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THE BOUNDARY VOLUME OF A LATTICE POLYTOPE

GÁBOR HEGEDÜS AND ALEXANDER M. KASPRZYK

Abstract. For a d-dimensional convex lattice polytope P , a formula for the boundary volume

vol(∂P ) is derived in terms of the number of boundary lattice points on the first ⌊d/2⌋ dilations

of P . As an application we give a necessary and sufficient condition for a polytope to be reflexive,

and derive formulae for the f -vector of a smooth polytope in dimensions 3, 4, and 5. We also

give applications to reflexive order polytopes, and to the Birkhoff polytope.

1. Introduction

A lattice polytope P ⊂ R
d is the convex hull of finitely many points in Z

d. We shall assume

throughout that P is of maximum dimension, so that dimP = d. Denote the boundary of P by

∂P . The boundary volume vol(∂P ) is the volume of each facet of P normalised with respect to

the sublattice containing that facet, i.e.

vol(∂P ) :=
∑

F facet of P

vold−1(F )

det(aff F ∩ Zd)
,

where vold−1(F ) denotes the (d−1)-dimensional volume, and det
(

aff F ∩ Z
d
)

is the determinant

of the sublattice contained in the affine hull of F .

In two dimensions, the number of lattice points on the boundary of P is equal to the boundary

volume. In three dimensions there is a well-known relationship which can be derived directly

from Euler’s formula and Pick’s Theorem (see, for example, [Kas06, Proposition 10.2.3]):

Proposition 1.1. Let P be a three-dimensional convex lattice polytope. Then

vol(∂P ) =
∣

∣∂P ∩ Z
3
∣

∣− 2.

We shall prove the following generalisation to arbitrary dimension:

Theorem 1.2. Let P be a d-dimensional convex lattice polytope. Then

vol(∂P ) =
det(A)

det(D)
(1.1)

=
1

(d− 1)!

n
∑

m=0

(−1)n+m

((

d− 1

n−m

)

+ (−1)d−1

(

d− 1

n + m

))

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣
,(1.2)
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where n := ⌊d/2⌋,
∣

∣∂(0P ) ∩ Z
d
∣

∣ := 1, and A and D are invertible n× n matrices defined by

Aij :=

{

∣

∣∂(iP ) ∩ Z
d
∣

∣− 2(d− 2n), if j = 1,

id−2j+1, otherwise;

Dij := id−2j+1.

The boundary volume formula for each dimension 4 ≤ d ≤ 10 are listed in Table 1.

2. A General Boundary Volume Formula

Let LP (m) :=
∣

∣mP ∩ Z
d
∣

∣ denote the number of lattice points in P dilated by a factor of

m ∈ Z≥0. Similarly, let L∂P (m) :=
∣

∣∂(mP ) ∩ Z
d
∣

∣ denote the number of lattice points on the

boundary of mP . In two dimensions the relationship between LP and L∂P is given by Pick’s

Theorem [Pic99]. In three dimensions Reeve proved an analogous result:

Theorem 2.1 ([Ree57, Theorem 1]). Let P be a three-dimensional convex lattice polytope. Then

2(m− 1)m(m + 1)vol(P ) = 2(LP (m) −m
∣

∣P ∩ Z
3
∣

∣) − (L∂P (m) −m
∣

∣∂P ∩ Z
3
∣

∣),

and

L∂P (m) = 2(1 −m2) + m2
∣

∣∂P ∩ Z
3
∣

∣ .

In general the function LP is a polynomial of degree d, and is called the Ehrhart polynomial.

Ehrhart showed that certain coefficients of LP have natural interpretations in terms of P .

Theorem 2.2 ([Ehr67]). Let P be a d-dimensional convex lattice polytope with Ehrhart polyno-

mial LP (m) = cdm
d + . . . + c1m + c0. Then:

(i) cd = vol(P );

(ii) cd−1 = (1/2)vol(∂P );

(iii) c0 = 1.

The values of the remaining coefficients of LP have been studied in, for example, [Pom93,

DR97, BDLD+05]. Particular attention has been paid to the connection with toric geometry;

under some additional assumptions, the function LP (m) calculates h0(−mK).

Let P ◦ denote the strict interior of P . Ehrhart conjectured, and Macdonald proved, a re-

markable reciprocity formula connecting LP (m) and LP ◦(m) (see [Dan78] for a proof exploiting

Serre–Grothendieck duality).

