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Abstract

The design of small interfering RNA (siRNA) is a multi factorial problem that has gained the attention of many researchers in
the area of therapeutic and functional genomics. MysiRNA score was previously introduced that improves the correlation of
siRNA activity prediction considering state of the art algorithms. In this paper, a new program, MysiRNA-Designer, is
described which integrates several factors in an automated work-flow considering mRNA transcripts variations, siRNA and
mRNA target accessibility, and both near-perfect and partial off-target matches. It also features the MysiRNA score, a highly
ranked correlated siRNA efficacy prediction score for ranking the designed siRNAs, in addition to top scoring models
Biopredsi, DISR, Thermocomposition21 and i-Score, and integrates them in a unique siRNA score-filtration technique. This
multi-score filtration layer filters siRNA that passes the 90% thresholds calculated from experimental dataset features.
MysiRNA-Designer takes an accession, finds conserved regions among its transcript space, finds accessible regions within the
mRNA, designs all possible siRNAs for these regions, filters them based on multi-scores thresholds, and then performs SNP
and off-target filtration. These strict selection criteria were tested against human genes in which at least one active siRNA
was designed from 95.7% of total genes. In addition, when tested against an experimental dataset, MysiRNA-Designer was
found capable of rejecting 98% of the false positive siRNAs, showing superiority over three state of the art siRNA design
programs. MysiRNA is a freely accessible (Microsoft Windows based) desktop application that can be used to design siRNA
with a high accuracy and specificity. We believe that MysiRNA-Designer has the potential to play an important role in this
area.
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Introduction

siRNAs are small double-stranded non-coding RNA molecules

capable of utilizing the RNA interference gene regulatory

mechanism. As such, they are capable of down-regulating mRNA

and causing targeted gene silencing. This induced gene silencing is

naturally utilized to target foreign genetic elements inside cells and

has been utilized extensively to identify gene functions (functional

genomics studies) or even (as an ultimate goal) treat certain gene-

mediated diseases such as Cancer. For this reason, siRNAs have

become a core interest of many biological research laboratories in

the last decade. Several efforts have been made to rationalize

siRNA design, starting with Tuschl principles [1], Reynolds [2],

Amarzguioui [3], Takasaki [4], Katoh [5], Ui-Tei [6], and Hsieh

[7] who developed some of the first-generation position dependant

tools for siRNA design that had a relatively low correlation to

actual siRNA activity [8].

This was followed by second-generation tools such as Biopredsi

[9], ThermoComposition21 [10], DSIR [11], i-Score [8], siRNA

Scales [12], using intelligent data-mining approaches. Although

these tools provide guidance for evaluating the siRNA-mRNA

binding, and predicting their silencing efficiency, other aspects

need to be taken into consideration for proper design of siRNAs

with high specificity and sensitivity. The first aspect is alternative

splicing, as the entire gene transcripts should be assigned for

targeting and only the conserved regions between multiple

transcripts should be targeted, as one mismatch between alternative

transcripts and siRNA may dramatically affect siRNA efficiency

[13,14]. In the experiment carried out by Czaudema, there was

noticeable decrease in the efficacy of designed siRNA when central

single nucleotide variation was induced between the siRNA and the

targeted mRNA [15].

The second aspect is target accessibility and thermodynamic

features of both siRNAs and targeted mRNAs, for which several

studies have been performed to investigate thermodynamic

features affecting siRNA functionality. These features include

thermodynamic differential end instability as a key feature

reported in different studies [16,17], unstructured guide strands

(unstable siRNA secondary structure) [18], and high probability of

siRNA terminal-ends to single-stranded (unpaired) nucleotides

[19,20]. All of these affect siRNA and mRNA binding, and are

correlated with their silencing efficiency [18,21]. Target mRNA

accessibility evaluation is crucial for proper designing of efficient

siRNA, as mRNA tends to form secondary structure that affects its

accessibility and hence reduces the capability to design siRNA

targeting certain regions of mRNA. Therefore, target accessibility
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evaluation represents an important cornerstone and rate-limiting

step in siRNA design and selection. The effect of target secondary

structure and RNA interference was extensively studied using

different datasets ranging from 100 siRNA targeting three genes,

to 3,084 siRNAs targeting 82 genes, showing correlation between

secondary structure and interference efficiency [22–26]. It has

been suggested that siRNA structure affects it efficiency by

reducing its ability to bind to the target site and/or hindering

RISC-siRNA interaction [18].

