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Ca2+ is a ubiquitous and versatile second messenger that primarily transmits information 
through rises and falls of the cytosolic Ca2+ concentration. After reviewing recent findings on key 
characteristics of the cytosolic Ca2+ dynamics, we demonstrate the importance of the hierarchal 
arrangement of Ca2+ release sites on the emergence of cellular Ca2+ spikes and present theoretical 
concepts that explain the wide range of experimentally observed Ca2+ signals. We relate 
properties of the dynamical regulation of the cytosolic Ca2+ concentration to ideas about 
information transmission by Ca2+ spike sequences. Our findings highlight that stochastic Ca2+ 
signals are functionally robust and adaptive to changing environmental conditions. 
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Highlights: > We review recent findings on key characteristics of cytosolic Ca2+ dynamics. > We 
demonstrate the importance of the hierarchal arrangement of Ca2+ release sites. > New theoretical 
concepts exploit emergent behavior of cellular Ca2+ spikes. > We relate the dynamical regulation of 
[Ca2+] to information transmission. > Stochastic Ca2+ signals are functionally robust and adaptive to 
changing conditions. 
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1. Introduction 
 

The Ca2+ signaling pathway translates external signals into intracellular responses by increasing the 
cytosolic Ca2+ concentration in a stimulus dependent pattern. The concentration increase can be caused 
either by Ca2+ entry from the extracellular medium through plasma membrane channels, or by Ca2+ 

release from internal storage compartments. In the following, we will focus on inositol 1,4,5-
trisphosphate (IP3)-induced Ca2+ release from the endoplasmic reticulum (ER), which is the 
predominant Ca2+ release mechanism in many cell types. The signal cascade starts typically at a plasma 
membrane G-protein coupled receptor [1-3]. Due to binding of an agonist, the receptor activates 
phospholipase C (PLC), which in turn produces IP3 at the cell membrane. IP3 diffuses in the cytosol 
and binds to IP3 receptor channels (IP3Rs), where subsequent binding of Ca2+ to activating Ca2+ binding 
sites switches the channel to a state with high open probability [4]. This positive feedback of Ca2+ on its 
own release channel is called Ca2+-induced-Ca2+-release (CICR). Opening of an IP3R triggers a Ca2+ 
flux into the cytosol due to the large concentration differences between the two compartments [4-7], 
which is in the range of 3 to 4 orders of magnitudes. The released Ca2+ is removed from the cytosol 
either by sarco-endoplasmic reticulum Ca2+ ATPases (SERCAs) into the ER or by plasma membrane 
Ca2+ ATPases into the extracellular space.  
IP3R are spatially organized into clusters of up to about fifteen channels, which are scattered across the 
ER membrane with distances of 1 to 7 µm [8-12]. The coupling between channels is achieved through 
CICR based on Ca2+ diffusion. Given that the diffusion length of Ca2+ is less than 2 µm, the coupling 
between channels in a cluster is much stronger than the coupling between channels in adjacent clusters 
[13]. The structural hierarchy of IP3R from the single channel to clusters is also reflected in the 
dynamic responses of the intracellular Ca2+ concentration as revealed through fluorescence microscopy 
and simulations [12, 14-17]. Openings of single IP3Rs (‘blips’) may trigger collective openings of 
IP3Rs within a cluster (‘puffs’), while Ca2+ diffusing from a puff site can then activate neighboring 
clusters, eventually leading to a global, i.e. cell wide, Ca2+ spike [15]. Marchant and Parker followed 
the signal generation from its origin at a single channel cluster to the global Ca2+ wave, which 
corresponds to a concentration spike in whole cell recordings [15, 18]. Importantly, repetitive 
sequences of these Ca2+ spikes encode information that is used to regulate many processes in various 
cell types [19-21].  

Cellular spike sequences exhibit a refractory period after a spike [22-26]. The refractoriness has often 
been related to the negative feedback of high Ca2+ concentrations on the open probability of IP3R as 
observed in patch clamp experiments [27-29] (see [5, 30, 31] for reviews). Together with the positive 
feedback of CICR at small Ca2+ concentrations, this negative feedback leads to a bell shaped 
dependence of the stationary open probability of IP3R on cytosolic Ca2+ [6, 32]. The negative feedback 
causes an almost fixed (or deterministic) refractory period of several tens of seconds in the global 
signals. However, such a recovery timescale has not been observed with the local puff dynamics of 
IP3R clusters. Interpuff intervals (IPIs) exhibit a relative refractory period of a few seconds only [12, 
14, 15, 18, 33-35]. Hence, the negative feedback that determines the time scale of interspike intervals 
(ISIs) is different from the feedback contributing to IPI and requires global (whole cell) release events. 

