definition 1. It should consider both the continuous and discrete

situation as well.

Obviously, grey numbers provide us with a convenient tool to represent this

membership value with incomplete information. Due to the adoption of interval

representation for grey numbers, however, grey sets have been considered the
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same as interval-valued fuzzy sets [15, 16]. Some recent publications have re-

ported work on the combination of grey sets with rough sets [40, 42]. However,

in their work, grey sets are still defined using interval grey numbers which makes

them equivalent to interval-valued fuzzy sets.

Based on our work on grey sets [45, 48] and grey numbers [43, 49], here we

extend our definition of grey sets to include all grey numbers and analyse the

relationship of grey sets with interval-valued fuzzy sets and rough sets.

3. Generalised Grey Numbers

Before the discussion of grey sets, we extend the definition of grey numbers

to include all possible situations. Grey systems refer to partially known systems,

and grey numbers denote partially known numbers. In this sense, intervals can

be considered as a special case of grey numbers where we know the scope of

the underlying number but do not know its exact position inside the continuous

scope. However, the candidate of a partial known number could be selected

from a finite set of numbers, or a set of intervals. Here, we extend the definition

in Definition 9 to give a clear definition of grey numbers.

Definition 11 (Generalised grey numbers). Let g± ∈ < be an unknown

real number within a union set of closed or open intervals

g± ∈
n⋃
i=1

[a−i , a
+
i ] (1)

i = 1, 2, . . . , n, n is an integer and 0 < n < ∞, a−i , a
+
i ∈ < and a+i−1 ≤ a−i ≤

a+i ≤ a−i+1. For any interval [a−i , a
+
i ] ⊆

⋃n
i=1[a−i , a

+
i ], pi is the probability for

g± ∈ [a−i , a
+
i ]. If the following conditions hold

• pi > 0

•
n∑
i=1

pi = 1

then we call g± a generalised grey number. g− = infa−i ∈g±
a−i and g+ =

supa+i ∈g±
a+i are called as the lower and upper limits of g±.
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From this definition, it is impossible for a grey number to have more than one

number in its candidate set to be the underlying white number. This is different

from a rough sets with probabilistic membership values [32–34].

Hereafter, the term grey numbers is adopted to represent generalised grey

numbers. We use the standard interpretation of an interval (a set of real num-

bers). The union operation refers to standard union of sets. It should be noted

that the intervals involved in grey numbers do not need to be closed although

our expression uses the closed representation. Obviously, Definition 11 is much

more general than Equation (2). It removes the limitation for open sets and

discrete sets to represent a grey number. A grey number could be represented

as a set of intervals with gaps in between. For example, g± ∈ {[5, 6], [10, 12]} is

a grey number where its underlying white number may get its value from [5, 6]

or [10, 12], but we know for sure that it will not get its value within (6,10). This

is clearly different from an interval [5, 12] where (6, 10) is a valid part for can-

didate values. In the same time, we could have a grey number with candidate

values in a discrete set g± ∈ {5, 6, 10, 12}, which is clearly not representable

by an interval. From Definition 11, it is also clear that a grey number g± is

different from the set
⋃n
i=1[a−i , a

+
i ]. The grey number g± represents only one

number which is not clearly identified among the elements in set
⋃n
i=1[a−i , a

+
i ].

Similar to interval algebra [50], we can perform arithmetic with grey numbers

through the arithmetic operations on their members. Let a± and b± be two grey

numbers, and let ∗ denote an arithmetic operation +, −, × or ÷ on pairs of

real numbers. The arithmetic operation ∗ between two grey numbers can be

expressed as

a± ∗ b± = {x ∗ y|x ∈
m⋃
i=1

[a−i , a
+
i ], y ∈

n⋃
j=1

[b−j , b
+
j ]}
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The result of a± ∗ b± is still a grey number unless 0 ∈
⋃n
j=1[b−j , b

+
j ]. It is easy

to derive the following formulas for a± ∗ b± [43]:

a± + b± =

m⋃
i=1

n⋃
j=1

[a−i + b−j , a
+
i + b+j ]

a± − b± =

m⋃
i=1

n⋃
j=1

[a−i − b
+
j , a

+
i − b

−
j ]

a±×b± =

m⋃
i=1

n⋃
j=1

[min{a−i b
−
j , a

+
i b

+
j , a

−
i b

+
j , a

+
i b
−
j },max{a−i b

−
j , a

+
i b

+
j , a

−
i b

+
j , a

+
i b
−
j }]

a± ÷ b± =
m⋃
i=1

n⋃
j=1

[min{a
−
i

b−j
,
a+i
b+j
,
a−i
b+j
,
a+i
b−j
},max{a

−
i

b−j
,
a+i
b+j
,
a−i
b+j
,
a+i
b−j
}]

Here, we assume a−i ≤ a+i and b−j ≤ b+j . For Equation (3), we assume b−j 6= 0

and b+j 6= 0.

In real world applications, the domain D of a grey number is usually a

subset of <, and the degree of greyness of a grey number can be defined on such

a domain.

Definition 12 (Degree of greyness of a grey number). Let D ⊂ < and

g± ∈ D, dmin, dmax ∈ < are the minimum and maximum values of D. The

degree of greyness of g± is defined as

g◦ =
|g+ − g−|
|dmax − dmin|

Obviously, we have

• g◦ = 0 iff g+ = g−

• g◦ = 1 iff g− = dmin and g+ = dmax

The degree of greyness of a grey number depends only on the two limits of

a grey number and has nothing to do with the cardinality of its candidate set.

For example, g1
± ∈ [40, 60] and g2

± ∈ {40, 60} are defined on [0, 100] and have

the same degree of greyness

g1
◦ = g2

◦ =
60− 40

100− 0
= 0.2
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but their cardinalities are completely different:

Card(g1
±) =∞, Card(g2

±) = 2

This indicates that the degree of greyness is a parameter for the grey number

rather than any candidate in its candidate set. This is different from the prob-

ability for each number in its candidate set to be the underlying white number.

In this sense, white numbers and black numbers can be easily defined using the

concept of degree of greyness.

