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1 Introduction

Since the conditions for generating a matter-antimatter asymmetry were laid out by Sakharov

[1], many scenarios for baryogenesis have been proposed, based on high-energy processes in

the early Universe (for a review, see for instance [2]). Here we report on progress of a tech-

nique that can be used to examine various models of electroweak-scale baryogenesis [3–5],

whose common feature is that the source of baryon number violation is the electroweak

anomaly [6].

All the key symmetry violations (CP, C and baryon number) occur in the Standard

Model, and the requirement of departure from thermal equilibrium is determined by early-

Universe dynamics and the electroweak symmetry breaking transition. In the Standard

Model (SM), CP violation is provided by the CKM matrix of quark mixings [7, 8] and

possibly by the PMNS matrix of neutrino mixings [9, 10], although this is less well mea-

sured experimentally. Beyond the SM, CP-violation can be provided for instance through

Majorana masses, multiple Higgs field with complex coupling and/or higher-dimensional

effective terms.

In electroweak baryogenesis the baryon asymmetry is expected to occur at the elec-

troweak scale of ∼100GeV, at which time the Hubble expansion rate is around 10−5eV

- very slow by the standards of microscopic electroweak processes. Given that a ther-

mal electroweak phase transition in the Standard Model cannot be first order for current
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Higgs-mass bounds [11, 12] , we are left with the problem of finding dynamics that can

cause sufficient departure from thermal equilibrium. Such a possibility is raised by models

inspired by preheating at the end of inflation, where the phase transition is non-thermal

[13–20], or in extensions of the Standard Model with a more complicated scalar sector,

where the phase transition can be strongly first order [21].

Whilst it is nowadays a relatively straightforward task to simulate the classical dy-

namics of the bosonic degrees of freedom of the Standard Model and minimal extensions,

using techniques from lattice gauge theory, the fermions are more problematic. And given

that all the CP violation of the Standard Model is in the fermion sector, and the baryon

number itself is a fermion quantum number these cannot merely be ignored. One approach

is to ”integrate out” the fermions, and treat their dynamics as new terms in an effective

action. This approach has been taken in a number of studies [22–25] (see also [26–28]).

Here we present a numerical method that evolves the fermions along with the bosons

and, when extended to three families of fermions, can include CP violation from the fermion

sector directly.

The technique that we use to simulate the dynamical fermions was first laid out in

[29], with a sample study of the effect of fermions on the evolution of oscillons in 2+1

dimensions. The idea is to model the quantum averages 〈 |...| 〉 by ensemble averages 〈...〉e,
and so by simulating an ensemble of fermion realizations, one is effectively sampling the

evolution of the whole set of fermion mode functions. The utility of this is that the number

of mode functions varies as n3x in three-dimensions (here nx is the number of lattice sites in

one direction), which is prohibitively expensive numerically, whereas the number of modes

required to give a reasonable sample is expected to vary as nx [29] (see also the 3+1D

simulations in a scalar-fermion theory in [30]).

One check that the method is viable for reproducing the quantum anomaly has al-

ready been performed in an axial Yang-Mills-Higgs-fermion system in 1+1 dimensions [31],

where the baryon-number violating processes where directly simulated. The results of the

ensemble method were in complete agreement with the evolution using the full set of mode

functions [32, 33]. While there is no numerical gain in 1+1 dimensions by using the ensem-

ble method, the results of [31] gives confidence in the technique, and provided motivation

for the present 3+1 study, which would not be practical using the full set of mode functions,

certainly for lattices of the size used in [24].

In this paper we use the fermion ensemble method to simulate the electroweak quantum

anomaly directly. In this first study we shall be using only a single family of Standard Model

fermions 1 which is enough to establish the viability of the method by direct reproduction

of the anomaly. We shall also be omitting the U(1) hypercharge and SU(3) colour of the

Standard Model, as this does not affect the anomaly process.

The structure of the paper is as follows: We start in section 2 with a presentation of

the continuum model that we aim to simulate and in section 3 discuss how we treat the

fermions and bosons numerically. In an equilibrium environment, the key baryon number

violating process is the sphaleron transition. In section 4 we test the real-time fermions in

1We include a right-handed neutrino in our definition of the Standard Model.
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the background of handmade sphalerons. We then describe how to do full boson-fermion

dynamics in the context of a fast electroweak transition in 5, where we demonstrate the

approach with sample simulations. We conclude in section 6. In order to keep a flow to

the paper we have included a number of the technical details in the appendices, including

a list of conventions in App. A, the lattice implementation in App. B, the fermion initial

conditons in App. C and the details of the handmade sphalerons in App. D

2 The SU(2)-Higgs model with chiral fermions in 3+1 dimensions

Our field content is one family of the Standard Model (extended to include a right-handed

neutrino), but without U(1) hypercharge, SU(3) gluons and without colour degrees of

freedom. Therefore we have a complex Higgs doublet φ; SU(2) gauge fields W a
µ ; a left-

handed SU(2)-doublet quark field qL = (uL, dL); two right-handed SU(2)-singlet quark

fields uR, dR; a left-handed SU(2)-doublet lepton field lL = (νL, eL); and two right-handed

SU(2)-singlet lepton fields eR, νR. The continuum action is then written as

S = SH + SW + SF + SY , (2.1)

where the set of different components is given by

SH = −
∫

d4x
[

Dµφ
†Dµφ+ λ(φ†φ− v2/2)2

]