Several siRNA sequence features affect structural accessibility,

such as GC-rich regions and palindrome regions that lead to the

formation of stable intra-molecular structures [27]. Moreover, the

energetic calculations are considered another aspect to evaluate

siRNA-mRNA target accessibility. Since the interaction between

two RNA sequences (siRNA and mRNA) requires energy in two

distinctive phases: the phase where energy is needed to open the

binding site (mRNA opening energy) and the opening of the

siRNA duplex (siRNA guide-strand release), and the second phase

where energy is required for the hybridization between the guide-

strand and the mRNA. The summation of these two energies is

defined as the total interaction energy. The energy required for

opening the siRNA duplex and mRNA should be less than the

hybridization energy between siRNA and the mRNA. There is

evidence of the correlation between siRNA inhibition efficiency

and siRNA-mRNA binding energy [28] that strengthens the

findings of Ladunga, in which target accessibility information was

found to provide the most predictive feature among the 142

features studied and improve the prediction of highly efficient

siRNA [21]. Upon testing siRNAs against gradually less accessible

target sites, it showed that there was correlation between the target

accessibility and the siRNA efficiency [28,29].

The third aspect is off-target filtration, as single siRNA could be

targeting several mRNA targets by either sense or antisense [30].

‘‘Ideally, the siRNA must not cause any effects other than those

related to the knock down of the target gene’’ [31]. Two main

mechanisms have been identified for siRNA being induced off-

target: either by provoking innate immunity effects or by

complete/partial homology with unintended mRNA [27]. The

innate immunity effect is caused either by cytosolic double-

stranded RNA (dsRNA) immunorecognition that could be avoided

by using siRNA with length less than 30 nts [32], or triggered via

Toll-like receptor 7 sequence-dependent immunorecognition.

Although siRNAs with length less than 30 nts avoid Cytosolic

dsRNA immunorecognistion they are capable of triggering Toll-

like receptor 7 recognition[18]. Identification of motifs such as 59-

GUCCUUCAA-39, 59-UGUGU-39 and tetrad-forming poly (G)

stretches, and avoidance of their presence in the sensitized siRNA,

helps overcome Toll-like receptor recognition.

As per Homology-based off-targets, it is very common for

siRNA to have multi-targets due to their relatively small length. In

fact, both sense and antisense are known to have an off-target

effect with several mRNA transcripts [30,33]. This type of off-

target could be subclassified into two subtypes. First type is

‘‘Complete or near complete off-target’’ (Complete homology off-

target). Whenever the designed siRNA is completely identical with

a region (or with one mismatch) in an unintended mRNA it could

lead to the destruction of that mRNA with the same mechanism

that siRNA silences the intended mRNA. Alternatively, siRNA

could cause ‘‘partial off-target’’ (seed matching off-target) effects,

in cases where the designed siRNA seeding region (second to

seventh position) matches with 39UTR of off-target, affecting its

translation [34]. This homology based off-target could affect

siRNA potency as they become unavailable to bind with the

intended mRNA. Therefore, siRNA having off-target effects may

be considered undesirable [31,11]. Several studies have examined

the use of chemical modifications to mask siRNA off-target effects,

as summarized in [35,27].

Here, we introduce an automated tool capable of designing

siRNA which takes into account multiple transcripts filtration,

target accessibility and off-target filtration evaluation in a desktop

application named MysiRNA-Designer. This is combined with a

unique multiple score filtration and efficiency prediction using our

specially designed filtration layer. We subsequently applied our

strict filtration step on whole human mRNA to demonstrate the

practical usage of the tool against experiment datasets and human

mRNA.

Discussion

Design and Implementation
MysiRNA-Designer, presents an automated workflow for siRNA

design that implement various scores and state of the art

algorithms [Figure 1]. It passes through seven phases and

filtration steps in order to design double stranded (ds) siRNA with

high potential to induce the desired silencing effect. First, the

desired gene is targeted via selection of one of its transcripts.