Definition 13 (White numbers). For any grey number g± ∈ D (D ⊂ <), if

g◦ = 0, then this g± is called a white number.

Definition 14 (Black numbers). For any grey number g± ∈ D (D ⊂ <), if

g◦ = 1, then this g± is called a black number.

Clearly, a white number is a normal crisp number where everything is clearly

known, and a black number is a number with nothing known. For a grey number,

we have 0 ≤ g◦ ≤ 1. Adding new information, the degree of greyness of a

grey number could be reduced. In the traditional theory of grey systems, a

whitenisation function is applied to convert a grey number into a white number:

g = f(g−, g+)

We redefine this operation as a process of reducing uncertainty from a grey

number, and its result is a new grey number with a lower degree of greyness.

Definition 15 (Whitenisation of grey numbers). Let g± ∈ D (D ⊂ <)

be a grey number, and ∇g± = F (g±) be a function defined on D (∇g± ∈ D).

If ∇g◦ < g◦, then ∇g± = F (g±) is called a whitenisation function, and ∇g± is

called a whitenisation of g±.

There are many possible whitenisation functions for a grey number. The

whitenisation function satisfying ∇g◦ = 0 is called a complete whitenisation
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function. Clearly, the complete whitenisation of a grey number g± is a white

number ∇g

∇g± = ∇g if ∇g◦ = 0

The traditional whitenisation function in grey system theory is actually a com-

plete whitenisation function.

With a given value of degree of greyness, a grey number can have different

candidate sets. We can further classify grey numbers into different categories

according to theorem 1.

Theorem 1. g± is a grey number defined by Definition 11. The following prop-

erties hold for g±:

• g± is a continuous grey number g± ∈ [a−1 , a
+
n ] iff a−i = a+i−1 (∀i > 1) or

n = 1

• g± is a discrete grey number g± ∈ {a1, a2, . . . , an} iff ai = a−i = a+i

• g± is a mixed grey number iff part of its intervals shrink to crisp numbers

and others keep as intervals.

This theorem is simple and easy to prove, but it reveals a crucial difference

between grey numbers and interval values: discrete grey numbers or mixed grey

number are possible in addition to continuous grey numbers. A discrete grey

number g± can be expressed as follow:

g± ∈ {g−, g1, g2, . . . , gk, g+}

where, g− ≤ g1 ≤ g2 ≤ . . . ≤ gk ≤ g+ and 0 ≤ k <∞.

Example 1. Considering an example in holiday travel. A holiday maker is

planning for his one week holiday travel in August. He has to plan his holiday

starting from one Monday in August: 6, 13, 20 and 27. The total covered

distance is known to be 1000 miles. However, the consumption of petrol could

only be evaluated as some value between 90 litres to 120 litres.
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If we consider the date as a number, then we get three numbers in the holiday

plan: a discrete grey number for starting date {6, 13, 20, 27}, a white number

for distance 1000 and a continuous grey number for petrol consumption [90,

120]. Although the starting date and petrol consumption are represented as

sets, they are actually two numbers rather than sets. {6, 13, 20, 27} indicates

that the holiday maker can only depart on one of these dates, and he has

only one departure date in the end. For instance, if 20 turned out to be true,

then 6, 13 and 27 would be false. In other words, the elements in the set

can not coexist. The same applies to [90, 120]. However, it is clear that the

continuous grey number can not replace the discrete one in this case. If we

replaced {6, 13, 20, 27} with [6, 27], then any number between them would be

valid, such as 7 and 7.5.

Obviously, grey numbers have great potential to complement other repre-

sentations of information incompleteness. For example, the relational model

requires a single value for each attribute value in its columns. A missing num-

ber is usually represented as null in a relational database [8]. It is represented

as an interval [24] or a rough set [37] in non-deterministic information systems.

However, both intervals and rough sets can be interpreted as multiple values

and it can not differentiate multiple values from a single value represented by a

set. A grey number appears to be a better choice under such a situation.

4. Grey sets

Similar to grey numbers, we could classify sets into three different categories:

Definition 16 (White sets). For a set A ⊆ U , if its characteristic function

value of each x with respect to A can be expressed with a single white number

v ∈ [0, 1]

χA : U → [0, 1]

then A is a white set.
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In fact, type-1 fuzzy sets can be considered as a special case of white sets.

A crisp set is clearly a white set and it is not fuzzy at all, but a type-1 fuzzy

set is still a white set although it is fuzzy compared with a crisp set.

Definition 17 (Black sets). For a set A ⊆ U , if its characteristic function

value of each x with respect to A can be expressed with a black number, then

A is a black set.

An element in a black set has a complete unknown characteristic function

value, and it is opposite to a white set where we have complete knowledge about

the characteristic function value of an element. Between the two extremes, a set

with incomplete information about its characteristic function values is defined

as a grey set.

Definition 18 (Grey sets). For a set A ⊆ U , if the characteristic function

value of x with respect to A can be expressed with a grey number g±A(x) ∈⋃n
i=1[a−i , a

+
i ] ∈ D[0, 1]±

χA : U → D[0, 1]±

then A is a grey set.

Here, D[0, 1]± refers to the set of all grey numbers within the interval [0,1].

Similar to the expression of a fuzzy set, a grey set A is represented with its

relevant elements and their associated grey numbers for characteristic function:

A = g±A(x1)/x1 + g±A(x2)/x2 + . . .+ g±A(xn)/xn

The characteristic function here is a general expression, it does not exclude any

relevant criteria in defining a set. Therefore, it can be replaced by probability

function, membership function, possibility function and etc. For a white set, we

know clearly the relationship between an element and a set. Obviously, a white

set here is different from a crisp set in traditional sets. A white set has a clear

relationship between the set and relevant elements, and that relationship is not

necessarily a crisp relationship. If we replaced the characteristic function with a
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fuzzy membership function, then the white set would become a standard type-1

fuzzy set.

Example 2. Following the previous example, we consider 4 people planning

their holiday: a, b, c and d. Each person can visit 1 to 6 places in his holiday.