Here, we review the dynamic properties of Ca2+ spike sequences. An important property of ISIs (and 
IPIs) is that they form a distribution. Rather than having a single value for the ISI, cells exhibit a spread 
of times between consecutive spikes. The very existence of a distribution of ISIs hints at the presence 
of fluctuations somewhere in the spike generation process. Broadly speaking, these fluctuations can 
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arise from two different types of processes. With the first one, the variations arise from deviations 
around a constant ISI. In this context, we would assume that the fundamental process giving rise to the 
constant ISI is a deterministic oscillator. With the second one, the emergence of each spike is 
completely random. In this case, the dynamics are truly stochastic. The first process would generate 
regular spike sequences without fluctuations, the second process would not generate any spikes without 
fluctuations. The distinction between a deterministic and a stochastic spike generation mechanism is 
not only important for the choice of the appropriate mathematical description, but also points towards 
the fundamental biological processes that are involved in shaping ISIs. 
To test the two approaches, we take advantage of the fact that they make different predictions with 
respect to the dependence of spike characteristics on cellular parameters. For example, stochastic 
models reproduce the sensitive dependence of the average ISI on the diffusional properties of the 
cytosol, while deterministic models predict independence of the average ISI from diffusion coefficients 
and buffer concentrations [26, 36]. Similar considerations apply to other correlations [16, 26, 37, 38]. 
Stochastic models reconcile dissociation constants of the Ca2+ regulatory binding sites on the IP3R 
measured in vitro with the dynamic behavior and local concentrations in vivo [17], and they offer 
straightforward explanations for the large measured cell-to-cell variability of the average ISI [36, 39]. 
Moreover, the standard deviation of ISIs within a single spike sequence is in many cases of the same 
order of magnitude as the average value, and these fluctuations are an additional source of information. 
As we will see below, the standard deviation presents a better indicator for the IP3R open probability 
than the average ISI. The former is governed by the randomness of the spike generation mechanism, 
while the latter is mostly determined by a global feedback. 

Deterministic models have contributed substantially to the development of concepts and ideas in the 
field. One of the first theoretical considerations was undertaken by Meyer and Stryer in 1988 [40], who 
used a nonlinear dependence of the release flux on the IP3 concentration and suggested a feedback 
through IP3 oscillations. This hypothesized feedback could not be verified experimentally in general 
and led to further model development. A prominent class of models for the IP3 receptor (see [5, 30, 31, 
41] for reviews) considers one site for IP3 binding that sensitizes a subunit for Ca2+ binding, one for 
Ca2+ that activates a subunit, and another one for Ca2+ that dominantly inhibits a subunit. In the 
DeYoung-Keizer-model [27], it is assumed that a channel opens if at least 3 subunits of the tetrameric 
IP3R are in the active state. The different affinities for Ca2+ binding to the activating and inhibiting 
binding sites lead to a bell shaped stationary open probability of an IP3R [5, 32]. Another conceptually 
important model was introduced by Goldbeter et al. [42, 43]. It is based on the existence of two Ca2+ 
pools representing the ER and the cytosol, respectively. Increasing IP3 triggers Ca2+ release from the 
ER into the cytosol inducing further CICR by a positive feedback. After emptying the ER, Ca2+ is 
pumped back by SERCAs into the ER. Repeating this scenario leads to oscillations with similar 
properties as those observed in experiments.  
With the improvement of experimental techniques, a growing number of measurements were published 
that could not be explained within the framework of deterministic models, which neglected the spatial 
arrangement of IP3R clusters. More precisely, these models did not incorporate the Ca2+ concentration 
gradients around an open IP3R cluster and the weaker diffusive coupling between clusters, as compared 
to within clusters (see below). Furthermore, the averaging procedure that leads from the mathematical 
description of all the individual channels in a cell (master equation) to the rate equations of 
deterministic models identifies small probabilities with small currents. If the cell is in a state with small 
open probability, a small fraction of channels is open and causes a small release flux. On the contrary, 
stochastic models that take channel clustering into account identify small probabilities with rare events 
that cause locally large concentration changes and have the potential to cause initiate global spikes [16, 
36, 39]. We will see below that this hierarchic cascade of events (Figure 1) gives rise to dynamical 
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properties and parameter dependences different from those in deterministic models.  

 
2. The dynamics of IP3R clusters 

The local Ca2+ concentration at open channels is orders of magnitude larger than the spatially averaged 
bulk concentrations [44]. Single open channels may cause Ca2+ concentrations in a volume of the size 
of the IP3R channel vestibule of 20-70 µM, several open channels of up to 220 µM [13]. The 
concentration at a distance of only 1 µm from the cluster is orders of magnitude smaller.  