Next, sequence space is assigned by examining the targeted

mRNA sequence, selection regions that are conserved among the

mRNA other transcripts (if any). It is essential to ensure they are

free from any single nucleotide polymorphisms (SNPs). Thirdly,

all possible siRNAs are designed with the length of 19 nt via one

nucleotide shift through the sequence space selected earlier. All

these are then subjected to an evaluation step that predict their

efficiency using ten state of the art models (see below) as the

fourth filtration step. A cut-off score is determined for each of

these tools to accept or reject the siRNAs candidates. MysiRNA-

Designer takes the intersection between all of these tools to increase

the specificity and reduce the number of false positive as much

as possible. The fifth step considers the evaluation of target

accessibility including both secondary structure evaluation and

energetic calculation between siRNA strands and siRNA-mRNA.

The energetically favoured, target accessible siRNAs pass to the

following step where off-target filtration starts, rejecting siRNA

that lacks specificity by having off-targeted mRNA(s) either

homology based or seed matching based, following a state of the

art protocol for off-target evaluation. Finally, all siRNAs that pass

these filtration steps are evaluated according to the MysiRNA-

model, an artificial neural network model previously described by

the authors capable of predicting siRNA efficiency with improved

efficiency and sensitivity. We used this model to re-evaluate the

siRNA candidates and provide the user with the ability to select

the siRNAs passing a specified score level. These steps will be

discussed in more detail below.

Stage 1–2: Sequence Space Preprocessing. Various

preprocessing techniques were combined to refine the targeted

sequence and locate the most representative and conserved

region(s) within it. Then, these strict refining constraints were

validated. In order to rationally refine the target sequence space,

two preprocessing steps were proposed (as a modification of the

Birmingham guidelines, [27]) [Figure 2]:

(i) In case of genes with multiple transcripts, all the gene’s

transcripts should be targeted to accomplish complete gene

silencing. In order to achieve this constraint, all genes’

transcripts have to be aligned together and the common

regions (conserved regions) located among them. These

conserved regions pass to the next step to continue the

preprocessing [Figure 3].

MysiRNA-Designer
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(ii) The second and final step of preprocessing is the exclusion of

single nucleotide polymorphisms (SNPs). SNPs represent

small areas (a few nucleotides long) which are known to have

high chance of variations (polymorphism). In this step, SNPs

residues are excluded, leaving the conserved, stable, SNPs

free regions.

After sequence space preprocessing, the proposed multi-score

filtration was used to evaluate each potential siRNA and filter

them. Only siRNAs that passed this multi-score filtration are

considered to be active, so that off-target evaluation could be

conducted.

Step 3–4: MysiRNA-Designer Multi-Scores Filtration.There

are several methods for scoring and predicting the designed siRNA

activity, some more accurate than others. However, they are

generally classified into two groups (Ichihara et al. 2007): (i)

Huesken dataset non dependant [first generation] [9]; and (ii)

Huesken dataset dependant [second generation]. The first

generation tools depend on differential end GC content

evaluation and base pair preferences. These rules have been

implemented in models such as Reynolds [2], Amarzguioui [3],

Takasaki [4], Katoh [5], Ui-Tei [6] and Hsieh [7]. The second

generation tools, on the other hand, developed via extensive

examination of the Huesken dataset, comprise models such as

Biopredsi [9], DSIR [11], ThermoComposition21 [10] and i-Score

[8].

In MysiRNA-Designer, a filtration stage is implemented which

takes into account high accuracy models, both first and second

generation. For the first generation models, the Huesken dataset

[9] was examined and active siRNAs were isolated. Then we used

Figure 1. Different phases for designing siRNA with high efficiency & sensitivity. There are seven distinguished phases for siRNA design: 1st

choosing the targeted gene for silencing. 2nd identifying the proper target sequence space that represent all gene’s transcripts and doesn’t have any
SNPs. 3rd designing all possible siRNA with nineteen nucleotides length with both sense and antisense strand. 4th these potential siRNAs are scored
and evaluated according to several scoring mechanisms and criteria and then filter them according to produced scores. 5th siRNA are filtered
according to target accessibility. 6th off-target filtration of the remaining siRNA is performed excluding siRNAs with unwanted off-target effect. 7th

select the best designed siRNAs that passes all the previous filtration phases and achieve the highest predicted efficiency.
doi:10.1371/journal.pone.0025642.g001

MysiRNA-Designer
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these experimentally verified siRNAs to assign threshold scores for

each of the first generation models. The data was subjected to a

normalization step to remove outliers, using a standard deviation

calculation [Table 1]. The second generation tools were handled

differently, knowing that these tools aim to predict the siRNA

inhibition efficiency (rather than providing scores reflecting rules

compliance as in the first generation). A threshold of 70% was

assigned for each model, siRNA above this threshold were

considered efficient and below this were considered inactive, as

per [12]. By taking the intersection between all these models, we

developed our multi-scores filtration stage that enables identifica-

tion of siRNAs capable of producing the silencing efficiency

desired. This multi-scores filtration phase reduces the incidence of

false positive (i.e. increases the specificity) of the designed siRNA.