Theorem 2.3 ([Mac71]). Let P be a d-dimensional convex lattice polytope. Then

LP (−m) = (−1)dLP ◦(m).

Since LP (m) = L∂P (m) + LP ◦(m) we have the following immediate corollary:

Corollary 2.4. Let P be a d-dimensional convex lattice polytope. The coefficients cd−1, cd−3,

cd−5, . . . of LP satisfy the system of equations:

1

2
L∂P (m) =

⌈d/2⌉
∑

i=1

md−2i+1cd−2i+1, for all m ∈ Z>0.
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d (d− 1)! vol(∂P )

4 L∂P (2) − 2L∂P (1)

5 2 (L∂P (2) − 4L∂P (1) + 6)

6 L∂P (3) − 4L∂P (2) + 5L∂P (1)

7 2 (L∂P (3) − 6L∂P (2) + 15L∂P (1) − 20)

8 L∂P (4) − 6L∂P (3) + 14L∂P (2) − 14L∂P (1)

9 2 (L∂P (4) − 8L∂P (3) + 28L∂P (2) − 56L∂P (1) + 70)

10 L∂P (5) − 8L∂P (4) + 27L∂P (3) − 48L∂P (2) + 42L∂P (1)

Table 1. The relationship between the boundary volume and the number of

boundary points, for each dimension 4 ≤ d ≤ 10 (see Theorem 1.2).

A formula for the volume of an even-dimensional convex lattice polytope was derived by

Macdonald in [Mac63]:

vol(P ) =
1

d!

( d/2
∑

m=1

(−1)d/2−m

(

d

d/2 −m

)

(

2
∣

∣

∣
(mP )◦ ∩ Z

d
∣

∣

∣
+

∣

∣

∣∂(mP ) ∩ Z
d
∣

∣

∣

)

+ (−1)d/2
(

d

d/2

)

)

.

Ko lodziejczyk was able to compute the odd-dimensional formula in [Ko l00]:

vol(P ) =
1

(d + 1)!

(d+1)/2
∑

m=1

(−1)(d+1)/2−m

(

d + 1

(d + 1)/2 −m

)

m
(

2
∣

∣

∣
(mP )◦ ∩ Z

d
∣

∣

∣
+
∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣

)

.

It is worth noticing that, with a little rearranging, one can combine these results to give a general

form remarkably similar to equation (1.2).

Theorem 2.5. Let P be a d-dimensional lattice polytope. Then

vol(P ) =
1

d!

N
∑

m=0

(−1)N+m

((

d

N −m

)

+ (−1)d
(

d

N + m

))(

∣

∣

∣
mP ∩ Z

d
∣

∣

∣
−

1

2

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣

)

,

where N := ⌈d/2⌉ and
∣

∣∂(0P ) ∩ Z
d
∣

∣ := 1.

Proof of Theorem 1.2. We wish to express the value of the penultimate coefficient cd−1 of LP in

terms of L∂P . A formula for vol(∂P ) follows from Theorem 2.2 (ii). We shall handle the even

dimensional and odd dimensional cases separately. For brevity let us define

bm :=
1

2m
L∂P (m), for all m ∈ Z>0.
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When d = 2n is even, Corollary 2.4 tells us that the coefficients satisfy the linear system

(2.1)













1 1 . . . 1

1 22 . . . 2d−2

...
...

...

1 n2 . . . nd−2













·













c1

c3
...

cd−1













=













b1

b2
...

bn













.

Equation (1.1) follows from an application of Cramer’s rule and some elementary matrix oper-

ations.

To obtain the explicit description (1.2), consider the square matrix on the left hand side

of (2.1). This is a Vandermonde matrix; we can express its inverse in terms of the product U ·L

([Tur66, equations (5) and (7)]), where U is an upper triangular matrix with 1s on the diagonal,

and L is a lower triangular matrix given by

Lij =



































0, if i < j,

1, if i = j = 1,

i
∏

k=1
k 6=j

1

j2 − k2
, otherwise.

More explicitly,












c1

c3
...

cd−1













=













1

1
⋆

0
. . .

1













·













1

−1
3

1
3

0

...
...

Ln1 Ln2

. . .

. . . Lnn













·













b1

b2
...

bn













.

Since we need only know the bottom row of L in order to determine the coefficient cd−1, we

obtain

cd−1 =

n
∑

m=1

(

n
∏

k=1
k 6=m

1

m2 − k2

)

bm

= 2

n
∑

m=1

(−1)n+mm2

(n + m)!(n −m)!
bm

=
1

(2n)!

n
∑

m=1

(−1)n+m

(

2n

n + m

)

mL∂P (m).