These large Ca2+ gradients around an open cluster of IP3R also raised the question whether the 
nonlinear interplay between Ca2+ release and Ca2+ uptake suffices to reproduce the Ca2+ spike 
sequences observed in experiments. To answer this question, we studied a deterministic model of a 
single cluster in a three dimensional cytosolic environment [17]. The flux through a Ca2+ liberating 
cluster was chosen according to realistic simulations [13] and determined by the number of open 
channels. To compute this number, we employed the DeYoung Keizer model as a prototypical 
framework for IP3R dynamics [45]. Based on Ca2+ fluxes that lead to realistic Ca2+ concentrations at a 
releasing cluster [13], the deterministic cluster model does not generate oscillations. After an initial 
release phase, all channels within the cluster close and remain inactive forever.  
We may understand this behavior by considering the impact of the large Ca2+ concentrations on the 
nonlinear feedback functions that regulate Ca2+ liberation. Assuming that these functions are of Hill 
type (as is the case in most IP3R models), a good measure of the dynamic range of the feedback is the 
dissociation constant KD. Generally speaking, feedback only exists if the Ca2+ concentration is in the 
range of the dissociation constant. For Ca2+ activation, the dissociation constant is in the order of 100-
500 nM, while Ca2+ inhibition is governed by a KD of around 2 µM [46, 47]. Keeping in mind that Ca2+ 
concentrations at a releasing cluster reach peak values of 20-220µM [13], all feedback processes 
saturate. Almost all channels in a cluster become inhibited, they remain inactive even when the Ca2+ 
concentration drops an order of magnitude. A concentration keeping most channels inhibited can be 
maintained with a tiny fraction of channels that remain active. Although inhibition is removed at basal 
concentration values, the Ca2+ concentration is now below the dynamic range of Ca2+ activation, 
locking the cluster in the closed state.  
Given that the existence of deterministic oscillations depend on whether feedback processes saturated 
or not, we investigated the dynamic regimes of the model in more detail [48]. Indeed, the deterministic 
cluster model supports oscillations. However, these are not the oscillations seen in experiments. Firstly, 
the oscillatory regime with respect to the IP3 concentration is too small to be accessed in any 
measurement. Secondly, the oscillation amplitude is too small. At a distance of 1.6µm from the cluster 
center, the Ca2+ concentration oscillates in the nM range with amplitudes of less than 1nM [17]. These 
oscillations could never be observed, nor would they be strong enough to activate adjacent clusters. It is 
worth pointing out that there are multiple potential mechanisms that underlie the disappearance of the 
oscillations including a significant increase in the period (homoclinic bifurcation) and potential chaotic 
behavior (period doubling cascade). 
To reinstate oscillations at a single cluster, we have to incorporate discrete, integer channel numbers in 
clusters and fluctuations at the single channel level. The random opening of a channel prevents it from 
locking in the closed state, and closing of the last channel spontaneously or due to inhibition prevents 
the tiny fraction of open channels from maintaining inhibiting concentrations. Importantly, these 
fluctuations are not due to a small number of Ca2+ ions near a channel. The noise stems from the small 
number of subunits of a channel with only a few binding sites each, since stochastic binding of a few 
IP3 molecules and Ca2+ ions leads to significant state changes. This discreteness forecloses smearing 
out fluctuations by the law of large numbers, and it violates the identification of small probabilities 
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with small fluxes mentioned above. 

This theoretical study has recently been confirmed by experimental results. We investigated in detail 
the IPI distributions in SH-SY5Y cells and HEK 293 cells [35]. IPI distributions reveal a relative 
refractory period of a few seconds on the cluster level, which is in good agreement with earlier studies 
[12, 14, 33, 49]. The average IPI is typically one order of magnitude shorter than the average ISI. Our 
analysis does not reveal any indication of periodicity, neither on the time scale of IPIs nor on the time 
scale of ISIs across puff sequences. Therefore, theoretical and experimental studies have demonstrated 
the lack of the time scale of cellular signals in the cluster dynamics. 

The probability l for a puff can be fitted by an ansatz assuming recovery from negative feedback with 
a rate x and an asymptotic probability l0 [35]:  
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The variable t denotes the time passed since the last puff. Individual puff sites of a same cell exhibit 
large heterogeneity with respect to the values of x and l0. Values for l0 are in the range from 0.18 s-1 to 
0.5 s-1 for SH-SY5Y cells and from 0.5 s-1 to 3 s-1 in HEK 293 cells, and values for x from 0.4 s-1 to 4 s-

1 for SH-SY5Y cells and from 1 s-1 to 90 s-1 in HEK 293 cells. Distributions with large values of x can 
also be fitted simply by the exponential distribution, p(t)=l0exp(-l0t). Clearly, the recovery from 
negative feedback distinguishes both cell types.  

The above distribution and the IPI histograms exhibit only one maximum but no higher order maxima 
at integer multiples of a period. Hence, they do not support the assumption of periodicity on the time 
scale of an average IPI. We could not find any evidence for periodicity, neither on the time scale of 
several IPIs nor on the time scale of cellular ISIs [35]. 

Smith et al. found that the number of open channels during a puff rapidly reaches a maximum value. 
Afterwards, they close randomly and independently with an average rate g=1/(0.017 s) [50]. These 
results imply a puff duration distribution d which obeys 

( ) 11)( --- -=
Ntt eeNtd ggg ,                                                                                                             (2) 

with t denoting the duration of the puff and N denoting the number of channels that are open at the peak 
of the puff. N varies from puff to puff, indicating that not all of the available channels within a cluster 
participate in every puff. Once the first channel opens, the recruitment of additional channels follows a 
probability that is proportional to the third root of already open channels [50]. This could, to a large 
part, be due to the dependence of the local Ca2+ concentration on the number of open channels [13, 51]. 
Puff amplitudes show weak or no correlation with the amplitude of the preceding puff or the preceding 
IPI [8, 35, 50, 52]. Hence, this less than maximal response to the opening of the first channel in the 
cluster cannot be explained by incomplete recovery from a negative feedback. 
In summary, channel clusters have typical dynamics different from both the behavior of isolated 
channels in patch clamp experiments with clamped concentrations as well as cellular dynamics. The 
cluster dynamics are random with time scales a few times faster than cellular spiking. 
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3. The dynamics of cellular Ca2+ spike sequences and the origin of robustness 