, (2.2)

SW = −
∫

d4x
1

4
W a

µνW
a,µν , (2.3)

SF = −
∫

d4x
[

q̄Lγ
µDµqL + ūRγ

µDµuR + d̄Rγ
µDµdR

+l̄Lγ
µDµlL + ν̄Rγ

µDµνR + ēRγ
µDµeR

]

, (2.4)

SY = −
∫

d4x
[

Guq̄LφuR +Gdq̄LφdR +Ge l̄LφeR +Gν l̄LφνR (2.5)

+Ĝuq̄Lφ̃uR + Ĝdq̄Lφ̃dR + Ĝe l̄Lφ̃eR + Ĝν l̄Lφ̃νR

+h.c.] .

The absence of a U(1) hypercharge means that one is allowed more Yukawa terms than

the equivalent Standard Model action, but we simply set to zero those that would not be

allowed had we included the Standard Model U(1).

The charges of the fields are determined by the covariant derivatives, which are

Dµφ =

(

∂µ − ig

2
σaW a

µ

)

φ, (2.6)

DµqL =

(

∂µ − ig

2
σaW a

µ

)

qL, DµuR = ∂µuR, DµdR = ∂µdR, (2.7)

DµlL =

(

∂µ − ig

2
σaW a

µ

)

lL DµeR = ∂µeR, DµνR = ∂µνR, (2.8)

and the SU(2) field-strength is defined by

[Dµ,Dν ]φ = − ig
2
σaW a

µνφ. (2.9)
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As well as the conserved current following from the presence of the gauge symmetry, there is

a baryon current and a lepton current coming from the global symmetries q → exp(iαγ5)q

and l → exp(iα̃γ5)l,

jµ(b) = i
[

q̄Lγ
µqL + ūRγ

µuR + d̄Rγ
µdR

]

= iq̄γµq, (2.10)

jµ(l) = i
[

l̄Lγ
µlL + ν̄Rγ

µνR + ēRγ
µeR

]

= il̄γµl. (2.11)

Classically, these currents are conserved. Quantum mechanically however, one finds that

[34]

∂µj
µ
(b) = ∂µj

µ
(l) =

nf
32π2

[

1

2
ǫµνρσW

a
µνW

a
ρσ

]

, (2.12)

= ∂µK
µ. (2.13)

where

Kµ =
nf
16π2

ǫµνρσ

[

W a
νρW

a
σ − 2

3
ǫabcW

a
νW

b
ρW

c
σ

]

. (2.14)

and nf is the number of fermion families, which we have equal to one for our simulation.

We then find that the baryon number, Nf =
∫

d3xj0(b), is related to the Chern-Simons

number, NCS =
∫

d3xK0, as follows

Nf = NCS . (2.15)

The main aim of this paper is to confirm that this truly quantum mechanical relation holds

in our numerical simulations, and to apply the method to a fast electroweak transition.

We will also calculate the average Higgs field

〈φ2〉 = 1

Vol

∫

d3xφ†φ, (2.16)

and the Higgs winding number,

NW =
1

24π2

∫

d3x ǫijkV
†∂iV V

†∂jV V
†∂kV, V =

1

|φ|φ. (2.17)

For convenience: Partial charge conjugation transformation

On a lattice it is is more convenient to redefine the Fermi fields so that their kinetic terms

are just the standard Dirac form, i.e. the fermion-gauge interactions are vector-like rather

than chiral. This may be achieved by the following definitions [32, 33, 35, 36],

ΨR = ǫC−1l̄TL ⇒ Ψ̄R = −lTLCǫ−1, lL = −ǫC−1Ψ̄T
R, l̄L = ΨT

RCǫ−1, (2.18)

ΨL = qL, (2.19)

χR = uR, (2.20)

χL = C−1ēTR ⇒ eR = C−1χ̄T
L, ēR = −χT

LC, (2.21)

ξR = dR, (2.22)

ξL = C−1ν̄TR ⇒ νR = C−1ξ̄TL , ν̄R = −ξTLC, (2.23)
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We then find that

l̄Lγ
µ∂µlL ≡ Ψ̄Rγ

µ∂µΨR, (2.24)

ēRγ
µ∂µeR ≡ χ̄Lγ

µ∂µχL, (2.25)

ν̄Rγ
µ∂µνR ≡ ξ̄Lγ

µ∂µξL, (2.26)

l̄Lγ
µσaW a

µ lL = Ψ̄Rγ
µσaW a

µΨR, (2.27)

where some integration by parts has been done on the first three equations, leaving us with

SF = −
∫

d4x
[

Ψ̄γµDµΨ+ χ̄γµ∂µχ+ ξ̄γµ∂µξ
]

, (2.28)

SY = −
∫

d4x
[

GdΨ̄φPRξ +Geχ̄φ̃†PRΨ+GuΨ̄φ̃PRχ− Ĝν ξ̄φ†PRΨ+ h.c.
]

. (2.29)

The end result is that whereas we before had two left-handed doublets and four right-

handed singlets, these are now collected into one full Dirac doublet and two Dirac singlets.