The efficiency of our proposed multi-scores filtration was

demonstrated in a comparative analysis against each of the first

and second generation tools, as discussed below.

Step 5: Target Accessibility. Target accessibility evaluation

is a crucial step that affects siRNA inhibition efficiency, as it

reflects where the mRNA is more likely to be accessed by short

oligomers such as siRNAs. As discussed previously, energetic

calculations are required on two occasions, firstly, duplex energy

(hybridization energy) and, secondly, opening energy that should

be calculated for both siRNA duplex (ds-siRNA) and targeted

mRNA. In addition to the total binding energy, RNA secondary

structure evaluation should also be taken into account [36]. The

siRNA mediated gene silencing is mainly mediated through

activation of a complex named an RNA induced silencing

complex (RISC) that later binds to the siRNA sequence and to

the complementary mRNA [27]. The target accessibility effect on

siRNA efficiency is derived from the fact that the RISC is able to

bind only to single stranded regions, free from any secondary

structures and that the RISC is unable to unfold the RNA

structure [37].

Several programs are used to calculate the binding energy, such

as RNAduplex, RNAplfold and RNAup, which are capable of

calculating the binding energy partially or in total [28]. RNAduplex,

Figure 2. Different preprocessing steps in order to identify the
representative sequence space within the mRNA. Sequence
space should be free from unstable regions (black color) and SNPs
(green color) occurrence, which is conserved among different gene
transcripts (red color) which are later, used as a template for siRNA
design.
doi:10.1371/journal.pone.0025642.g002

Figure 3. Decision flow of targeted gene’s multi-transcript
filtration phase implemented in MysiRNA-Designer. MysiRNA-
Designer first check whether the mRNA entered has any other
transcripts, if such cases, I get the other transcripts using NCBI blast,
and perform multiple sequence alignment to these sequences. The un-
gapped consensus is later calculated in order to Design siRNA targeting
the desired sequence space.
doi:10.1371/journal.pone.0025642.g003

MysiRNA-Designer
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RNAplfold and RNAup belong to the Vienna RNA package

(available online at http://www.tbi.univie.ac.at/,ivo/RNA/). In

MysiRNA-Designer, we used the RNAxs program in our workflow to

evaluate target accessibility. RNAxs combines RNAfold [38], which

predicts RNA secondary structure, with target accessibility energy

calculations using RNAplfold and RNAduplex [26]. RNAxs provided

two major advantages: a time reduction and a single-phased

process. RNAxs was included with two other target accessibility

based programs (OligoWalk & Sirna) in a comparative analysis study

[36]. Only RNAxs was able to identify siRNAs with inhibition

efficiency greater than 50%, and classify up to 50% of

experimental siRNA. Hence, in MysiRNA-Designer, only siRNAs

with acceptable target accessibility profile according to RNAxs are

considered as successful candidates and subjected to further

analysis. The detailed RNAxs parameters can be found in the

supplementary data (Table S1).

Step 6: Off Target Filtration. The designed siRNA are

filtered to evaluate their tendency to trigger off-targets effect using

the mRNA dataset. This process is considered the rate-limiting

step as it is time consuming to search and evaluate the siRNAs

candidates. As discussed previously, there are two types of homo-

logy based off-targets, either complete/near-complete off-targets

(‘complete homology’) or partial off-targets (‘seed matching’). First,

the candidate siRNA is blasted against a mRNA refseq dataset that

can be downloaded from (ftp://ftp.ncbi.nih.gov/blast/db/), using

Blastall to identity complete homology off-targets. siRNAs having

19 (complete) or 18 (near complete) complementarily with the off-

targeted mRNA are considered off-targets and are rejected.

siRNAs that successfully pass this filtration stage are subjected to

another stage to identify siRNA with partial off-targeting tendency

seed matching. siRNA that binds using its seed region (2nd to 7th

nucleotides from its 39UTR end) to the off-targeted mRNA is

subjected to this stage of evaluation [Figure 4]. The mRNA

39UTR is downloadable from ensemble at http://www.ensembl.

org/index.html. As the default parameters are improper for

siRNA blasting, it is very important to adjust blast search

parameters as recommended in the work of [27], see supple-

mentary data for detailed Blastn parameters (Table S1). Only

siRNAs with no complete homology or seed matching homology

with mRNA are accepted.