How does the cellular time scale emerge from puff dynamics? The generation of a cellular 
concentration spike has been observed in detail in Xenopus oocytes [15, 18]. Not every puff causes a 
global spike but several channel clusters have to open in synchrony in order to activate all other IP3R 
clusters. Ca2+ diffusing from the puff site opening first may activate neighboring clusters, but a 
sufficient number of puffs for setting off a global spike is reached only with some probability (coupling 
probability), not with certainty. The smaller this probability is, the more attempts are required to cause 
a global spike and the larger is the ratio ISI/IPI. The initiation of such a wave (of Ca2+ release) from an 
initial event is called wave nucleation. The minimal number of open clusters causing a global spike 
with almost certainty is called the critical nucleus. The coupling probability depends sensitively on the 
strength of the spatial coupling – and so does the average length of the ISIs. The diffusion of free Ca2+ 
can be easily reduced by loading Ca2+-buffers into the cytosol. Indeed, the average ISI and the standard 
deviation (SD) of ISIs depend sensitively on the buffer concentration, also in cells much smaller than 
the Xenopus oocyte (e.g. HEK and PLA cells, astrocytes, microglia) [26].  
The observation that average and standard deviation of ISIs increase in a coordinated fashion shows 
that the same process determines average length and fluctuations. We conclude that the wave 
nucleation mechanism applies also to small cells, which is additionally corroborated by the observation 
of preferred spike initiation centers in some cells [53]. Figure 2 shows typical data. The relation 
between the SD and the average ISI (moment relation) reveals the existence of a minimal interspike 
interval, which is observed at high stimulation [26]. The minimal ISI indicates the time that cells need 
to recover from the previous spike. At high stimulation, the probability for nucleation of a wave is very 
high, and the next spike comes up very soon after recovery. At low stimulation, the small nucleation 
probability causes a stochastic part of the ISI of considerable length, and the total ISI is the sum of the 
minimal ISI plus the stochastic part. The standard deviation caused by the stochastic part is often of the 
same order of magnitude as the total ISI (Figure 2) [26, 54, 55]. Taking additionally into account that 
successive ISIs are uncorrelated [26], we conclude that cellular concentration spike sequences generate 
random ISIs. The properties of the ISI probability distributions can be explained with the wave 
nucleation mechanism, which is simply the spatio-temporal manifestation of CICR. 
How is this randomness compatible with the function of Ca2+ as a second messenger to transmit 
information? Encoding of the concentration of the extracellular agonist in the frequency of the Ca2+ 
spike sequences is one of the possible modes of information transmission [23, 30, 56-59]. The 
frequency increases with the agonist concentration. However, the stochastic character of the spike 
sequences causes a broad distribution of frequencies instead of a well-defined peak in the Fourier 
spectrum [55, 60]. Consequently, not only the average ISI (corresponding to frequency), but also other 
properties of the ISI distribution encode information. We used the Kullback Entropy to quantify 
information content (Figure 3). This measure is based on a reference process, as which we have chosen 
the spike sequence with constant spike probability, i.e., without feedback. The calculations showed that 
both negative and positive feedback lead to an increase in the maximal information content. Already 
the first measurements showed that the slope of the moment relation is cell type specific [26]. The 
slope of the moment relation of spontaneously spiking cells was measured to be 1. Hence, spontaneous 
spike sequences correspond to the reference sequence. The slope of cells spiking upon stimulation is 
smaller than 1 [26], in excellent agreement with the function of stimulated spiking to transmit 
information. The smaller the slope, the more pronounced is the maximum of the Fourier spectrum and 
the larger is the signal to noise ratio [60]. Positive feedback corresponds to a bursting mode of Ca2+ 
signaling and causes a slope of the moment relation larger than 1 (Figure 3) [55]. 

Biological pathways are always embedded in an environment largely determined by molecular 
fluctuations [61-65]. Signaling pathways on the scale of single cells can be tuned to high accuracy only 
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at very high costs in terms of energy consumption [66]. Therefore, apart from precise function, 
evolutionarily conserved biological systems also must be robust to noisy fluctuations [67-69]. Indeed, 
intracellular Ca2+ signals exhibit huge variability [70, 71]. Therefore, it can be expected that the Ca2+ 
signaling mechanism is not only specific, but also robust: Its biological function should not depend on 
high precision.  

We found in theoretical investigations [36, 39] that the average ISI Tav depends sensitively on details 
like cluster size and cluster distance, which are different from cell to cell (Figure 4A). This is consistent 
with experiments showing huge cell-to-cell variability in Tav (see Figure 2). Obviously, the average ISI 
is not robust and consequently also not frequency encoding. How does Ca2+ signaling then robustly 
transmit information? That question has not been answered yet, but experiments and theoretical studies 
have offered first hints to robust properties.  

The same experiments revealed that the relation between average and standard deviation is robust to 
cell-to-cell variability and contains information on the cell population (Figure 2). By mathematical 
modeling, we found that it is robust against changes of parameter values like puff probability, strength 
of spatial coupling, spatial cluster arrangement or channel closing rate, i.e. parameter values that 
distinguish individual cells of the same cell type (Figure 4B) [36, 39]. Importantly, we did not postulate 
any assumptions about robustness to cell-to-cell variability when formulating the model. In the 
contrary, we assumed the highest possible irregularity (Poisson statistics [72]) for the dynamics of the 
single clusters [39]. The most important ingredient of the model was strong coupling of IP3R within a 
cluster, causing the IPI and puff duration distributions given in Equations 1-2, which were validated by 
live cell imaging [35, 50]. Thus, we found that highly stochastic molecular dynamics in combination 
with emergent behavior can result in robustness.   
In the model simulations shown in Figure 4B, the slope of the moment relation is always one, but in 
many cell types, the slope is smaller than one (Figure 2C), which corresponds to a higher signal to 
noise ratio. How do cells improve the signal to noise ratio to values larger than one ? We found only 
one possibility – global negative feedback. In addition to the local feedback mechanisms resulting from 
the bell shaped Ca2+ response curve, Ca2+ signaling pathways also contain global feedbacks from a 
cellular spike onto the activity of the clusters. A typical example is Ca2+-activated Protein kinase C, 
which inhibits G-protein coupled receptors. Including such global negative feedback into the model 
substantially reduced the slope of the relation between average and standard deviation of ISIs (Figure 
4C) [39]. 