The singlets only interact via the Yukawa term. It is straightforward to check that in this

formulation one has
(

jµ(5)

)

C−conjugated
=
(

jµ(b) + jµ(l)

)

Original
= i

[

−Ψ̄γµγ5Ψ+ χ̄γµγ5χ+ ξ̄γµγ5ξ
]

.

(2.30)

3 Modelling the bosons and fermions

The continuum model above is discretized on the lattice as described in App. B. For

the bosonic fields the classical Hamiltonian equations are derived, with the understanding

that fermion bilinears are to be represented by quantum averages. The fermion evolution

equations are also found in the usual way by variation of the action, and amount to a linear

Dirac equation in a time- and space-dependent bosonic background.

One issue to address are the lattice fermion doublers. For every physical fermion mode,

the standard lattice discretization prescription generates a set of fifteen doublers, which

count as real degrees of freedom at finite lattice spacing [37]; in the context of the anomaly

these are particularly troublesome. Since they contribute with opposite signs, the doublers

cancel the anomaly from the physical fermions, and set the total anomaly to zero [38] (see

also Fig. 3).

Fortunately, a simple approach exists to breaking the symmetry between these dou-

blers, namely adding a Wilson term to the lattice action (B.13). As was the case in 1+1

dimensions [31–33], we find that it is sufficient to add a spatial Wilson term to cancel the

space-like doublers, and to not initialize the time-like doublers. For small enough timestep

in the numerical evolution, the time-like doublers stay unexcited, at least for the duration

of our simulations (see also section 4).

The next step is to replace quantum averages by ensemble averages, as discussed

in detail in [29, 31]. The process starts by noting that the continuum canonical anti-

commutation relations for continuum fermions are

{ψα(t, x), ψ
†
β(t, x

′)} = δαβδ(x− x′), (3.1)
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and we may expand the field operator as

ψ(t, x) =
∑

s

∫

d3p

(2π)3
1

2ωp

[

bs(p)Us(p)e
ip.x + d†s(p)Vs(p)e

−ip.x
]

,

in terms of the creation and annihilation operators. The anti-commutation relation are

then equivalent to imposing

{b†r(p), bs(p′)} = (2π)3(2ωp)δrsδ(p − p′), (3.2)

{d†r(p), ds(p′)} = (2π)3(2ωp)δrsδ(p − p′), (3.3)

and we may calculate bi-linears such as

〈 |ψ̄(x)ψ(y)| 〉 =
∑

s

∫

d3p

(2π)3
1

2ωp
V̄s(k)Vs(k)e

ip.(x−y) (3.4)

= −4µ

∫

d3p

(2π)3
1

2ωp
eip.(x−y), (3.5)

where µ is the fermion mass; it is these kinds of quantities that we aim to reproduce using

ensemble averages.

To model the quantum averages we introduce two ensembles of fermions, M(ale) and

F(emale), according to the mode expansion

ψM,F (t, x) =
1√
2

∑

s

∫

d3p

(2π)3
1

2ωp

[

ξs(p)Us(p)e
ip.x ± ηs(p)Vs(p)e

−ip.x
]

, (3.6)

and where the exact same random numbers ξ, ζ are used in a given Male and Female pair.

By then requiring that the variables ξ and η satisfy the ensemble average relations

〈ξr(p)ξ⋆s (p′)〉e = (2π)3(2ωp)δrsδ(p − p′), (3.7)

〈ηr(p)η⋆s (p′)〉e = (2π)3(2ωp)δrsδ(p − p′), (3.8)

(where δ(p − p′) is understood to refer to the lattice version of the Dirac delta), we may

for example calculate

〈ψ̄M (x)ψF (y)〉 =
1

2

∑

s

∫

d3p

(2π)3
1

2ωp

[

Ūs(p)Us(p)e
−ip.(x−y) − V̄s(p)Vs(p)e

ip.(x−y)
]

= +4µ

∫

d3p

(2π)3
1

2ωp
eip.(x−y), (3.9)

which leads to the simple prescription

〈 |ψ̄(x)ψ(y)| 〉 → −〈ψ̄M (x)ψF (y) + (M ↔ F )〉e
2

. (3.10)

For more details of the method see [29].

The mode expansion described above constitutes the initial conditions for our fermions,

which then amounts to generating sets of ηk, ξk and inserting them into eq. (3.6). In the
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Figure 1: The fermion number compared to the Chern-Simons number in a handmade

sphaleron transition, for different sizes of the fermion ensemble, Nq. There is clear conver-

gence to the exact result, which is within statistical error bars (not shown) for all values

of the ensemble here. amH = 0.42.

case of a general Yukawa interaction and CKM mixing matrix, one has to take care to

diagonalize the fermions first to initialize the mass eigenmodes; this is explained in more

detail in App. C. For the simulations presented here, we will restrict ourselves to Yukawa

couplings proportional to the identity (see also App. B)

Ge = Gu = Gd = −Gν = λyuk. (3.11)

4 Sphaleron transitions

Now that we have the full prescription for evolving the system of bosons and fermions, we

wish to test whether the method is reliable for the anomaly dynamics driven by sphaleron

processes. We are mainly interested in whether the numerical fermions react in the correct

way as the SU(2) gauge field undergoes a change in winding. To that end we shall start by

evolving the Higgs and gauge fields by hand, rather than through their equations of motion,

so we need to know how to construct a winding event. This is the method used in 1+1

dimensions [31–33], and here we extend the construction to the SU(2) sphaleron following

the techniques of [39] (see also [40] for a nice exposition). The detailed implementation

can be found in App. D.