Observing that

m

n

(

2n

n + m

)

=

(

2n− 1

n−m

)

−

(

2n − 1

n + m

)

we obtain the result in the even-dimensional case:

cd−1 =
1

2 · (2n − 1)!

n
∑

m=0

(−1)n+m

((

2n− 1

n−m

)

−

(

2n − 1

n + m

))

L∂P (m).
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When d = 2n + 1 is odd we obtain the linear system












1 1 . . . 1

1 22 . . . 2d−3

...
...

...

1 n2 . . . nd−3













·













c2

c4
...

cd−1













=













b1 − 1

b2/2 − 1/22

...

bn/n− 1/n2













.

Once again, Cramer’s rule yields (1.1).

Solving as in the even case, we have that

cd−1 =
1

(2n)!

n
∑

m=1

(−1)n+m

(

2n

n + m

)

(L∂P (m) − 2) .

From the identity
2n
∑

m=0

(−1)m
(

2n

m

)

= 0

we deduce that

2
n
∑

m=1

(−1)n+m

(

2n

n + m

)

= (−1)n+1

(

2n

n

)

.

Hence:

cd−1 =
1

(2n)!

(

(−1)n
(

2n

n

)

+

n
∑

m=1

(−1)n+m

(

2n

n + m

)

L∂P (m)

)

=
1

2 · (2n)!

(

n
∑

m=0

(−1)n+m

((

2n

n−m

)

+

(

2n

n + m

))

L∂P (m)

)

.

This gives us (1.2). �

3. Applications to Reflexive Polytopes

In [Sta80] Stanley proved that the generating function for LP can be written as a rational

function

EhrP (t) :=
∑

m≥0

LP (m)tm =
δ0 + δ1t + . . . + δdt

d

(1 − t)d+1
,

where the coefficients δi are non-negative. The sequence (δ0, δ1, . . . , δd) is known as the δ-vector

of P . For an elementary proof of this and other relevant results, see [BS07] and [BR07].

The following corollary is a consequence of Theorem 2.2.

Corollary 3.1. Let P be a d-dimension convex lattice polytope with δ-vector (δ0, δ1, . . . , δd).

Then:

(i) δ0 = 1;

(ii) δ1 =
∣

∣P ∩ Z
d
∣

∣− d− 1;

(iii) δd =
∣

∣P ◦ ∩ Z
d
∣

∣;

(iv) δ0 + . . . + δd = d! vol(P ).
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Hibi proved [Hib94] the following lower bound on the δi, commonly referred to as the Lower

Bound Theorem:

Theorem 3.2. Let P be a d-dimensional convex lattice polytope with
∣

∣P ◦ ∩ Z
d
∣

∣ > 0. Then

δ1 ≤ δi for every 2 ≤ i ≤ d− 1.

As a consequence of the Lower Bound Theorem we have a bound on the number of lattice

points in P in terms of the volume of P . Note that this bound is sharp: equality is given in each

dimension by the d-simplex conv{e1, . . . , ed,−e1 − . . .− ed}, where e1, . . . , ed is a basis of Zd.

Corollary 3.3. Let P be a d-dimensional convex lattice polytope with
∣

∣P ◦ ∩ Z
d
∣

∣ > 0. Then

d! vol(P ) ≥ (d− 1)
∣

∣

∣
P ∩ Z

d
∣

∣

∣
− d2 + 3.

We have equality if and only if the δ-vector of P equals

(1,
∣

∣

∣P ∩ Z
d
∣

∣

∣− d− 1,
∣

∣

∣P ∩ Z
d
∣

∣

∣− d− 1, . . . ,
∣

∣

∣P ∩ Z
d
∣

∣

∣− d− 1, 1).

Proof. This is a consequence of Corollary 3.1 parts (ii) and (iv), and Theorem 3.2. �

A convex lattice polytope P is called Fano if P ◦ ∩ Z
d = {0}; i.e. if the origin is the only

interior lattice point of P . A convex lattice polytope P is called reflexive if the dual polyhedron

P∨ := {u ∈ R
d | 〈u, v〉 ≤ 1 for all v ∈ P}

is also a lattice polytope. Clearly any reflexive polytope is Fano. Reflexive polytopes are

of particular relevance to toric geometry: they correspond to Gorenstein toric Fano varieties

(see [Bat94]). There are many interesting characterisations of reflexive polytopes (for example

the list in [HM06]).