 
4. Modeling of stochastic Ca2+ signals  

The choice of the mathematical framework depends on the purpose of the modeling study. Describing 
the complete spectrum of Ca2+ signals without a priori assumptions on the signal type requires multi-
scale models or hierarchic stochastic models. Inclusion of Ca2+ spiking into models of complex 
pathways, which can dispense with detailed dependencies of spike duration on system parameters, can 
be achieved very easily by using ISI distributions. 
Following the ideas of multi-scale models, we developed a novel simulation algorithm called the 
Green's Cell (GC). It combines the time and length scales depicted in Figure 1 [36, 60]. We describe a 
single channel by a Markov chain according to the DeYoung-Keizer model. Thus, the binding event of 
an IP3 molecule or Ca2+ ion is explicitly determined by a hybrid version of a Gillespie algorithm in 
dependence on the local Ca2+ concentration. An open channel leads to a blip and might activate other 
channels in the cluster. The resulting local Ca2+ concentration is determined by a quasi-steady state 
approximation derived in ref. [51]. On the cell level, the concentration dynamics are governed by a 
spherical reaction-diffusion system, which describes free Ca2+ as well as a mobile and immobile Ca2+ 
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buffer using a multicomponent Green’s function. The open clusters are the stochastic source terms in 
the Green-integral. The analytical solution of the reaction-diffusion system renders the simulations very 
efficient, since we only have to calculate the concentrations at cluster locations for possible channel 
transitions, whereas purely numerical solvers always have to update the concentration at each grid 
point throughout the whole volume. 

The model is able to reproduce all experimentally known Ca2+ signals in dependence on physiological 
parameters including diffusion and buffer properties, cell radius and cluster arrangement as well as 
SERCA activity and IP3R properties [36]. The mechanistic approach allows us to follow a Ca2+ spike 
from its triggering event, the stochastic opening of a first channel, all the way up to the cellular 
concentration spike as shown in Figure 1. Since we can control and monitor all dynamic processes in 
the model we can estimate the role of the different building blocks for the different signal forms. Figure 
5A exhibits a representative time series obtained by GC simulation, which is in good agreement to 
experimental measurements. By varying parameters, the regular spiking can be tuned into more 
irregular and slower spiking or into a kind of plateau response with superimposed oscillations. In this 
way we produced a variety of different Ca2+ spiking signals and determined analogously to experiments 
the dependence of the standard deviation s on the average period Tav of the resulting spike trains. This 
is shown in Figure 5B where again each dot corresponds to such a spike train of one in silico cell. Like 
in the experimental analysis, we observe an offset on the Tav axis that corresponds to the deterministic 
recovery period. The slope of this relation is close to 1 indicating spontaneous spiking (as seen in 
astrocytes) that obey the characteristics of a Poisson process with a regeneration period. Moreover, we 
could reproduce the experimentally observed effect that loading additional Ca2+ buffer renders spiking 
slower and more irregular.  

In extensive simulations, we used fixed cellular setups and varied only one specific parameter leading 
to parameter specific moment relations. They exhibit the robustness properties described above. 
Variation of the spatial distance between channel clusters, the stimulation level in terms of the IP3 
concentration or the pump strength over one order of magnitude leads to a similar slope for a 
population of cells, which are distinguished by the mobile buffer concentration. For standard values 
with single channel fluxes of 0.12 pA, the slope was always close to 1 and therefore in the range of 
spontaneous oscillations as shown in Figure 5C. 
The Green’s cell method was used to study the effect of variations of molecular properties on cellular 
dynamics [9]. We found in patch clamp experiments that isolated channels have a mean open time of 
10 ms whereas open times of single channels located in a channel cluster have a halved open time of 5 
ms. Whether such a change on a ms time scale can influence the cell dynamics on a 100s-time scale is 
hard to answer in experiments, since information on the degree of clustering and channel behavior in 
vivo is difficult to obtain. We performed simulations of identical in silico cells with different IP3R 
properties. We compared global Ca2+ signals from cells with only isolated channels with cells having 
the same number of channels arranged in clusters and obeying the different opening times. It turns out 
that clustering and the change on a microscopic time scale have major impacts on the global dynamics. 
For isolated and diffusively arranged channels no global Ca2+ spikes were observed in the physiological 
parameter range. Due to clustering of these channels, the cell exhibits Ca2+ spikes even with a halved 
open time. The corresponding cellular setups with a hypothetical doubled open time lead to more 
frequent spiking with a on average 4 times faster mean period. 