Step 7: Selection of the Best siRNA candidates. The

successful candidates from all of the previous steps are finally re-

evaluated using the MysiRNA model. It acts as second layer neural

network combining the whole stacking energy together with

two best performing algorithms, enhancing both specificity and

sensitivity when compared to other models (as described

elsewhere). siRNAs exceeding a score of 93 were considered

active. This strict filtration step was able to boost the specificity of

the program without significantly affecting the sensitivity (see

Results).

MysiRNA-Designer Input, Options, Output, Data and Tools
By entering the Accession Number (RefSeq-ID assigned for

each mRNA), MysiRNA-Designer connects to the National Center

for Biotechnology Information (http://www.ncbi.nlm.nih.gov/)

and obtains the sequence information of that accession number.

The software accepts either accession or a list of accessions and

offers the user the capability of selecting the MysiRNA-model high

specificity threshold. Then it finds all available transcripts using

remote BLAST (Bioperl package). It performs multiple sequence

alignment (MSA) between those transcripts using ClustalW

(available at ftp://ftp.ebi.ac.uk/pub/software/clustalw2/). Then,

it uses CONS tool to get the 100% consensus between these

different transcripts (CONS belongs to the EMBOSS package

at http://www.interactive-biosoftware.com/embosswin/embosswin.

html). The software designs of all possible siRNAs within the

consensus, using one nucleotide frame shift. These siRNAs are

filtered, removing those with any occurrence of Single Nucleotide

Polymorphisms (SNPs), then it performs target accessibility

evaluation using RNAxs [26] combining RNAfold, RNAduplex and

RNAalifold. After performing both SNPs filtration and target

accessibility filtration, the accepted siRNAs are subjected to our

designed multi-score filtration using ten different tools, [2–11].

Those siRNA having acceptable scores are subjected to off-target

filtration step, as described in Methods [Figure 5]. The output is

produced in a ‘fasta-like’ format with various scores of each tool in

the header and siRNA antisense and sense sequence in the fasta-

body, together with the MysiRNA-model score.

Results

Comparison and Evaluation of MysiRNA-Designer scores
to other Algorithms

In this work, a multi-score filtration algorithm was implemented

in MysiRNA-Designer that takes into account the intersection

between ten siRNA scoring tools. These tools were developed

using either position preferences rules or a sophisticated data

mining approached to evaluate siRNA-mRNA binding and

predict the silencing efficiency. Two comparative studies were

conducted using the data presented by Fellmann et al [39],

consisting of nine genes, in which each possible siRNAs were

designed and experimentally tested. First, we compared the

Table 1. Assigned threshhold scores using the Huesken dataset to analyse each scoring tool to two thresholds to filter siRNA with
expected inhibition efficiency 90%.

Min score Min Threshold Mean Max Threshold Max score Standard Deviation

Reynold 0 1.9 5.52 9.15 10 1.81

Ui-Tie III III Ib Ia Ia 0.84

Amarzguioui 22 21.21 2.04 5.3 5 1.62

Katoh 31 42.03 69.52 97.01 103.9 13.7

Hsieh 22 21.11 1 3.11 4 1.05

Takasaki 211 210.22 1.92 14.06 20.2 6.07

First, siRNA with inhibition efficiency above 90% are isolated from the dataset. Then for each scoring tool, the mean and Standard deviation is calculated and the
minimum and maximum thresholds are assigned by deviation from the mean by two folds of standard deviation.
doi:10.1371/journal.pone.0025642.t001

MysiRNA-Designer
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specificity of our proposed multi-score filtration technique against

the other models. It was found able to separate active siRNAs from

inactive ones with enhanced efficiency and specificity, with the

least number of false positive siRNA (Specificity of 93%). In the

second study, we applied another score filtration layer, which

depends on our previously developed model for siRNA efficiency

prediction ([40], submitted). This modification was able to

enhance the specificity up to 97%, without significantly affecting

the sensitivity [Table 2], for detailed results, see Supplementary

Data (Table S2).