Theorem 3.4. Let P be a d-dimensional Fano polytope. The following are equivalent:

(i) P is reflexive;

(ii) LP (m) = L∂P (m) + LP (m− 1) for all m ∈ Z>0;

(iii) d vol(P ) = vol(∂P );

(iv) δi = δd−i for all 0 ≤ i ≤ d.

Theorem 3.4 (iv) is commonly known as Hibi’s Palindromic Theorem [Hib91] and can be

generalised to duals of non-reflexive polytopes [FK08]. It is a consequence of a more general

result of Stanley’s [Sta78] concerning Gorenstein rings. Clearly any polytope giving equality in

Corollary 3.3 must be reflexive.

Remark 3.5. Of course, as a consequence of equation (1.2) and Theorem 3.4 (iii), one can add

the equivalent condition:

(v) vol(P ) =
1

d!

n
∑

m=0

(−1)n+m

((

d− 1

n−m

)

+ (−1)d−1

(

d− 1

n + m

))

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣
.

We are now in a position to express the volume of a reflexive polytope in terms of the number

of lattice points in the first n dilations.
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Corollary 3.6. Let P be a d-dimensional reflexive polytope. Then

(3.1) vol(P ) =
1

d!

n
∑

m=0

(−1)n+m

((

d

n−m

)

+ (−1)d−1

(

d

n + m + 1

))

∣

∣

∣mP ∩ Z
d
∣

∣

∣ ,

where n := ⌊d/2⌋.

Proof. This follows from Theorem 3.4 (ii), Remark 3.5, and the recursive definition of the bino-

mial coefficient. �

It is tempting to conjecture that the converse of Corollary 3.6 is true. However, suppose that

P is a three-dimensional convex lattice polytope satisfying equation (3.1). By Theorem 2.1 we

have that:

LP (m) − L∂P (m) − LP (m− 1) =(
∣

∣P ∩ Z
3
∣

∣−
∣

∣∂P ∩ Z
3
∣

∣− 1)m2−

(
∣

∣P ∩ Z
3
∣

∣−
∣

∣∂P ∩ Z
3
∣

∣− 1)m + (
∣

∣P ∩ Z
3
∣

∣−
∣

∣∂P ∩ Z
3
∣

∣− 1).

Thus we require the additional assumption that
∣

∣P ◦ ∩ Z
3
∣

∣ = 1; only then would it follow (by

Theorem 3.4 (ii)) that P is reflexive.

More generally we can make use of Theorems 1.2 and 2.5 to write down a necessary and

sufficient relation between the number of points in, and on the boundary of, the first N dilations

of P .

Theorem 3.7. Let P be d-dimensional Fano polytope. P is reflexive if and only if

0 =



































N
∑

m=0

(−1)N+m

(

2N

N + m

)

(

d
∣

∣

∣
mP ∩ Z

d
∣

∣

∣
− (N + m)

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣

)

, if d is even,

N
∑

m=0

(−1)N+m

(

2N

N + m

)(

md
∣

∣

∣mP ∩ Z
d
∣

∣

∣+

(

N2 −m2 −
md

2

)

∣

∣

∣∂(mP ) ∩ Z
d
∣

∣

∣

)

,

if d is odd,

where N := ⌈d/2⌉ and
∣

∣∂(0P ) ∩ Z
d
∣

∣ := 1.

Proof. Suppose first that d is even, so that N = n. By Theorem 3.4 (iii), P is reflexive if and

only if

n
∑

m=0

(−1)n+m

((

d− 1

n−m

)

−

(

d− 1

n + m

))

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣
=

n
∑

m=0

(−1)n+m

((

d

n−m

)

+

(

d

n + m

))(

∣

∣

∣
mP ∩ Z

d
∣

∣

∣
−

1

2

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣

)

,

where the left hand side follows from Theorem 1.2, and the right hand side from Theorem 2.5.

Using the binomial identity
(

d− 1

n−m

)

−

(

d− 1

n + m

)

=
2m

d

(

d

n + m

)

,
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we have that

n
∑

m=0

(−1)n+m

(

d

n + m

)

m
∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣
=

d
n
∑

m=0

(−1)n+m

(

d

n + m

)(

∣

∣

∣
mP ∩ Z

d
∣

∣

∣
−

1

2

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣

)

.

Noticing that d/2 = n, we obtain our result.