The problem with detailed models is the limited knowledge of in vivo parameter values for channel 
state dynamics. But even if we knew them, formulation of a complete stochastic theory would be 
impossible due to state space explosion, since a single channel of the DeYoung-Keizer model has 
already 330 states, already. We developed the strategy of hierarchic stochastic modeling to circumvent 
both of these problems [39]. It exploits emergent behavior caused by the hierarchical structure of the 
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Ca2+ signaling machinery. 

The cellular dynamics are determined by the distributions of puff amplitude, puff duration and IPI of 
the cell’s puff sites. Hence, we can formulate a cell model directly in terms of these distributions and 
some information on cluster coupling (Figure 6) [39]. The distributions have been measured in vivo 
[12, 14, 33, 35, 73, 74]. Thus, the model uses experimental input data without requirement for 
information on many parameters of channel state dynamics [39]. Clusters are described by one closed 
state with an open time distribution (single site IPI distribution, see Equation 1) and an open state with 
a closing time distribution (puff duration distribution, see Equation 2). In a setup with Nc channels, the 
number of states is reduced from 330Nc to 2. However, the price that we pay for this considerable 
reduction is that the master equation becomes a system of integro-differential equations instead of the 
original ordinary differential equations. The master equation formulation can be used to calculate ISI 
interval distributions and other characteristics [70,71]. The model can also be used for simulations [39]. 
With this probabilistic model, we are able to predict the relation (see Figure 4). The efficiency of the 
simulations with that model and partially analytical calculations were instrumental for the prediction of 
the robustness properties of the moment relation. We analyzed also the dependence of modes of 
behavior like spiking and bursting on system parameters [39].  
The Green’s cell model and the hierarchic stochastic model provide efficient frameworks to compute 
cellular Ca2+ spike sequences from cellular parameters. Both approaches are based on experimental 
findings and were validated by in vivo data. The hierarchic stochastic model, in particular, also can be 
implemented in an efficient way which should permit its integration into larger models describing 
signaling networks. Nevertheless, for practical applications it would be advantageous to define a 
stochastic process with few generic parameters, which correctly samples the stochastic part of ISI but 
does not consider details of the spike generating mechanism. Samples of this stochastic process would 
provide realistic spike sequences, which can be used in systems level investigations [75, 76] including 
Ca2+ signals. We found that it is indeed possible to follow such a generic modeling strategy, without 
neglecting important characteristics of the spike generating machinery.  
A similar ansatz as chosen for the IPI distributions (see Equation 1) describes also the distributions P(t) 
of the stochastic part t of the ISI very well. We introduce an additional parameter l1, which is negative 
in case of negative feedback and positive for positive feedback: 
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The cumulative distribution function Pc(t) is  
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A straightforward modeling strategy that suffices for many purposes is to draw t from the cumulative 
distribution and to set the sample ISI equal to Tmin+t, with Tmin being the minimal ISI. We found that 
experimental distributions with a slope of the moment relation between 0.5 and 1 are well described 
with the choice l1=-1 (see Figure 3).  
Distributions with slopes of the moment relation smaller than 0.5 cannot be generated by Equation 4. 
The fact that some cell types (e.g. HEK cells) exhibit slopes in the range of 0.2 (see Figure 2) indicates 
more complex dynamics. This can be accounted for by considering cooperativity in the global feedback 
[77], which can be captured by 
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and the corresponding cumulative distribution function (Figure 7). The variable r(t) can be thought of 
as the concentration of a downstream factor mediating global negative feedback - it is temporarilly 
inhibited by cellular Ca2+ signals and regulates the open probability by cooperative binding. l2 would 
then be the maximal rate of spike initiation, n the Hill coefficient and K the half saturation constant. 
These kinetic parameters depend on the specific pathway that provides for the negative feedback. This 
form of the distribution can generate very small slopes down to 0.1 (Figure 7), and it correctly 
reproduces the statistics of all measured ISI sequences available so far.  
The use of distributions for modeling purposes requires knowledge about dependences of distribution 
parameters on cellular parameters. First results for the parameter dependences of l and x exist for the 
case l1=-1, n=0, l2=1 (i.e., for Equations 3-4): Changing the strength of spatial coupling by loading 
Ca2+ buffers into the cytosol changes only l [36, 54], since it moves the cell along the moment relation 
in the SD-average plane, but does not change the relation. Theoretical investigations came to the same 
conclusion [39]. The value of x is equal to the time scale of recovery from global feedback, and Tmin is 
equal to the smallest average ISI observed with the cell sample. These two parameters are cell type 
specific, while l varies between individual cells and increases with increasing stimulation. The 
calculations in ref. [39] and the simulations in ref. [36] strongly suggest that l in Equation 3 depends 
only on parameters the value of which distinguishes individual cells of the same cell type. However, a 
rigid mathematical proof is still lacking. 
Mathematical modeling revealed a surprising reduction of complexity by the stochastic behavior. The 
stochastic scheme for the channel state dynamics has 11 parameters, the diffusion and buffering in the 
cytosol another 10 parameters, SERCAs, ER-cytosol volume ratio, single channel currents, luminal 
buffering, spatial cluster arrangement add even more parameters. Nevertheless, ISI distributions are in 
most cases described by only 3 parameters. The modes of behavior can also be identified by only two 
parameters, one parameter characterizing puff duration and the strength of spatial coupling [39]. The 
coupling is defined as the probability that a single open cluster opens a second one before it closes. 
Hence, all the tens of biological parameters describing the cell and molecules collapse onto 2 or 3 
parameters that describe the spiking behavior. The robustness of the slope of the moment relation is 
related to this enormous reduction of complexity. If a subset of biological parameters determines only 
one specific parameter describing the distribution, the moment relation will not depend on this subset, 
i.e. it is robust against changes of the values of these parameters.  
 