Prediction of Active siRNA with MysiRNA-Designer on 10%
of Human Genome

To test the practicality of this proposed multi-score filtration,

10% of human mRNAs were subjected to this filtration stage

within this study. To guarantee the selection of a representative

sample, one percent were selected from the mRNA dataset (NCBI

mRNA refseq latest release with 46,395 mRNA records) in every

10% (i.e. 464 records were randomly selected every 4639 records),

see Supplementary Data (Table S3). This sample covered genes

with different transcripts ranging from one to 13 transcripts. In this

study, two filtration systems were applied: firstly, multi-score

filtrating using the upper and lower threshold for each score

[Table 1] and secondly, targeted sequence space limitation only to

the consensus between multiple transcripts. After examining the

results, it was found that 95.65% of the mRNAs had at least one

siRNA that met the selection criteria. This showed the practical

usage of this multi-score filtration together with multi-transcript

filtration. To study the results of multi-score filtration alone, only

genes with single transcript were examined (to eliminate the effect

of multiple-transcript filtration). It was found that 96.76% of those

mRNAs had at least one siRNA passing this strict filtration

condition with an average of 132 siRNA per gene.

Comparison Between MysiRNA-Designer and Several
Programs According to the Workflow Implemented

We conducted a comparison between MysiRNA-Designer and

several siRNA designing tools such as siDESIGN Center, Asi-Designer,

and RNAxs. The comparison included stages implemented in each

tool, such as the tool’s ability to consider multiple transcripts and

Figure 4. Off-target filtration workflow describing decision making process for siRNAs off-target filtration. Initially, MysiRNA checks the
existence of off-target for each siRNA, using mRNA reference sequences. In case where off-target has been found, it check whether it is a complete
homology (with one or two mismatch), where it is be rejected. In cases free from complete homology, it s check the existence of seed Homology,
where the siRNA seed region (2nd to 3rd nts) matches with the off-targeted mRNA 39UTR. If the siRNA free from both complete homology and seed
matching homology it is considered as off-target free and hence pass this filtration step.
doi:10.1371/journal.pone.0025642.g004

MysiRNA-Designer
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Figure 5. Flow chart of ‘‘MysiRNA-Designer’’ program. MysiRNA-Designer takes an accession; get the mRNA sequence from NCBI-GenBank. Finds
out if this mRNA has other transcript(s), performs multiple sequence alignment with the transcripts, if any, and takes the consensus un-gapped
sequence, designs all possible siRNA in targeting sequence space available; performs target accessibility evaluation selection siRNA with energetically
and structurally favored siRNA-mRNA binding. Predict siRNA efficiency using the implemented multi-score filtration; select the candidates that pass
the threshold assigned for each of the ten tools used, eliminates siRNA targeting SNPs regions or off-targeted mRNA, either complete or seed
homology off-target. Finally, MysiRNA-Designer shows the accepted candidates with the predicted silencing efficiency using MysiRNA-Model, it filters
candidates above the assigned threshold, as the user requires.
doi:10.1371/journal.pone.0025642.g005

Table 2. Evaluation of the specificity and sensitivity of different models compared to MysiRNA-Designer two modes (Intersections
of different scoring modelsand MysiRNA model 93% on the Fellmann experimental dataset.

Ui-Tei Amar Hsieh Taka Biopredsi i-Score Rey Katoh DSIR Thermo21
Multi-
Scores

MysiRNA-
Model 93%

Sensitivity 0.99 0.97 1.00 1.00 0.73 0.32 1.00 0.68 0.85 0.84 0.30 0.22

Specificity 0.13 0.13 0.01 0.01 0.69 0.92 0.01 0.68 0.54 0.55 0.93 0.97

TP 236 232 238 237 173 72 119 161 203 199 69 24

FN 2 6 0 1 65 166 119 77 35 39 169 214

TN 2476 2421 268 218 12605 17203 15213 12506 9955 10008 17315 17820

FP 15879 15934 18087 18137 5750 1152 3142 5849 8400 8347 1040 535

The combination of multiple scoring tools rather than single one, in our designed multi-scores filtration stage perform with enhanced efficiency when compared against
experimental data results [39]. This study involved tools such as: Ui-Tei [6], Amarzguioui [3], Hsieh [7], Takasaki [4], Biopredsi [9], i-Score [8], Reynolds [2], Katoh [5], DSIR
[11] and ThermoComposition21 [10], in order as shown in the table. As our aim to reject as much false positive (FP) as possible, the intersection between tools provided
solid, more reliable results with specificity up to 93%. In addition, we used MysiRNA-Model, an Artificial Neural Network model for siRNA scoring and efficiency
prediction, via assigning a threshold of 93% above it siRNA candidates were considered accepted. This modification was integrated with our multi-score filtration
algorithm and was able to boost the specificity up to 97% [see supplementary data].
TP = true positives, FN = false negatives, TN = true negatives, FP = false negatives.
doi:10.1371/journal.pone.0025642.t002