The end result is a family of configurations starting and ending in a pure-gauge vacuum

of the gauge-Higgs theory, which takes the fields through a sphaleron transition. In this

way there is a relative winding number between the vacua, both in terms of winding in the

Higgs field, and the Chern-Simons number of the gauge field. On this bosonic background

we evolve the fermions according to their dynamical evolution equations, and test that

they respond in the expected way and acquire a non-zero fermion number in accordance
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Figure 2: Handmade sphaleron transitions for different values of the lattice spacing

amH = 0.105−0.42. The lattice spacing dependence is well under control. The lattice size

was kept constant at nx = 32. The band is the statistical errors.

with the anomaly equation. The fermions are initialized in their vacuum as described in

App. C.

For the moment, we will set the Yukawa couplings to zero. We generate a double-

sphaleron trajectory on a n3x = 323 lattice with mH/mW = 2, a timestep at/ax = 0.05

a lattice spacing amH = 0.42 and a Wilson coefficient r = 1.0. Fig. 1 shows Chern-

Simons number Ncs in time (black) and the combination (B+L)/2 increasing the fermion

ensemble. The coloured lines show the ensemble averaged anomaly for Nq = 640, 1280, 2560

and our largest ensemble Nq = 10240. We see that the anomaly is very well reproduced

at the ten percent level for these ensemble sizes, and that this can be improved upon

in a straightforward way. For a 323 lattice, numerical efficiency is only gained over the

“non-statistical” approach for ensemble sizes less that 323 = 32768.

The next test is to vary the lattice spacing (for fixed number of lattice points), shown

in Fig. 2. We see that the anomaly is well reproduced for all lattice spacings, although the

amH = 0.105 is a little low, possibly because the physical volume is quite small nxamH =

3.36. Also the largest lattice spacing amH = 0.42 is about 5 percent low, which may in

turn be put down to discretization errors. We note that the anomaly is expected to be one

of the “hardest” observables to get right, as it does not involve any volume averaging (such

as for instance particle number in a homogeneous background would [30]). Also, as can be

deduced from the level-crossing picture of the anomaly, all momentum modes contribute to

the anomaly, both in the IR and the UV. Hence the statistical averaging has to be accurate

for all modes independently, to get the correct anomaly out. It is not possible to leave out

some of the UV modes, as if one were only interested in the IR physics. In this light, we
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Figure 3: The anomaly as the spatial Wilson coefficient is varied.

consider it remarkable that our simulations reproduce the anomaly so well.

In Fig. 3 we show how the anomaly depends on the coefficient of the Wilson term. As

mentioned, for r = 0 lattice doublers are expected to pair up and cancel out the anomaly,

whereas for r = 1, the anomaly is manifest. We indeed see that the anomaly is identically

zero for r = 0, but also that once r > 0.25 the anomaly is largely unaffected by r (within

statistical errors). This is as we would have expected. Also note that the time-like doublers

are not cancelled by aWilson term, but that these are not excited enough to cause problems.

We then consider the case where scalars are directly coupled to the fermions, i.e. the

fermions are massive. As shown in Fig. 4, at finite Yukawa coupling convergence slows down

with increasing coupling. This is completely analogous to the situation in 1+1 dimensions

[31], and the solution is also the same: increase the size of the ensemble. Nq = 10240 is

again sufficient for λyuk < 0.1, corresponding to a fermion mass of λyukv/
√
2 ≃ 17GeV,

i.e. all Standard Model quarks except the top. But to include the top, λyuk ≃ 1, we

need many more realizations. We did a test at the smaller lattice size of n3x = 163 with

Nq = 8× 10240 and indeed found that the anomaly is still present, shown in Fig. 5. Such

simulations suffer from having small physical volume, and the fermion number is a little

low. We also explicitly checked that decreasing the timestep and/or increasing the Wilson

coefficient r did not improve convergence. [39] We can conclude from these tests that the

fermion ensemble method works even for very subtle quantum observables like the anomaly,

and that we need Nq = O(104) to get a measurement at the ten percent accuracy level, at

zero and small Yukawa couplings, up to a fermion mass of a few GeV. A larger ensemble

is required to consistently include heavy quarks, i.e. the top. Lattice issues like lattice

spacing dependence and fermion doublers are well under control. We will now proceed to

also make the bosonic fields dynamical and include the fermion back-reaction.

– 9 –



0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

N
cs

, N
f

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

0 5 10 15 20 25
t

0

0.5

1

1.5

2

2.5

N
cs

, N
f

0 5 10 15 20 25
t

0

0.5

1

1.5

2

2.5

λ
yuk

 = 0.5 λ
yuk

 = 0.25

λ
yuk

 = 0.125 λ
yuk

 = 0.0625

Figure 4: Handmade sphaleron simulations, varying the Yukawa coupling. Nq = 10240.

nx = 32, amH = 0.42. The Yukawa couplings correspond to fermion masses of mf =

87, 44, 22, 11GeV, respectively.