5. Conclusion 
IP3 induced Ca2+ release is organized hierarchically and each structural level (channel, channel cluster, 
cell) has its own dynamic characteristics. Puffs occur randomly and terminate within tens of 
milliseconds and interpuff intervals last a few seconds. Interaction between clusters via Ca2+ diffusion 
and CICR generates cellular Ca2+ spikes, which also occur randomly. The interspike interval (ISI) has a  
deterministic and a stochastic part. The deterministic part is the minimal ISI caused by recovery of the 
cell from the previous spike, and the stochastic part starts after sufficient recovery. The standard 
deviation of ISI is determined by the stochastic part. If the spike generation probability after recovery is 
very high at strong stimulation, the next spike will occur very soon after recovery and the spike 
sequences becomes almost regular. Puffs and spikes exhibit different time scales, since not every puff 
initiates a spike. The weaker the coupling of clusters by Ca2+ diffusion and CICR is, the smaller is the 
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probability that a puff sets off a spike (coupling probability). This causes the sensitive dependence of 
ISI on buffer concentration. 
Average ISI vary strongly among cells, i.e. they are not robust against cell-to-cell variability. The 
moment relation between the standard deviation and the average of ISI is robust. It has a slope equal to 
1 for spontaneously spiking cells and a slope smaller than 1 for cells spiking upon stimulation. Hence, 
stimulated spike sequences exhibit reduced randomness, which favors information transmission. A 
slope of the moment relation smaller than 1 indicates the existence of negative feedback, and a slope 
smaller than 0.5 indicates additional cooperativity in this feedback. Consequently, we can obtain 
information on cellular feedback mechanisms by the analysis of ISI statistics. A more detailed 
theoretical analysis of the effect of feedbacks on the moment relation and ISI statistics will most likely 
reveal more information that we can obtain from cellular measurements. 