MysiRNA-Designer
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select conserved region analysis, Target accessibility evaluation,

SNPs, and Off-target filtration covering both complete (full

homology) and partial (seed region) filtration [Table 3]. These

steps represent state of the art approaches for efficient design of

siRNAs [41]. As illustrated, MysiRNA-Designer performs all of the

above mentioned steps required for efficient siRNA design, while

the other tools do lack some of the mentioned criteria.

Comparison between MysiRNA-Designer and Several
siRNA Design Programs

MysiRNA-Designer was involved in a comparative study against

other siRNA design tools to assess their ability to select active

siRNAs and reject inactive ones. Essentially, these tools are

expected to reject as many false positives as possible, while

retaining the ability to design one or more active siRNAs. We used

the complete data from nine genes, for which each of the possible

siRNA was designed and tested [39].

The data shows Short Hairpin RNAs that are processed to

siRNAs, and their experimentally verified inhibition efficiency.

Three other siRNA design programs were compared to MysiRNA-

Designer in this study: siDESIGN Center, Asi-Designer and RNAxs. The

results of each program were compared to the experimental data

results and the results can be subclassified into four types: True

Positive (TP) and True Negative (TN) when the program

successfully managed to identify active siRNA and inactive

siRNA, and False Positive (FP) and False Negative (FN) in cases

when the program falsely identified inactive siRNA as active, or

active siRNA as inactive, respectively. Both the sensitivity (which

reflects the ability to identify true positives) and specificity (which

reflects the ability to reject false positives) were taken into

consideration. MysiRNA-Designer was found capable of designing

siRNA with high level of specificity and sensitivity. It achieved a

specificity of 0.96 to 0.98 (2/+ MysiRNA-Model score filtration)

compared to AsiDesigner, siDesign and RNAxs which achieved 0.95,

0.94 and 0.76, respectively [Table 4], for detailed result see

supplementary data (Table S4).

It can be interpreted that the inclusion of target accessibility

evaluation enhanced the specificity from 0.93 (based on multi-

score filtration solely, shown above) to 0.96. These findings

demonstrate the superiority in terms of specificity, of MysiRNA-

Designer over the other tools involved, as 98% of siRNA designed

are expected to be active. In addition, they demonstrate the ability

of MysiRNA-Designer to design both siRNAs and shRNAs.

However, the results show a decrease in sensitivity, which may

be tolerated, as the main purpose is to reject false positives.

Conclusion
MysiRNA-Designer is free desktop-based software capable of

designing siRNA with a high level of specificity and sensitivity. It

runs on Microsoft Windows environment, allowing it to be used by

the vast majority of users, especially the non-computer experi-

enced scientists. It combines the implementation of several

algorithms and state of the art tools for proper siRNA designing.

Sequence space is preprocessed, considering differential splicing,

to allocate the targeted regions. Several filtration steps take place

as SNPs filtration, target accessibility filtration, multi-score

filtration and off-target filtration. MysiRNA-Designer was tested

against human mRNA and experimental data and achieved

improvements in the results obtained by other similar tools.

Hence, we believe it may play a key role in this field. MysiRNA-

Designer is a freely accessible through the journal supplementary

data, MysiRNA-Designer S1. For information about the installa-

Table 3. Comparison between MysiRNA-Designer and several programs used for siRNA full automation designing.