Each person has petrol allowance of 120 litres for the holiday. The possible

visits are:

• a: 1 or 2 places

• b: 2 – 4 places

• c: 3 – 5 places

• d: 6 places

To simplify our consideration, we assume that for each place the petrol con-

sumption is between 15 and 20 litres. Consider two sets: A is a set for the

completeness of their visit to the 6 places, B is a set for the full consumption of

their petrol. The characteristic functions of A and B are defined as

fA =
n

6
fB =

l

120

where n is the number of places one person visited, and l is the amount of petrol

one person consumed during his holiday. Then A and B are two grey sets, their

characteristic function values are:

• fA(a) = { 16 ,
1
3}, fB(a) = [18 ,

1
3 ]

• fA(b) = { 13 ,
1
2 ,

2
3}, fB(b) = [14 ,

2
3 ]

• fA(c) = { 12 ,
2
3 ,

5
6}, fB(c) = [ 38 ,

5
6 ]

• fA(d) = 1, fB(d) = [34 , 1]

Obviously, the two sets A and B need different representation for their char-

acteristic function values, and only the proposed grey sets could satisfy this

requirement.
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Name Gender Working Attitude Exam Result

Mike Male Good Good

Jane Female Neutral Good

Claire Female Neutral Neutral

David Male Neutral Poor

Lisa Female Poor Poor

Table 1: Information for 5 people

Example 3. There are five students in table 1, their name, gender, work-

ing altitude and exam results are listed in the table. A set A for evaluating

the study of students is to be established with respect to different attributes.

Assume ai is a student in the table, and i = 1, 2, 3, . . . , n. n is the number of

students. We can get A directly from Exam Result attribute in the table, and it

is also possible to establish A indirectly using other attributes, such as Working

Attitude and Gender. We adopt Working Attitude to establish a grey set.

The Exam Result shows some kind of relationships with Working Attitude.

A characteristic function is established according to the relationship between

Working Attitude and Exam Result:

fA
c
(ai) =


1 if ai’s Working Attitude = good;

[0, 1] if ai’s Working Attitude = neutral;

0 if ai’s Working Attitude = poor.

Under this characteristic function, A = [1, 1]/Mike+[0, 1]/Jane+[0, 1]/Claire+

[0, 1]/David+[0, 0]/Lisa = 1/Mike+[0, 1]/Jane+[0, 1]/Claire+[0, 1]/David+

0/Lisa. Obviously, A is a grey set.

It is clear that a grey set has ill defined relationships between some elements

and the set, and their characteristic functions have a grey number for a given

attribute value.

From this example, it is clear that there are two groups of students in a

grey set A according to their characteristic function values: students with white

numbers (0 or 1) and students with grey numbers. They are two different

categories. We can classify the elements relevant to a grey set into three different

17



categories: white, grey and black elements.

Definition 19 (Category of elements in a set). Let A be a grey set and

A ⊆ U . For x ∈ U , g±A(x) is the value for characteristic function of x with

respect to A.

• If g±A(x) is a white number, then x is called a white element

• If g±A(x) is a black number, then x is called a black element

• If g±A(x) is a grey number, then x is called a grey element

Because of the existence of grey and black elements, the relationships be-

tween some elements and a grey set are not completely known. The value for its

corresponding characteristic function can only be expressed as a grey number.

This is caused by the incomplete information of this element. Similar to the case

for a grey number, the uncertainty caused by the information incompleteness

can be measured using a degree of greyness. Considering the specific feature of

grey sets, the degree of greyness for an element and a set are defined here.

Definition 20 (Degree of greyness for an element). Let U be the finite

universe of discourse, x be an element and x ∈ U . For a grey set A ⊆ U , the

characteristic function value of x with respect to A is g±A(x) ∈ D[0, 1]±. The

degree of greyness g◦A(x) of element x for set A is expressed as

g◦A(x) = |g+ − g−|

Based on the degree of greyness for an element, a degree of greyness for a

set is defined as follow.

Definition 21 (Degree of greyness for a set). Let U be the finite universe

of discourse, A be a grey set and A ⊆ U . xi is a an element relevant to A and

xi ∈ U . i = 1, 2, 3, . . . , n and n is the cardinality of U . The degree of greyness

of set A is defined as

g◦A =

n∑
i=1

g◦A(xi)

n
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According to the given definition, the uncertainty caused by incomplete in-

formation for the evaluation of students under different attributes can be mea-

sured using the degree of greyness for elements and sets.

Example 4. The degree of greyness for Jane, Claire and David in Example 3

could be calculated as

g◦(Jane) = 1− 0 = 1

g◦(Mike) = 1− 1 = 0

g◦(Lisa) = 0− 0 = 0

For the grey set A derived from Working Attitude, its degree of greyness is

g◦G =
0 + 1 + 1 + 1 + 0

5
= 0.6

The results for the sets evaluated according to Exam Result, Working Atti-

tude and Gender are shown in Table 2.

Name Exam Result Working Attitude Gender

Element Set Element Set Element Set

Mike 0 0 1

Jane 0 1 1

Claire 0 0 1 0.6 1 1

David 0 1 1

Lisa 0 0 1

Table 2: Example for degree of greyness

From Table 2, it is clear that a white set has a degree of greyness of 0, a

black set has a degree of greyness of 1 and a grey set has a degree of greyness

between 0 and 1.

The following results relate grey sets, fuzzy sets, non-deterministic informa-

tion systems and rough sets.