Now suppose that d is odd. In particular, N = n+ 1. In this case we have that P is reflexive

if and only if

n
∑

m=0

(−1)n+m2

(

d− 1

n + m

)

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣
=

n+1
∑

m=0

(−1)n+m

((

d

n + m + 1

)

−

(

d

n + m

))(

∣

∣

∣
mP ∩ Z

d
∣

∣

∣
−

1

2

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣

)

.

By standard binomial identities, we have that

(

d− 1

n + m

)

=
n + m + 1

d

(

d

n + m + 1

)

=
n + m + 1

d

(

d

n−m

)

=
(n + m + 1)(n −m + 1)

d(d + 1)

(

d + 1

n + m + 1

)

,

and that
(

d

n + m + 1

)

−

(

d

n−m + 1

)

= −
2m

d + 1

(

d + 1

n + m + 1

)

.

Observing that n−m + 1 vanishes when m = n + 1, we obtain the equality

n+1
∑

m=0

(−1)n+m(n + m + 1)(n−m + 1)

(

d + 1

n + m + 1

)

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣
=

n+1
∑

m=0

(−1)n+m+1md

(

d + 1

n + m + 1

)(

∣

∣

∣mP ∩ Z
d
∣

∣

∣−
1

2

∣

∣

∣∂(mP ) ∩ Z
d
∣

∣

∣

)

,

which is equivalent to

N
∑

m=0

(−1)N+m

(

d + 1

N + m

)(

md
∣

∣

∣
mP ∩ Z

d
∣

∣

∣
+

(

(N + m)(N −m) −
md

2

)

∣

∣

∣
∂(mP ) ∩ Z

d
∣

∣

∣

)

= 0.

�

The conditions given by Theorem 3.7 are summarised in Table 2 for low dimensions.
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d f(P )

3 2LP (2) − L∂P (2) − 4LP (1) − 2L∂P (1) + 8

4 LP (2) − L∂P (2) − 4LP (1) + 3L∂P (1) + 3

5 2LP (3) − L∂P (3) − 8LP (2) + 10LP (1) + 11L∂P (1) − 24

6 LP (3) − L∂P (3) − 6LP (2) + 5L∂P (2) + 15LP (1) − 10L∂P (1) − 10

7 2LP (4) − L∂P (4) − 12LP (3) + 2L∂P (3) + 28LP (2) + 10L∂P (2) − 28LP (1) − 46L∂P (1) + 80

8 LP (4) − L∂P (4) − 8LP (3) + 7L∂P (3) + 28LP (2) − 21L∂P (2) − 56LP (1) + 35L∂P (1) + 35

Table 2. A d-dimensional Fano polytope P is reflexive if and only if the equation

f(P ) in the second column vanishes (see Theorem 3.7).

Notice that if P is a reflexive polytope and d is even then, by Theorem 3.4 (ii), Theorem 3.7

reduces to

0 =

n
∑

m=0

(−1)n+m

(

d

n + m

)

(

d
∣

∣

∣mP ∩ Z
d
∣

∣

∣− (n + m)
(∣

∣

∣mP ∩ Z
d
∣

∣

∣−
∣

∣

∣(m− 1)P ∩ Z
d
∣

∣

∣

))

=

n−1
∑

m=0

(−1)n+m

(

2n

n−m

)

(n−m)
∣

∣

∣mP ∩ Z
d
∣

∣

∣−

n−1
∑

m=0

(−1)n+m

(

2n

n + m + 1

)

(n + m + 1)
∣

∣

∣
mP ∩ Z

d
∣

∣

∣
.

Clearly the right hand side vanishes, so we learn nothing new. The odd-dimensional case is

different; the relation is given in Theorem 3.8 and calculated for small dimensions in Table 3.

Theorem 3.8. Let P be a reflexive d-dimensional polytope, where d is odd. Then

N
∑

m=0

(−1)N+m

(

d + 2

N −m

)

∣

∣

∣
mP ∩ Z

d
∣

∣

∣
= 0,

where N := ⌈d/2⌉.