5 Including fermion backreaction: tachyonic electroweak transition

In the tests with handmade sphalerons presented above, the fermions were just “along for

the ride”, to see how well the fermion equations of motion behave in a time-dependent

bosonic background. But for baryogenesis, we need the bosonic fields to be dynamical,

too, and for the fermions to back-react. Indeed, in the SM CP-violation is a fermion

back-reaction effect.

As a testing ground for this, we consider a cold tachyonic electroweak transition, where

the Higgs field experiences a fast quench. The Higgs potential flips instantaneously as

V (φ) = +µ2φ†φ, (t < 0) → λ

(

φ†φ− v2

2

)2

, (t > 0). (5.1)

The Higgs field is generated by Monte-Carlo sampling of a classical ensemble, reproducing

the quantum correlation functions at zero temperature in the symmetric phase [18, 19, 23].

The fermion fields are generated as an ensemble of Nq vacuum realizations at φ = 0, as

above. The initial gauge fields are then found by setting Aµ(t = 0) = 0, and solving the

lattice Gauss law in the background of the generated Higgs and averaged fermion fields.

The dynamics start at the moment when the Higgs potential is flipped, and the low-

momentum modes k < µ experience a tachyonic (or spinodal) instability, and start growing

exponentially. This leads to a strongly out-of equilibrium electroweak transition, where

large particle numbers, effective diffusion of Chern-Simons number and in the presence of

CP-violation, baryogenesis can occur [13, 20, 23, 24]. In the present work, we have only
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Figure 5: Handmade sphaleron simulations for a smaller lattice 163 with much larger

statistics Nq = 81920.

implemented one generation of Standard Model fermions, and so we are not able to include

CP-violation via the CKM matrix. We will leave that for future work.

As in [23] we will monitor the volume-averaged Higgs field, the Chern-Simons number

and the Higgs winding number. But rather than infer the baryon and lepton number

through the anomaly equation, we now calculate it directly. We note that the anomaly

equation states that changes in the Chern-Simons and Baryon/Lepton number obey

∆B = ∆L = ∆Ncs → ∆Ncs =
∆B +∆L

2
. (5.2)

Fig. 6 shows a tachyonic run where the fermions do not back-react (dashed) and one

where they do (full). Yukawa couplings are zero, and Nq = 5120. We see that the Higgs

field (black) “falls off the hill” and oscillates around its broken phase minimum. Meanwhile,

the Chern-Simons number (red) and Higgs winding number (green) bounce around out of

equilibrium, but eventually settle down in a common minimum. To check our numerics,

we also monitored Gauss law, which throughout is conserved to computer accuracy. As for

the sphalerons above, we see that the fermions (blue) reproduce the anomaly rather well,

however, the gauge and Higgs fields are now dynamical.

What is particularly interesting is the effect of having fermions affecting the bosonic

dynamics. At early times, the evolution of the bosonic observables is unchanged. But then

around mHt = 15, the trajectories of both fermion number and Chern-Simons number di-

verge, depending on whether the bosons feel the fermions, eventually ending up at different

minima, and hence a different number of fermions.

Finally, in Fig. 7 we show a run with small enough λyuk = 1/128, that Nq = 10240 gives

reliable convergence. This corresponds to a 1.4GeV fermion, i.e. slightly heavier than the
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Figure 6: A tachyonic transition with (full) and without (dashed) fermion back-reaction,

starting from the exact same initial condition. Shown are the trajectories of the Chern-

Simons number (red), the average Higgs field squared (black) the Higgs winding number

(green) and the fermion number (blue).
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Figure 7: A full tachyonic run including fermion backreaction and Yukawa coupling. The

fermion mass is mf ≃ 1.4GeV.

charm quark. As for the sphaleron runs, we see that the agreement is only approximate,

but clearly the anomaly is reproduced, improveable with larger statistics.
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6 Conclusions

While there have been many simulations of the bosonic fields in the Standard Model, this

is the first that has included the fermionic sector, rather than integrating them out and/or

treating them as passive observers to the gauge-scalar dynamics. This has been achieved

by applying the technique pioneered by Borsányi and Hindmarsh [29], where the many

mode-functions of the fermion fields, required for a full quantum treatment, are replaced

by an average over a statistical ensemble of Male and Female fields.

We have performed a detailed study of the lattice parameters, and found that the

fermion number does indeed reproduce the quantum anomaly, with the fermion number

tracking the Chern-Simons number through sphaleron transitions. We also simulated a

fully dynamical fast electroweak transition including fermions, and found that the back-

reaction of fermions can indeed significantly alter the evolution of the gauge fields.

From a technical point of view, the numerical effort is significant, in that implementing

Nq fermion realizations on a n3x lattice requires n3x × Nq × 1.6 kB, so that for our single

generation, no-colour full run of Fig. 6 we use approximately 270GB. It is however impor-

tant to note that the anomaly is probably one of the most sensitive observables, since it

requires every single lattice mode to be very precisely reproduced. This means that for

studying the (IR) dynamics of electroweak baryogenesis, we can probably make do with

a somewhat smaller Nq. Alternatively, one may consider returning to the non-ensemble

approach [32, 33], where one is however hampered by the need for large lattices to correctly

simulating tachyonic transitions.