Theorem 2. Let U be the finite universe of discourse, and A be a grey set and

A ⊆ U . x is an element and x ∈ U , g±A(x) is the characteristic function value

of x with respect to A, g◦A(x) is the degree of greyness of g±A(x), and g◦A is the

degree of greyness for A. The following properties hold for x and A:
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• A is a white set iff g◦A = 0

• A is a black set iff g◦A = 1

• A is a crisp set iff g◦A = 0 and g±A(x) ∈ {0, 1} for any x ∈ U

• A is a type-1 fuzzy set iff g◦A = 0 and g±A(x) ∈ [0, 1] for any x ∈ U

• A is a shadow set iff 0 < g◦A < 1 and g±A(x) ∈ {0, 1, [0, 1]} for any x ∈ U

• A is an interval-valued fuzzy set iff g±A(x) is a continuous grey number for

any x ∈ U and an interval is interpreted as a representation of a single

unknown value with known boundary

Proof These rules are clear and not difficult to prove. We provide a proof only

for the the final property. If we consider the characteristic function as a fuzzy

membership function µ, then we have

µA : U → D[0, 1]±

For a continuous grey number, g± ∈ [g−, g+] ∈ D[0, 1]± can be considered as

an interval d representing an unknown value and d ∈ D[0, 1]. Hence the grey

set A can be expressed as

µA : U → D[0, 1]

this is an interval-valued fuzzy set. For an interval-valued fuzzy set, the fuzzy

membership µ can be considered as characteristic function, then we have

χ:U → D[0, 1]

Assume the membership interval d = [g−, g+], which is an interval representing

an unknown value within boundary of [g−, g+]. Clearly, this interval is a con-

tinuous grey number g± ∈ d, then we have a grey set with µ as characteristic

function.

µ:U → D[0, 1]±
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This theorem shows that grey sets extend crisp sets, fuzzy sets and interval-

valued fuzzy sets. According to theorem 1, a grey number could be in three

different situations, and an interval is only one of these situations. When the

corresponding grey numbers are represented by discrete sets or mixed sets, they

are completely different from interval-valued fuzzy sets and cannot be replaced

by interval-valued fuzzy sets. From Theorem 2, a grey set is only equivalent to an

interval-valued fuzzy set when it has interval grey numbers as its characteristics

function values and an interval in the interval-valued fuzzy sets is interpreted as

a an unknown single value with a known boundary. Both conditions are essential

for a grey set to be equivalent to an interval-valued fuzzy set. For example, a

noisy flight represented with an interval-valued fuzzy set could be interpreted

as perceptions of a group of observers and it is an inclusive aggregation: each

membership value inside this interval is valid and they do not exclude each other.

However, a noisy flight represented with a grey set refers only to individual’s

perception and its representation is exclusive: only one membership could be

true. Therefore, a grey set may have semantic difference from an interval-valued

fuzzy set even if both employ intervals as their representation. Another proof to

this conclusion is their relationship with non-deterministic information systems.

Theorem 3. A fuzzified non-deterministic information system is a grey set.

Proof A is a non-deterministic information system andA = (OB,AT, {V ALa|a ∈

AT}, g). Now, we consider each attribute as a fuzzy set and fuzzify their at-

tribute values into fuzzy membership values for their fuzzy attribute sets: Ag =

(OB,ATg, {V ALag |ag ∈ ATg}, gg). Here, ATg is a finite set whose elements are

fuzzy sets for attributes, V ALag is a finite set whose elements are membership

values of corresponding fuzzy attribute sets, gg is a mapping from OB × ATg
to a power set of ∪ag∈ATg

V ALag , i.e., gg : OB × ATg → P (∪ag∈ATg
V ALag ).

It is clear that gg(x, a) ∈ P (∪ag∈ATg
V ALag ) may be a finite set which is not

representable by an interval. According to the definition of non-deterministic

information systems, gg(x, ag) is interpreted as if there is an actual value in this

set but it is not known. Obviously, gg(x, ag) ∈ D[0, 1]± is a grey number. If we
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consider U = OB ×ATg as the finite universe, then we have

χAg : U → D[0, 1]±

Therefore, Ag is a grey set.

Theorem 3 demonstrates that a grey set combines the representation of in-

completeness together with vagueness and is more powerful than an interval-

valued fuzzy set.

Theorem 4. A is a rough set iff g◦A > 0 and g±A(x) ⊆ {0, 1} holds for any

x ∈ U . g±A(x) refers to the characteristic function value of x with respect to

A ⊆ U . g◦A is the degree of greyness of A.

Proof If g±A(x) ⊆ {0, 1} holds for any x ∈ U , then g±A(x) is a discrete grey

number, and g±A(x) ∈ {0, 1}. There are only three options for the result value

of g±A(x): 0, 1 or {0, 1}. The elements in U can be classified into three different

crisp sets according to the value of g±A(x): A for g±A(x) = 1, F for g±A(x) = {0, 1}

and ∼ A for g±A(x) = 0. Obviously, A∩ ∼ A = ∅. If g◦A > 0, then F 6= ∅. The

elements in F are not determined, and they may belong to A or ∼ A with

more information. There are two possible extreme situations: g±A(x) = 1 for

each x ∈ F or g±A(x) = 0 for each x ∈ F . For the first situation, we get

the maximum A = A ∪ F . For the second situation, we get the minimum A.

Obviously, A ⊇ A ⊇ A. Let R = U × U be an equivalence relation on the

universe U , and [x]R be the equivalence class containing x. Thus each x ∈ U

represents an equivalent class [x]R. The elements in [x]R should include all

validate characteristic function values for x ∈ U . From our analysis of A and

A, we have

• g±A(xi) = 1 if xi ∈ [x]R and [x]R ⊆ A

• There is at least one element xi satisfying g±A(xi) = 1 for each xi ∈ [x]R if

[x]R ⊆ A

i is the index of the elements in [x]R, i = 1, 2, . . . , k. k is the number of the

elements in [x]R. Therefore, we have
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• [x]R ⊆ A iff x ∈ A

• [x]R ∩A 6= ∅ if x ∈ A

Then we have the lower approximation apr
R

(A) and the upper approxima-

tion aprR(A) as follows:

• apr
R

(A) = {x ∈ U |[x]R ⊆ A} = A

• aprR(A) = {x ∈ U |[x]R ∩A 6= Φ} = A

Obviously, under the given condition, a grey set is equivalent to a rough set.
For a rough set A, it satisfies the two equations above. A characteristic function
could be established:

fA
c
(x) =


1 if x ∈ apr

R
(A);

{0, 1} if x ∈ aprR(A) but x /∈ apr
R
(A);

0 if x /∈ aprR(A).

Obviously, the value of this characteristic function contains discrete grey num-

ber. Then A satisfies

χA : U → D[0, 1]±

This is a grey set.