Tools name
Multi-transcripts
Consideration

Conserved
Region
Analysis

SNPs
Evaluation

Multi-
algorithms
Scoring

2ry structure
Evaluation

Target
accessibility

Full
Homology
Off-target

Seed Region
off-target

Server
Based

MysiRNA-Designer + + + + + + + + 2

siDESIGN Center *1 + + + 2 2 2 + + +

Asi-Designer *2 + 2 + 2 + 2 + 2 +

RNAxs *3 2 2 2 2 + + 2 2 +

This Comparison involves tools ability to perform alignment between different transcripts, conserved regions consideration. All together with siRNA candidate
evaluation using several algorithms and target accessibility. siRNAs iltration by the presence of Single Nucleotide Polymorphisms and off-targets (both full homology
and seed regions).
*1 siDESIGN Center available at http://www.dharmacon.com/designcenter/DesignCenterPage.aspx.
*2 Asi-Designer available at http://sysbio.kribb.re.kr:8080/AsiDesigner/menuDesigner.jsf.
*3 RNAxs available at http://rna.tbi.univie.ac.at/cgi-bin/RNAxs.
doi:10.1371/journal.pone.0025642.t003

Table 4. Illustration of the Comparative analysis results
between MysiRNA-Designer, AsiDesigner, siDesign and RNAxs
against an experimentally verified dataset.

Asi-Designer siDesign RNAxs MysiRNA MysiRNA 93%

sensitivity 0.13 0.18 0.50 0.19 0.14

Specificity 0.95 0.94 0.76 0.96 0.98

TP 31 42 117 44 33

FN 201 190 115 188 199

TN 17657 17409 14068 17843 18090

FP 813 1061 4402 627 380

Using the experimentally verified dataset, published in [39], a comparative
analysis involving MysiRNA-Designer and three of the top siRNA design
programs, that preform whole automation process. We used both MysiRNA-
Designer options either with or without the implementation of MysiRNA-Model
threshold. The result of this study demonistrate the superiority of MysiRNA-
Designer, in either options, in rejecting as much false positive as possible,
reflecting the high spicificity desired.
TP = true positives, FN = false negatives, TN = true negatives, FP = false
negatives.
doi:10.1371/journal.pone.0025642.t004
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tion instructions, installation validation results and source code

please refer to Readme S1, Testing S1 and Source S1,

respectively.

Supporting Information

Table S1 Blast and RNAxs running parameters. RNAxs

parameters capable of performing target accessibility evaluation

for siRNA-mRNA shall be modified as per above, [36]. The

default BLASTn running parameters are inappropriate to

performing siRNA off-target dataset search due to their small

length, therefore word size, expect value, mismatch, gap opening

and gap extension penalty shall be modified as illustrated, [27].

(PDF)

Table S2 Comparison and Evaluation of MysiRNA-
Designer scores to other Algorithms. Two comparative

studies were conducted using the data presented by Fellmann et al

[39], between ur proposed multi-score filtration phase and ten

other tools: Reynolds [2], Amarzguioui [3], Takasaki [4], Katoh

[5], Ui-Tei [6], Hsieh [7], Biopredsi [9], DSIR [11], Thermo-

Composition21 [10] and i-Score [8]. First, we compared the

specificity of our proposed multi-score filtration technique against

the other models. It was found able to achieve specificity of 93%.

In the second study, we applied another score filtration layer,

which depends on our previously developed model for siRNA

efficiency prediction ([40], submitted) enhancing the specificity up

to 97%.

(XLSX)

Table S3 Ten percent of the Human RefSeq Genes used
to evaluate MysiRNA-Designer. One percent were selected

from the mRNA dataset (NCBI mRNA refseq latest release with

46,395 mRNA records) in every 10% (i.e. 464 records were

randomly selected every 4639 records)., to guarantee the selection

of a representative sample.

(XLSX)

Table S4 Detailed illustration of the Comparative
analysis results between MysiRNA-Designer, AsiDe-
signer, siDesign and RNAxs against an experimentally
verified dataset. Using complete data of nine genes, where

which each of the possible siRNA was designed and tested [39], to

compare MysiRNA-Designer was compared to siDESIGN Center, Asi-

Designer and RNAx. The specificity and sensitivity of each tool were

calculated, indicating the improvement achieved by MysiRNA-

Designer.

(PDF)

MysiRNA-Designer S1 MysiRNA-Designer software
excutable.
(EXE)

Readme S1 MysiRNA-Designer installation instruction.
(TXT)

Testing S1 MysiRNA-Designer installation validation
results. Illustration of siRNA targeting mRNA (acc:

NM_001667) using MysiRNA-Designer. It presents 22 possible

siRNA with their predicted efficiency.

(TXT)

Source S1 MysiRNA-Designer source code.
(PL)
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