The next step is now to study dynamics both for baryogenesis and electroweak preheat-

ing; including all three generations, mixing and CP-violation for both the quark (CKM)

and lepton (PMNS) sector as relevant for the most minimal version of Cold Electroweak

Baryogenesis; but also for electroweak baryogenesis in more general setups like Standard

Model + second Higgs doublet or Standard Model + scalar singlet. Demonstrating that

this is a realistic aim (also in practice) is perhaps the most significant result of the present

work.
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A Conventions

We consider 3+1D Minkowski space, with the metric (−,+,+,+), and Dirac algebra

{γµ, γν} = 2ηµν , ψ̄ = iψ†γ0, γ5 = −iγ0γ1γ2γ3, (A.1)
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with in the Weyl representation

γ0 =

(

0 iI

iI 0

)

, γj =

(

0 iσj

−iσj 0

)

, γ5 =

(

I 0

0 −I

)

, (A.2)

C =

(

−iσ2 0

0 iσ2

)

= −iγ0γ2, CC† = I, C† = −C, (A.3)

γµT = −CγµC−1, γµ† = γ0γµγ0 = γµ, (A.4)

ǫ = iσ2, ǫ−1σaǫ = −σa⋆, (A.5)

ψR =
1

2
(1 + γ5)ψ, ψL =

1

2
(1− γ5)ψ. (A.6)

The charge-conjugate scalar doublet is given by the complex conjugate

φc = ǫφ⋆ = φ̃. (A.7)

B Lattice action

The theory is discretized on a lattice with spatial lattice spacing ax, timelike spacing

at = dtax. We find it convenient to work with the following rescaled and re-defined variables

Wlattice ≡ gWcontinuum, (B.1)

φ(x) =

(

φ1(x)

φ2(x)

)

→ Φ(x) =
√
λa

(

φ∗2(x) φ1(x)

−φ∗1(x) φ2(x)

)

=
√
λa
(

φ̃(x), φ(x)
)

, (B.2)

Ψ(x) → a3/2Ψ(x), χ(x) → a3/2χ(x), ξ(x) → a3/2ξ(x), (B.3)

thus making them dimensionless. Then we have the link variables,

U0(x) = exp(−iatσaW a
0 (x)/2), (B.4)

Ui(x) = exp(−iaµσaW a
i (x)/2), (B.5)

Uij(x) = Ui(x)Uj(x+ i)U †
i (x+ j)U †

j (x) = exp

(

−i1
2
a2σaW a

ij + ...

)

(B.6)

and corresponding electric fields

Ei(x) = −Ui(x)U
†
i (x+ 0), Ea

i (x) = Tr iσaEi(x), (B.7)

Ẽi(x) = −U †
i (x+ 0)Ui(x), Ẽa

i (x) = Tr iσaẼi(x). (B.8)

We need the derivatives, where we will not include the lattice spacings (they are compiled

into lattice coefficients, see below)

π(x) = Φ(x+ 0)−Φ(x), (B.9)

DµΦ = Uµ(x)Φ(x+ µ)− Φ(x),

D′
µΦ = Φ(x)− U †

µ(x− µ)Φ(x− µ),

D′
µDµΦ = Uµ(x)Φ(x+ µ)− 2Φ(x) + U †(x− µ)Φ(x− µ),

D̃µ =
1

2

[

Dµ +D′
µ

]

. (B.10)
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Note that we are using the compact formulation of the gauge action, and have chosen to

evolve using temporal gauge W a
0 = 0 (U0 = I). In order to remove the spatial fermion

doubler modes we will employ Wilson fermions in space, for which we need the Wilson

term [32, 33, 41]

Ψ̄WΨ = −1
2

r
a4

Ψ̄D′
iDiΨ, χ̄Wχ = −1

2
r
a4
χ̄∂′i∂iχ, ξ̄Wξ = −1

2
r
a4
ξ̄∂′i∂iξ, (B.11)

where r is a constant parameter. We will also introduce the quantities

βtG =
4

g2
a

at
, βsG =

4

g2
at
a
, βtH =

1

λ

a

at
, βsH = βR =

1

λ

at
a
,

(amH)2

4
=
λ(av)2

2
.(B.12)

The action is then given by

S = SH + SA + SF + SW + SY , (B.13)

with

SH =
∑

x,t

βtH
2

Tr
[

(D0Φ)
†D0Φ

]

− βsH
2

Tr
[

(DiΦ)
†DiΦ

]

− βR

(

1

2
TrΦ†Φ− (amH)2

4

)2

,

(B.14)

SA =
∑

x,t

βtG
∑

i

(

1− 1

2
TrU0i,x

)

− βsG
2

∑

ij

(

1− 1

2
TrUij,x

)

, (B.15)

SF =
∑

x,t

−
[

Ψ̄γ0D̃0Ψ+ χ̄γ0∂̃0χ+ ξ̄γ0∂̃0ξ
]

− at
a

[

Ψ̄γiD̃iΨ+ χ̄γi∂̃iχ+ ξ̄γi∂̃iξ
]

, (B.16)

SW =
∑

x,t

rat
2a

[

Ψ̄D
′

iDiΨ+ χ̄∂
′

i∂iχ+ ξ̄∂
′

i∂iξ
]

, (B.17)

To which we add the Yukawa terms, now written in terms of the matrix Φ, and where we

for simplicity impose that

Gu = Ge∗, Gd = −Gν∗, (B.18)

and in addition set

Gu = Gd = λyuk. (B.19)