Similar to fuzzy sets, an α cut of a grey set A is defined as:

Aα = {x ∈ A|g±A(x) ≥ α}

Obviously, the following corollary about α cuts can be draw from Theorem 4:

Corollary 1. The α cut of a grey set is a rough set.

Theorem 4 proves that grey sets include rough sets as a special case in the

case of a finite universe of discourse. Therefore, a rough set is a special grey

set. Actually, we have the following theorem for the link between roughness and

greyness.
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Theorem 5. A is a grey set where g◦A > 0, g±A(x) ⊆ {0, 1} holds for any x ∈ U ,

and (A,A) is the equivalent rough set representation of A. g◦A is the degree of

greyness of A, and R◦(A) is the roughness of A. Then we have

g◦A =
R◦(A)R◦(¬A)

R◦(A) +R◦(¬A)−R◦(A)R◦(¬A)

Proof From theorem 4, we know that the grey representation and rough rep-
resentation of A are equivalent to each other, and

χA(x) =


1 if x ∈ A;

{0, 1} if x ∈ A but x /∈ A;

0 if x /∈ A.

Thus, we have

g
◦
A(x) =


0 if x ∈ A;

1 if x ∈ A but x /∈ A;

0 if x /∈ A.

From Definition 7, we have

g◦A =

∑
g◦A(x)

n
=

1
|A|
|A−A| + |¬A|+|A−A|

|A−A| − 1

However

R◦(A) =
|A−A|
|A|

and R◦(¬A) =
|A−A|

|A|+ |A−A|
Hence, we have

g◦A =
R◦(A)R◦(¬A)

R◦(A) +R◦(¬A)−R◦(A)R◦(¬A)

Theorem 5 indicates that the degree of greyness has close relationship with

the roughness of a set, and the proposed degree of greyness of a set integrates

roughness together with fuzziness.

Rough sets actually provide a method to construct interval sets, hence the

conclusions in Theorem 4 and Corollary 1 hold for interval sets as well. In our

recent work on R-Fuzzy sets, we have proved that a grey set is a special case of

R-fuzzy sets [44].
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5. Grey subsets and their operations

Clearly, grey sets have close relationships with interval-valued fuzzy sets and

intuitionistic fuzzy sets. However, because of the existence of the whitenisation

function, their operations are not exactly the same. First, we introduce the

concept of whitenisation of a grey set and consistent whitenisation functions.

Definition 22 (Whitenisation of grey sets). A is a grey set and A ⊆ U . x

is an element and x ∈ U . g◦A(x) is the degree of greyness of x with respect to A.

g−A(x) and g+A(x) are the lower and upper limits of g±A(x). ∇g±A(x) = F (g±A(x))

is a whitenisation function of g±A(x). A whitenisation of A is a new grey set ∇A

∇A = {
〈
x,∇g±A(x)

〉
: x ∈ U}

Similar to the whitenisation of grey numbers, the whitenisation of grey sets

is in fact a process to remove the uncertainty caused by incomplete information.

Obviously, we have

g◦∇A < g◦A

As a result of whitenisation, we get a whiter grey set, and we get a white set

when the whitenisation function is a complete whitenisation function.

Definition 23 (Consistent whitenisation). A ⊆ U and B ⊆ U are two

grey sets, ∇A and ∇B are their complete whitenisations. x ∈ U is an element.

g±A(x), g±B(x), g∇A(x) and g∇B(x) are values of the characteristic functions of

x with respect to A, B, ∇A and ∇B. g−A(x), g+A(x), g−B(x) and g+B(x) are the

lower and upper limits of g±A(x) and g±B(x). We call A consistent with B if the

following conditions hold for any x ∈ U :

g∇A(x) ≤ g∇B if g−A(x) ≤ g−B(x) and g+A(x) ≤ g+B(x)

In grey systems, each grey number is associated with a complete whitenisa-

tion function. This function is usually unknown. However, it can be completely

different from one grey number to another. That means the underlying white
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numbers may not be the same even if their upper and lower limits are exact the

same. Therefore, the subset of a grey set has additional requirement than those

in interval-valued or intuitionistic fuzzy sets.

Definition 24 (Grey subsets). A and B are two grey sets, A ⊆ U and B ⊆

U . x ∈ U is an element. g±A(x) and g±B(x) are the characteristic function values

of x for A and B. g−A(x), g+A(x), g−B(x) and g+B(x) are the upper and lower limits

of g±A(x) and g±B(x). A is a subset of B if the following conditions hold

• For any x ∈ U , we have g−A(x) ≤ g−B(x) and g+A(x) ≤ g+B(x)

• A is consistent with B

It is represented as A ⊆ B.

With this definition of subset, we have

A = B ⇔ A ⊆ B and B ⊆ A

Example 5. In Example 2, we have two grey sets A and B:

A = {1

6
,

1

3
}/a+ {1

3
,

1

2
,

2

3
}/b+ {1

2
,

2

3
,

5

6
}/c+ 1/d

B = [
1

8
,

1

3
]/a+ [

1

4
,

2

3
]/b+ [

3

8
,

5

6
]/c+ [

3

4
, 1]/d

The degree of greyness for each element of A and B:

g◦A(a) =
1

6
, g◦A(b) =

1

3
, g◦A(c) =

1

3
and g◦A(d) = 0

g◦B(a) =
5

24
, g◦B(b) =

5

12
, g◦B(c) =

11

24
and g◦B(d) =

1

3

The degree of greyness of A and B:

g◦A =
1
6 + 1

3 + 1
3 + 0

4
=

5

24

g◦B =
5
24 + 5

12 + 11
24 + 1

4

4
=

1

3
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For A, let ∇g±A(x) = g±A(x) − {g−A(x)} if g◦A(x) > 0 and ∇g±A(x) = g+A(x) if

g◦A(x) = 0, we get a whiter set ∇A:

∇A =
1

3
/a+ {1

2
,

2

3
}/b+ {2

3
,

5

6
}/c+ 1/d

For B, let ∇g±B(x) = g±B(x)− [g+B(x)− g+B(x)−g−B (x)

10 , g+B(x)], we have a whiter set

∇B:

∇B = [
1

8
,

5

16
]/a+ [

1

4
,

5

8
]/b+ [

3

8
,

63

80
]/c+ [

3

4
,

29

30
]/d

The degree of greyness for each element of ∇A and ∇B:

g◦∇A(a) = 0, g◦∇A(b) =
1

6
, g◦∇A(c) =

1

6
and g◦∇A(d) = 0

g◦∇B(a) =
3

16
, g◦∇B(b) =

3

8
, g◦∇B(c) =

33

80
and g◦∇B(d) =

13

60

The degree of greyness of ∇A and ∇B:

g◦∇A =
0 + 1

6 + 1
6 + 0

4
=

1

12

g◦∇B =
3
16 + 3

8 + 33
80 + 13

60

4
=

3

10

For each x ∈ U = {a, b, c, d}, we have

g◦∇A(x) < g◦A(x) and g◦∇B(x) < g◦B(x)

For the degree of greyness of A, ∇A, B and ∇B, we have

g◦∇A < g◦A and g◦∇B < g◦B

Obviously, ∇A is a whitenisation of A and ∇B is a whitenisation of B.

For any x ∈ U = {a, b, c, d}, if we assume g±∇A(x) = g+A(x) and g±∇B(x) =

g+B(x)+g−B (x)

2 , we have

g±∇B(x) ≤ g±∇A, g−B(x) ≤ g−A(x) and g+B(x) ≤ g+A(x)

Clearly, B is consistent with A under the given assumptions, and we have

B ⊆ A
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As a set, grey set has similar set operations for union, intersection and com-

plement. A ⊆ U and B ⊆ U are two grey sets, and x ∈ U is an element.

g±A(x) ∈
⋃m
i=1[a−i , a

+
i ] and g±B(x) ∈

⋃n
i=1[b−i , b

+
i ] are the characteristic function

values of x for A and B. g−A(x), g+A(x), g−B(x) and g+B(x) are the upper and lower

limits of g±A(x) and g±B(x).

Definition 25 (Union of grey sets). The union of A and B is a new grey

set C

C = A ∪B = {
〈
x, g±C (x)

〉
: x ∈ U}

where g±C (x) is the characteristic function value of x for C, its upper and lower

limits are g−C (x) and g+C (x)

g±C (x) =

m⋃
i=1

[a−i , a
+
i ] ∪

n⋃
i=1

[b−i , b
+
i ]− [g−A(x) ∧ g−B(x), g−A(x) ∨ g−B(x))

Theorem 6. The degree of greyness g◦C(x) of x for grey set C = A∪B satisfies

g◦A(x) ∧ g◦B(x) ≤ g◦C(x) ≤ g◦A(x) ∨ g◦B(x)

Proof Assume the value of characteristic function for x in A, B and C are

g±A(x), g±B(x) and g±C (x). According to Definition 20, we have

g◦A(x) = g+A(x)− g−A(x)

g◦B(x) = g+B(x)− g−B(x)

g◦C(x) = g+C (x)− g−C (x)

From Definition 25, we have

g◦C(x) = g+A(x) ∨ g+B(x)− g−A(x) ∨ g−B(x)

Assume g+A(x) ≥ g+B(x), then we have two different situations:

• g−A(x) ≥ g−B(x), we have

g◦C(x) = g+A(x)− g−A(x) = g◦A(x)
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• g−A(x) < g−B(x), we have

g◦C(x) = g+A(x)− g−B(x) < g+A(x)− g−A(x) = g◦A(x)

and

g◦C(x) = g+A(x)− g−B(x) > g+B(x)− g−B(x) = g◦B(x)

Similarly, if g+A(x) < g+B(x), we have

• g−A(x) ≤ g−B(x), we have

g◦C(x) = g+B(x)− g−B(x) = g◦B(x)

• g−A(x) > g−B(x), we have

g◦C(x) = g+B(x)− g−A(x) > g+A(x)− g−A(x) = g◦A(x)

and

g◦C(x) = g+B(x)− g−A(x) < g+B(x)− g−B(x) = g◦B(x)

Obviously, we have

g◦A(x) ∧ g◦B(x) ≤ g◦C(x) ≤ g◦A(x) ∨ g◦B(x)

Definition 26 (Intersection of grey sets). The intersection of A and B is

a new grey set C

C = A ∩B = {
〈
x, g±C (x)

〉
: x ∈ U}

where g±C (x) is the characteristic function value of x for C, its upper and lower

limits are g−C (x) and g+C (x)

g±C (x) =

m⋃
i=1

[a−i , a
+
i ] ∪

n⋃
i=1

[b−i , b
+
i ]− (g+A(x) ∧ g+B(x), g+A(x) ∨ g+B(x))

Similar to union, there is a theorem for the degree of greyness of elements

in the intersection of grey sets.

Theorem 7. The degree of greyness g◦C(x) of x for grey set C = A∩B satisfies

g◦A(x) ∧ g◦B(x) ≤ g◦C(x) ≤ g◦A(x) ∨ g◦B(x)
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This theorem can be proved in a similar way like union. We do not repeat

it here.

Definition 27 (Complement of grey sets). The complement of A is a new

grey set ∼ A

∼ A = {
〈
x, g±∼A(x)

〉
: x ∈ U}

where g±∼A(x) is the characteristic function value of x for ∼ A, its upper and

lower limits are g−∼A(x) and g+∼A(x)

g±∼A(x) =

m⋃
i=1

[1− a+i , 1− a
−
i ]

Theorem 8. The degree of greyness g◦∼A(x) of x for grey set ∼ A satisfies

g◦∼A(x) = g◦A(x)

Similar to fuzzy sets, grey sets are concerning all elements in its domain,

hence both A and ∼ A are concerning the same domain U . They have the

same cardinality without α cut. Therefore, we have the following corollary from

theorem 8.

Corollary 2. The degree of greyness of a complement grey set ∼ A is exactly

the same as the degree of greyness of the grey set A

g◦∼A = g◦A

In addition to union, intersection and complement operations, we define some

new operations for grey sets: lower approximation and upper approximation.