Another question deserving future theoretical and experimental investigation is how downstream parts 
of the Ca2+ signaling pathways deal with the randomness of spike sequences. Additionally, the lack of 
robustness of average ISI against cell variability points towards a missing universal correlation between 
extracellular agonist concentration and average ISI. Cells respond either with slow or with fast spiking 
to the same agonist concentration. How do downstream parts of the pathway correct for this variability 
in a cell specific manner, in order to conclude the correct value of the extracellular concentration from 
the Ca2+ spike sequence?  Or, do they not correct for it? The results of these investigations will not only 
provide deeper understanding of Ca2+ signaling but also on cell signaling and the meaning of agonist 
concentration values in general. 
As the signal-to-noise ratio of the Ca2+ signal is pathway specific, and some cells even use the signaling 
mode with least signal precision, the Ca2+ signaling mechanism does not seem to have evolved toward 
maximal signal quality. This questions the paradigm that noise suppression is a primary goal of the 
design of signal transduction pathways [64] or of biological systems in general [65]. The inherent 
robustness of the moment relation in the Ca2+ signal suggests that tight control of the noise level and 
possibly of noise statistics might be more beneficial than the highest possible precision. 
The noise is beneficial for analysis of cell behavior. The standard deviation of ISIs contains information 
on the puff probability and nucleation probability in vivo and their dependence on experimental 
conditions. The moment relation between SD and average indicates the existence, time scales and 
cooperativity of feedbacks. Both properties are noise induced. 
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Figure 1: Mechanism of Ca2+ signaling. Hierarchical organization of the Ca2+ pathway with simulated 
signals of the corresponding structural level. The elementary building block of IP3 induced Ca2+ signals 
is the IP3R channel (bottom). It opens and closes stochastically. An open channel induces a Ca2+ influx 
into the cytosol by the large concentration difference between the ER and the cytosol. Since channels 
are clustered, opening of a single channel, which is called a blip, leads to activation of other channels in 
the cluster, i.e., a puff (middle). The cluster corresponds to a region with Ca2+ release with a radius Rcl 
that depends on the number of open channels. The stochastic local events are orchestrated by diffusion 
and CICR into cell wide Ca2+ waves, which correspond to spikes on the level of the cell (top).  
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Figure 2: Ca2+ oscillations are stochastic. A: Representative time series of a single HEK cell 
stimulated by 30 µM CCh. The upper panel shows the fluorescent signal, which appears rather regular. 
By analyzing the individual interspike intervals (ISI) defined as the time between 2 fluorescent 
maxima, we see that also this apparently regular signal includes fluctuations. B, C: Dependence of 
standard deviation s on the average ISI Tav of individual cells. The standard deviation depends linearly 
on the average ISI and is in the same range as the average for both spontaneous spiking astrocytes (B) 
and HEK cells stimulated with 30 µM CCh (C). This illustrates the stochastic nature of Ca2+ spiking. 
D: Theoretical prediction of the s-Tav relation by the heuristic spiking model (Equations 3, 4) with l1=-
1. The model includes spatial coupling and stimulation strength by the asymptotical nucleation rate l 
and the recovery process by the regeneration rate x. From this model we see that stronger coupling and 
higher stimulation lead to faster spiking by large l values. Furthermore, we observe that the slope of 
the relation depends on the regeneration rate x. For fast regeneration rates the slope is close to 1 
(corresponding to a pure Poisson process). The slope decreases with decreasing x leading to more 
regular spiking. This illustrates how feedback mechanisms tune Ca2+ signals for different downstream 
targets. For more details see [26]. 
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Figure 3: The moment relation reveals information content. A: Moment relation between the 
standard deviation σ and the average ISI Tav for negative (dashed blue) and positive (solid red) 
feedback (see Equations 3, 4). The offset on the Tav-axis correspond to a deterministic recovery period 
Tmin. For λ1 = −1 the slope decreases from 1 for ξ→∞ with decreasing ξ. The positive feedback leads to 
σ > Tav for λ1 > 0 and ξ ≠ ∞. For λ1 > 0, the σ-Tav relation exhibits a concave shape (all rates are given 
in s−1). B: The information content measured by the Kullback entropy K in dependence on the CV= 
σ/Tav for Tmin=0 and fixed λ = 0.01 s−1. Lines are generated by varying λ1 = −1 . . . 1.5 s−1 where 
negative values were observed in stimulated cells and positive λ1 may arise due to small pump activity. 
ξ decreases from the bottom solid line to the upper line from 0.01 s−1 to 0.005 s−1 and to 0.002 s−1. 
Figure from [55]. 
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Figure 4: Ca2+ spikes are functionally robust. A: The average interspike interval Tav depends 
sensitively on cellular parameters. B: The slope of the relation of Tav and the standard deviation s is 
equal to 1 for all values of parameters in the models without global feedback. Upper triangles: cluster 
distance a = 1.5 µm; lower triangles: a = 5 µm; black symbols: tetrahedron model; red symbols: regular 
cube model; pink symbols: cube model with randomly shifted vertex positions; blue circles: analytical 
solution of the tetrahedron model with a = 1.5 µm. C: The σ - Tav relation can be adapted by global 
feedback, implemented here by inhibition of the puff-rate after a global spike and recovery with rate ξ 
(Equation 1). All upper triangles: ξ = 0.1 s−1; all lower triangles: ξ = 10−3 s−1. The relations are identical 
for the tetrahedron model (black symbols), the cube model (red) and the irregular cube model (pink). 
Reprinted from ref. [39].  
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Figure 5: Modeling the Ca2+ signaling pathway by the Green’s Cell algorithm. A: The simulated 
Ca2+ dynamics of a Green’s cell exhibit a similar behavior as typical experimental time series. 
Analogously to Figure 2A, the upper panel shows the free cytosolic Ca2+ concentration and the lower 
panel the individual interspike intervals. B: The standard deviation – average ISI relation obtained from 
simulations. By varying IP3, buffer and cytosolic calcium resting concentration, the Green’s cell 
method produces a variety of different spike patterns from nearly regular oscillations to slow and 
random spiking. From the resulting spike trains, the standard deviation s and the average period Tav 
were determined. Their linear relation has a slope close to 1 and thus corresponds to spontaneous 
spiking cells in experiments. The coincidence of this bottom-up approach with experiments indicates 
further that the puff-to-wave nucleation mechanism produces reliable relations between statistical 
quantities. C: Evidence for functional robustness. In extensive parameter scans, we analyzed the 
behavior of the s-Tav relation. Interestingly, we found that the slope of the relation is rather robust 
against variations of the spatial cluster arrangement, IP3 concentration and SERCA activity over one 
order of magnitude. For standard values leading to a single channel current of 0.12 pA the slope is 
always close to 1 whereas at ten times higher current of 1.2 pA leads to a slope of around 0.6 since 
concentration changes caused by individual clusters are not local anymore. For more details see [36]. 
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Figure 6: Hierarchic stochastic modeling of Ca2+ spikes. A: This recently developed modelling 
strategy starts from channel cluster characteristics. The interpuff interval IPI and puff duration 
distributions can be measured in vivo. That circumvents the problem arising from using parameter 
values of channel state dynamics from in vitro experiments for cell simulations. B: The model with 4 
clusters arranged as the vertices of a tetrahedron is the simplest non-trivial implementation, because all 
configurations with the same number of open clusters are equivalent. Events with one open cluster 
correspond to puffs, and with 4 open clusters to spikes. C: The number of events with all clusters open 
(Ca2+ spikes) is similar to the tetrahedron model in the model with 8 clusters forming the vertices of a 
cube although the number of possible system configurations is much larger. Reprinted from main text 
and supporting information of ref. [39]. 
 

 
 

 
 

 
 

 
 

 
 

 
 

 



 22 

 

 
 
Figure 7: Cooperative feedback reduces the slope of the moment relation. A: We add cooperativity 
to the global feedback by considering Hill kinetics for an activator r(t) of Ca2+ channels, which is itself 
inhibited after a Ca2+ spike (Equation 5). B: Moment relations between average and standard deviation 
of interspike intervals resulting from cooperative feedback. The black + symbols are computed from 
Equation 3 with l1=-1 (i.e., linear response to r(t)), the other symbols result from Equation 5 with Hill 
coefficient n as indicated. Moment relations are obtained by variation of  l, other parameter values 
are l2=1, K=1 µM, x= 0.001 s−1. 