Then we have, using

βY =
at
a

1√
λ
. (B.20)

the addition to the action

S → S + Syuk, Syuk = −
∑

x,t

(

Ψ̄aΦab(χ, ξ)
T
b + (χ̄, ξ̄)bΦ

†
baΨ
)

. (B.21)

The equations of motion follow by variation. For the Higgs field

∂t∂
′
tΦ =

βtH
βsH

D′
iD

iΦ− 2
βR
βtH

(

1

2
TrΦ†Φ− v2

2

)

Φ− 2
βY
βtH

δΦ = 0, (B.22)
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where

δΦ = δφ0I + δφaiσ
a, (B.23)

and

δφ0 + iδφ3 = −〈χ̄MΨF
u + Ψ̄M

d ξ
F + (M ↔ F )〉, (B.24)

δφ2 + iδφ1 = −〈ξ̄MΨF
u − Ψ̄M

d χ
F + (M ↔ F )〉, (B.25)

are ensemble average over fermion realizations. For the gauge field we have

∂′tE
a
n(y) =

βsg
βtg

∑

m

Dab′

m Tr
[

iσbUy,mUy+m,nU
†
y+n,mU

†
y,n

]

−2βsH
βtg

Tr
[

iσaΦy(Uy,nΦy+n)
†
]

− at
aβtg

[

Ψ̄yγ
niσaUy,nΨy+n + Ψ̄y+nγ

nU †
y,niσ

aΨy

]

+
rat
aβtg

[

Ψ̄yiσ
aUy,nΨy+n − Ψ̄y+nU

†
y,niσ

aΨy

]

, (B.26)

and we have Gauss law

Dab′

n Eb
n(y) =

2βtH
βtG

TriσaΦyΦ
†
y+0 −

1

βtG

[

Ψ̄yγ
0iσaΨy+0 + Ψ̄y+0γ

0iσaΨy

]

. (B.27)

Finally, the fermion fields evolve according to

1

2
[∂t + ∂′t]Ψa = − at

2a
γ0γi[Di +D′

i]Ψa +
rat
2a
γ0D′

iDiΨa − βY Φabγ
0(χ, ξ)Tb , (B.28)

1

2
[∂t + ∂′t](χ, ξ)

T = − at
2a
γ0γi[∂i + ∂′i](χ, ξ)

T +
rat
2a
γ0D′

iDi(χ, ξ)
T − βY Φ

†γ0Ψ.(B.29)

The currents that are particularly relevant to us are the baryon and lepton currents

which, when converted to male and female fermions, becomes

j0(5) = − i

4

[

−Ψ̄M (x)γ0γ5ΨF (x+ 0)− Ψ̄M (x+ 0)γ0γ5ΨF (x) (B.30)

+χ̄M (x)γ0γ5χF (x+ 0) + χ̄M (x+ 0)γ0γ5χF (x)

+ξ̄M (x)γ0γ5ξF (x+ 0) + ξ̄M (x+ 0)γ0γ5ξF (x)

−Ψ̄F (x)γ
0γ5ΨM (x+ 0)− Ψ̄F (x+ 0)γ0γ5ΨM(x)

+χ̄F (x)γ
0γ5χM (x+ 0) + χ̄F (x+ 0)γ0γ5χM (x)

+ξ̄F (x)γ
0γ5ξM (x+ 0) + ξ̄F (x+ 0)γ0γ5ξM (x)

]

,

jk(5) = − i

4

at
a

[

−Ψ̄M(x)γkγ5Uk(x)ΨF (x+ k)− Ψ̄M (x+ k)γkγ5U †
k(x)ΨF (x) (B.31)

+χ̄M(x)γkγ5χF (x+ k) + χ̄M (x+ k)γkγ5χF (x)

+ξ̄M(x)γkγ5ξF (x+ k) + ξ̄M (x+ k)γkγ5ξF (x)

−Ψ̄F (x)γ
kγ5Uk(x)ΨM (x+ k)− Ψ̄F (x+ k)γkγ5U †

k(x)ΨM (x)

+χ̄F (x)γ
kγ5χM (x+ k) + χ̄F (x+ k)γkγ5χM (x)

+ξ̄F (x)γ
kγ5ξM (x+ k) + ξ̄F (x+ k)γkγ5ξM (x)

]

,
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C Fermion initial conditions

In order to specify the initial conditions we need some mode functions for the fermion

fields. The ones we use are those that are vacuum fluctuations for a Higgs field taking the

value φ = (0, v/
√
2), φ̃ = (v/

√
2, 0). The lattice equations of motion then read

[

−1

2
γ0(∂0 + ∂′0)−

at
2a
γi(∂i + ∂′i) +

r at
2a

∂i∂
′
i

]

(

χ

ξ

)

=
vat√
2
M̃Ψ, (C.1)

[

−1

2
γ0(∂0 + ∂′0)−

at
2a
γi(∂i + ∂′i) +

r at
2a

∂i∂
′
i

]

Ψ =
vat√
2
M

(

χ

ξ

)

, (C.2)

(C.3)

with M and M̃ some general Yukawa mixing matrices. This is a set of linear equations, so

we perform a Fourier decomposition and look at positive frequency modes

ψ+ = U(k)eik.x, (C.4)

and find that by defining

s0 = sin(k0 at)/at = − sin(ω at)/at, si(k) = sin(ki)/a, m(k) = r
∑

i

(1− cos(ki)),

(C.5)

one gets

− iγµsµU
(Ψ) =

m(k)

a
U (Ψ) +

v√
2
M

(

U (χ)