Definition 28 (Lower and upper approximation of a grey set). A is a

grey set and A ⊆ U . x is an element and x ∈ U . g±A(x) is the value of

characteristic function of x with respect to A. g−A(x) and g+A(x) are the lower

and upper limits of g±A(x). The lower approximation A and upper approximation

A are two new sets

A = {
〈
x, g−A(x)

〉
: x ∈ U}

A = {
〈
x, g+A(x)

〉
: x ∈ U}
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For the lower and upper approximation of a grey set A, we have the following

theorem.

Theorem 9. The relationship between a grey set A and its lower and upper

approximation A and A is

A ⊆ A ⊆ A

The lower and upper approximations are in fact special cases for whitenisa-

tion operation.

Theorem 10. The following relationships hold for the lower and upper approx-

imations and whitenisation operation of a grey set

• A = ∇A|∇g±A (x)=g−A (x)

• A = ∇A|∇g±A (x)=g+A(x)

where ∇g±A(x) = F (x) is a unified complete whitenisation function for all x ∈ U .

Proof According to Definition 22, we have

∇A = {
〈
x,∇g±A(x)

〉
: x ∈ U}

However, we know that ∇g±A(x) = g−A(x) for each x ∈ A and ∇g±A(x) = g+A(x)

for each x ∈ A, then

∇A|∇g±A (x)=g−A (x) = {
〈
x, g−A(x)

〉
: x ∈ U}

∇A|∇g±A (x)=g+A(x) = {
〈
x, g+A(x)

〉
: x ∈ U}

From Definition 28, we have

A = {
〈
x, g−A(x)

〉
: x ∈ U}

A = {
〈
x, g+A(x)

〉
: x ∈ U}

Obviously

A = ∇A|∇g±A (x)=g−A (x)

A = ∇A|∇g±A (x)=g+A(x)
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6. Conclusions

Fuzzy sets, rough sets and grey systems provide three different but over-

lapping models for the representation of uncertainties in sets. There has been

considerable research in fuzziness, roughness and the combination of fuzzy sets

and rough sets. However, greyness of sets and the difference between grey sys-

tems and interval-valued fuzzy sets are still not well investigated so far. Here,

we define grey sets using grey numbers considering all possible situations rather

than the interval representation only. Our results show that a grey set combines

vagueness and incompleteness into one model and can be specified to interval-

valued fuzzy sets or rough sets under special situations. However, a grey set

can represent situations not covered by interval-valued fuzzy sets or rough sets.

Based on the notion of grey sets, the degree of greyness of a grey set and various

set operations between grey sets are discussed.
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original German ‘Einführung In Die Intervallrechnung’.

[2] K. Antanassov. Intuitionistic fuzzy sets. Physica-Verlag, Heidelberg - New

York, 1999.

[3] M. Banerjee and M. K. Chakraborty. Algebras from rough sets. In S. Pal,

L. Polkowski, and A. Skowron, editors, Rough-Neuro Computing: Tech-

niques for Computing with Words, pages 157–184. Springer-Verlag, 2004.

[4] G. Beliakova, H. Bustinceb, D. Goswamic, U. Mukherjeed, and N. Pale. On

averaging operators for atanassov’s intuitionistic fuzzy sets. Information

Sciences, 181(6):1116–1124, 2011.

[5] P. Burillo and H. Bustince. Entropy on intuitionistic fuzzy sets and on

interval-valued fuzzy sets. Fuzzy Sets and Systems, 78:305–316, 1996.

32



[6] H. Bustince and P. Burillo. Vague sets are intuitionistic fuzzy sets. Fuzzy

Sets and Systems, 79:403–405, 1996.

[7] F. J. Cheng, S. H. Hui, and Y. C. Chen. Reservoir operation using grey

fuzzy stochastic dynamic programming. Hydrological Processes, 16:2395–

2408, 2002.

[8] E. Codd. A relational model of data for large shared data banks. Commu-

nication of the ACM, 13:377–387, 1970.

[9] C. Cornelis, K. T. Atanassov, and E. E. Kerre. Intuitionistic fuzzy sets and

interval-valued fuzzy sets: a critical comparison. In M. Wagenknecht and

R. Hampel, editors, Third EUSFLAT proceedings, pages 159–163, Zittau,

Germany, September 2003. European Society for Fuzzy Logic and Technol-

ogy.

[10] S. Coupland and R. John. New geometric inference techniques for type-2

fuzzy sets. International Journal of Approximate Reasoning, 49(1):198–211,

2008.

[11] V. Cutello and J. Montero. Non deterministic fuzzy classification systems.

In Proceedings of the 6th International IEEE Conference on Fuzzy Systems,

pages 1689–1694, Barcelona, Spain, 1997.

[12] S. P. Demri and E. S. Orlowska. Incomplete Information: Structure, Infer-

ence, Complexity. Springer-Verlag, 2002.

[13] J. Deng. The control problems of grey systems. Systems and Control

Letters, 1982.

[14] J. Deng. Introduction to grey system theory. Journal of Grey Systems,

1(1):1–24, 1989.

[15] G. Deschrijver and E. Kerre. On the relationship between some extensions

of fuzzy set theory. Fuzzy Sets and Systems, 133(2):227–235, 2003.

33



[16] G. Deschrijver and E. Kerre. On the position of intuitionistic fuzzy set

theory in the framework of theories modelling imprecision. Information

Sciences, 177(8):1860–1866, 2007.

[17] D. Dubois, W. Ostasiewicz, and H. Prade. Fuzzy set: history and basic

notions. In D. Dubois and H. Prade, editors, Fundamentals of fuzzy sets,

pages 21–124. Kluwer, 2000.

[18] D. Dubois and H. Prade. Rough sets and fuzzy rough sets. International

Journal of General Systems, 17:191–209, 1990.

[19] D. Dubois and H. Prade. The three semantics of fuzzy sets. Fuzzy Sets and

Systems, 90(2):141–150, 1997.

[20] T. B. Iwinski. Algebraic approach to rough sets. Bulletin of the Polish

Academy of Science and Mathematics, 35:673–683, 1987.

[21] G. J. Klir and B. Yuan. Fuzzy sets and fuzzy logic theory and applications.

Prentice Hall P T R, Upper Saddle River - New Jersey, 2002.