U (ξ)

)

, (C.6)

−iγµsµ
(

U (χ)

U (ξ)

)

=
m(k)

a

(

U (χ)

U (ξ)

)

+
v√
2
M̃Ψ, (C.7)

now define m̃ = m(k)/a and ṽ = v/
√
2 and make the simplification that the Yukawa

couplings are related by

Ge⋆ = Gu, Gν⋆ = −Gd, (C.8)

so that defining

gu =
√
ṽGu, gd =

√
ṽGd, (C.9)

allows us to diagonalize the equations by introducing the canonically normalized Fermi

fields Ωi,

Ω1 =
1√
2|gu|

[gu⋆Ψ1 + guχ], (C.10)

Ω2 =
1√
2|gu|

[−gu⋆Ψ1 + guχ], (C.11)

Ω3 =
1√
2|gd|

[gd⋆Ψ2 + gdξ], (C.12)

Ω4 =
1√
2|gd|

[−gd⋆Ψ2 + gdξ]. (C.13)
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The positive frequency modes of these Fermi fields then satisfy

− iγµsµU1 = (m̃+ |gu|2)U1, (C.14)

−iγµsµU2 = (m̃− |gu|2)U2, (C.15)

−iγµsµU3 = (m̃+ |gd|2)U3, (C.16)

−iγµsµU4 = (m̃− |gd|2)U4. (C.17)

They are now in the usual form, and we can solve for the canonical mode functions, where

in general

(−iγµsµ − µ)U(k) = 0, (C.18)

(iγµsµ − µ)V (k) = 0, (C.19)

s0 = +
√

µ2 + s2, (C.20)

which are

Us(k) =

(

−
√

s0(k) − σ.s ηs
√

s0(k) + σ.s ηs

)

, Vs(k) =

(

√

s0(k)− σ.s ηs
√

s0(k) + σ.s ηs

)

, (C.21)

and ηs =

(

1

0

)

,

(

0

1

)

.

D Handmade Sphalerons

The basic idea [39] is that the vacuum manifold of the Higgs scalar is a three-sphere, S3
vac,

and one wants to construct some other three-sphere in order to have non-trivial maps

between them. At spatial infinity the Higgs field is in the vacuum, but spatial infinity is

only a two-sphere, S2
∞, and the maps S2

∞ → S3
vac are topologically trivial. However we can

construct a three-sphere by considering a loop in configuration space, S1
loop, and forming

the smash product S2
∞ ∧ S1

loop, which is a three-sphere, and so one may construct non-

trivial maps. This loop in configuration space means we have a family of configurations

parametrized by an angle.

In practise this may done by parametrizing the S2
∞ ∧ S1

loop three-sphere using the unit

four-vector

pa = (sin Γ sin θ cosϕ, sin Γ sin θ sinϕ, cos2 Γ + sin2 Γ cos θ, sin Γ cos Γ(cos θ − 1)),

which is an explicit representation of the smash product, where Γ parametrizes S1
loop, and

θ, ϕ parametrize S2
∞. 2

Now we work with the usual complex doublet and write the set of configurations at

infinity as

φ∞ =
v√
2

(

sin Γ sin θeiϕ

e−iΓ(cos Γ + i sin Γ cos θ)

)

=

(

φ1∞
φ2∞

)

, (D.1)

2Note that 0 < Γ < π, 0 < ϕ < 2π, 0 < θ < π and that the circle at θ = 0 is mapped to the point

(0,0,1,0), and the two-sphere at Γ = 0 is mapped to the same point (0,0,1,0), thus confirming the smash

product nature of the parametrization.
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which leads to the ansatz for the full radial dependence of the family of configurations

φΓ(r, θ, ϕ) = h(r)φ∞(Γ, θ, ϕ) +
v√
2
[1− h(r)]

(

0

e−iµ cos Γ

)

,

where the radial profile function is a smooth monotonic function obeying h(0) = 0, h(∞) =

1. This leads to

φΓ=0, π(r, θ, ϕ) =
v√
2

(

0

1

)

, (D.2)

φµ=π/2(r, θ, ϕ) =
v√
2
h(r)

(

sin θeiϕ

cos θ

)

, (D.3)

so we see that the start and end points of the Γ loop just correspond to the vacuum, with

the centre of the loop (Γ = π/2) being the sphaleron [39].

Of course, we also need an ansatz for the gauge field, and this is achieved by construct-

ing the unitary matrix

Ω∞(Γ, θ, ϕ) =

√
2

v

(

φ⋆2∞ φ1∞
−φ⋆1∞ φ2∞

)

. (D.4)

The gauge field is in the vacuum at infinity, and so we take the asymptotic ansatz to be

Wj(∞)(Γ, θ, ϕ) = − i

g
∂iΩ∞(Γ, θ, ϕ)Ω†

∞(Γ, θ, ϕ), (D.5)

with the full radial dependence of the family of gauge fields being given by

Wj(Γ, r, θ, ϕ) = f(r)Wj(∞)(Γ, r, θ, ϕ), (D.6)

where f(r) is a smooth monotonic function satisfying f(0) = 0, f(∞) = 1.
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