[22] J. Komorowski, J. Z. Pawlak, L. Polkowski, and A. Skowron. Rough sets:

a tutorial. In S. K. Pal and A. Skowron, editors, Rough fuzzy hybridization:

a new trend in decision-making. Springer, Singapore, 1999.

[23] Y. Lin, M. Chen, and S. Liu. Theory of grey systems: Capturing uncertain-

ties of grey information. kybernetics: The International Journal of Systems

and Cybernetics, 33:196–218, 2004.

[24] W. Lipski. On databases with incomplete information. Journal of the ACM,

28:41–70, 1981.

[25] S. Liu, T. Gao, and Y. Dang. Grey systems theory and its applications.

The Science Press of China, Beijing, 2000.

[26] S. Liu and Y. Lin. Grey Information Theory and Practical Applications.

Springer, 2006.

34



[27] J. Mendel and R. John. Type-2 fuzzy sets made simple. IEEE Transactions

on Fuzzy Systems, 10(2):117–127, 2002.

[28] A. Mousavi and P. Jabedar-Maralani. Double-faced rough sets and rough

communication. Information Sciences, 148:41–53, 2002.

[29] E. Orlowska and Z. Pawlak. Representation of nondeterministic informa-

tion. Theoretical Computer Science, 29:27–39, 1984.

[30] Z. Pawlak. Rough sets. International Journal of Computer and Information

Sciences, 11(5):341–356, 1982.

[31] Z. Pawlak. Information Systems. Theoretical Foundations. Wydawnictwa

Naukowo-Techniczne, 1983.

[32] Z. Pawlak. Rough sets: theoretical aspects of reasoning about data. Kluwer

Academic Publishers, Dordrecht, 1991.

[33] Z. Pawlak and A. Skowron. Rough membership functions. In R. Yager,

M. Fedrizzi, and J. Kacprzyk, editors, Advances in the Dempster-Shafer

Theory of Evidence, pages 251–271. John Wiley and Sons, 1994.

[34] Z. Pawlak, S. Wong, and W. Ziarko. Rough sets: probabilistic versus

deterministic approach. International Journal of Man-Machine Studies,

29:81–95, 1988.

[35] W. Pedrycz. Shadowed sets: representing and processing fuzzy sets. IEEE

Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics,

28:103–109, 1998.

[36] S. Rasouli and B. Davvaz. Roughness in mv-algebras. Information Sciences,

180(5):737–747, 2010.

[37] H. Sakai. On a method to extract rules from a table with non-deterministic

information: a rough sets based approach. Bulletin of Informatics and

Cybernetics, 34(1):13–28, 2002.

35



[38] R. Sambuc. Fonctions Φ -floues. Application I’Aide au Diagnostic en

Patholologie Thyroidienne. PhD thesis, Univ. Marseille, France, 1975.

[39] G. Wang and Y. He. Intuitionistic fuzzy sets and l-fuzzy sets. Fuzzy Sets

and Systems, 110:271–274, 2000.

[40] Q. Wu and Z. Liu. Real formal concept analysis based on grey-rough set

theory. Knowledge-Based Systems, 22:38–45, 2009.

[41] U. Wybraniec-Skardowska. On generalization of approximation space. Bul-

letin of the Polish Academy of Science and Mathematics, 37:51–61, 1989.

[42] D. Yamaguchi, G.-D. Li, and M. Nagai. A grey-based rough approximation

model for interval data processing. Information Sciences, 177:4727–4744,

2007.

[43] Y. Yang. Extended grey numbers and their operations. In Proceedings of

2007 IEEE International Conference on Systems, Man and Cybernetics,

pages 2181–2186, Montreal, Canada, October 2007.

[44] Y. Yang and C. Hinde. A new extension of fuzzy sets using rough sets:

R-fuzzy sets. Information Sciences, 180(3):354–365, 2010.

[45] Y. Yang and R. John. Grey systems and interval valued fuzzy sets. In

M. Wagenknecht and R. Hampel, editors, Third EUSFLAT proceedings,

pages 193–197, Zittau, Germany, September 2003. European Society for

Fuzzy Logic and Technology.

[46] Y. Yang and R. John. Roughness bounds in rough set operations. Infor-

mation Sciences, 176:3256–3267, 2006.

[47] Y. Yang and R. John. Roughness bounds in set-oriented rough set opera-

tions. In Proc. FUZZ-IEEE 2006, pages 1461–1468, 2006.

[48] Y. Yang, R. John, and F. Chiclana. Grey sets, fuzzy sets and rough sets.

In In Proceedings of the 5th International Conference on Recent Advances

36



in Soft Computing, RASC 2004, Nottingham, UK, 16-18 December 2004,

pages 348–353, 2004. (ISBN 1-84233-110-8).

[49] Y. Yang and S. Liu. Reliability of operations of grey numbers using kernels.

Grey Systems: Theory and Application, 1(1):57–71, 2011.

[50] Y. Y. Yao. Interval-set algebra for qualitative knowledge representation.

In Proceedings of the 5th IEEE International Conference on Cognitive In-

formatics, pages 370–374, 1993.

[51] Y. Y. Yao. Two views of the theory of rough sets in finite universe. Inter-

national Journal of Approximate Reasoning, 15(4):291–317, 1996.

[52] Y. Y. Yao. A comparative study of fuzzy sets and rough sets. Information

Sciences, 109(1–4):227–242, 1998.

[53] Y. Y. Yao. Constructive and algebraic methods of the theory of rough sets.

Information Sciences, 109(1–4):21–47, 1998.

[54] Y. Y. Yao. Interval sets and interval-set algebras. In Proceedings of the 8th

IEEE International Conference on Cognitive Informatics, pages 307–314,

2009.

[55] Y. Y. Yao, X. Li, T. Y. Lin, and Q. Liu. Representation and classification

of rough set models. In T. Y. Lin and A. M. Wildberger, editors, Soft Com-

puting, pages 44–47. Society for Computer Simulation, San Diego, 1995.

[56] L. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[57] W. Zakowski. Approximations in the space (u, π). Demonstratio Math.,

XVI:761–769, 1983.

37