Proof. From Theorem 3.4 (ii) and Theorem 3.7 we have that

0 = (−1)N
(

2N

N

)

N2 +

N
∑

m=1

(−1)N+m

(

2N

N + m

)

(

md
∣

∣

∣mP ∩ Z
d
∣

∣

∣+

(

N2 −m2 −
md

2

)

(∣

∣

∣
mP ∩ Z

d
∣

∣

∣
−
∣

∣

∣
(m− 1)P ∩ Z

d
∣

∣

∣

)

)

=

N
∑

m=0

(−1)N+m

(

2N

N + m

)(

md

2
+ N2 −m2

)

∣

∣

∣mP ∩ Z
d
∣

∣

∣−

N
∑

m=0

(−1)N+m

(

2N

N + m + 1

)(

(m + 1)d

2
−N2 + (m + 1)2

)

∣

∣

∣mP ∩ Z
d
∣

∣

∣ .
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d g(P )

3 LP (2) − 5LP (1) + 10

5 LP (3) − 7LP (2) + 21LP (1) − 35

7 LP (4) − 9LP (3) + 36LP (2) − 84LP (1) + 126

9 LP (5) − 11LP (4) + 55LP (3) − 165LP (2) + 330LP (1) − 462

Table 3. If P is a d-dimensional reflexive polytope then the equation g(P ) in

the second column will vanish (see Theorem 3.8).

Now:
(

2N

N + m

)(

md

2
+ N2 −m2

)

−

(

2N

N + M + 1

)(

(m + 1)d

2
−N2 + (m + 1)2

)

=

((

2N

N + m

)

−

(

2N

N + m + 1

))

md

2
+

((

2N

N + m

)

+

(

2N

N + m + 1

))

(N2 −m2) −

(

2N

N + m + 1

)(

2m + 1 +
d

2

)

,

which, by standard results on the binomial coefficient, reduces to
(

2N + 1

N −m

)

md(2m + 1)

2(2N + 1)
+

(

2N + 1

N −m

)

(N2 −m2) −

(

2N + 1

N −m

)(

2m + 1 +
d

2

)

N −m

2N + 1

=

(

2N + 1

N −m

)

1

2N + 1

(

md

2
(2m + 1) + (N −m)(2N2 + N + 2mN −m−

d

2
− 1)

)

.

Since d = 2N − 1 we can simplify the term in brackets:

md

2
(2m + 1) + (N −m)(2N2 + N + 2mN −m−

d

2
− 1)

=
md

2
(2m + 1) + (N −m)(2N2 + N + md−

d

2
− 1)

=
md

2
(2N + 1) + (N −m)(2N2 −

1

2
)

=
N(2N − 1)(2N + 1)

2
.

Thus we have that

N(2N − 1)

2

N
∑

m=0

(−1)N+m

(

2N + 1

N −m

)

∣

∣

∣
mP ∩ Z

d
∣

∣

∣
= 0.

Finally, since we are free to divide through by a non-zero constant, we obtain our result. �

By exploiting Hibi’s Palindromic Theorem one can express the δi in terms of LP (m), for

1 ≤ m ≤ ⌊d/2⌋. When d = 4 we obtain the δ-vector

(3.2) (1,
∣

∣P ∩ Z
4
∣

∣− 5,
∣

∣2P ∩ Z
4
∣

∣− 5
∣

∣P ∩ Z
4
∣

∣+ 10,
∣

∣P ∩ Z
4
∣

∣− 5, 1),

and when d = 5 we have

(3.3) (1,
∣

∣P ∩ Z
5
∣

∣− 6,
∣

∣2P ∩ Z
5
∣

∣− 6
∣

∣P ∩ Z
5
∣

∣+ 15,
∣

∣2P ∩ Z
5
∣

∣− 6
∣

∣P ∩ Z
5
∣

∣+ 15,
∣

∣P ∩ Z
5
∣

∣− 6, 1).
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Corollary 3.9. If P is a 4-dimensional reflexive polytope then the following bound is sharp:

6
∣

∣P ∩ Z
4
∣

∣ ≤
∣

∣2P ∩ Z
4
∣

∣+ 15.

If P is a 5-dimensional reflexive polytope then the following bounds are sharp:

∣

∣P ∩ Z
5
∣

∣ ≤
1

7

∣

∣2P ∩ Z
5
∣

∣+ 3,

∣

∣2P ∩ Z
5
∣

∣ ≤
1

4

∣

∣3P ∩ Z
5
∣

∣+ 7.

Proof. By Theorem 3.2 we have that δ1 ≤ δ2. Applying this to (3.2) gives

6
∣

∣P ∩ Z
4
∣

∣ ≤
∣

∣2P ∩ Z
4
∣

∣+ 15, when d = 4,

∣

∣P ∩ Z
5
∣

∣ ≤
1

7

∣

∣2P ∩ Z
5
∣

∣+ 3, when d = 5.

In the case when d = 5 we apply Theorem 3.8 to (3.3), obtaining the second bound.

If P is a 4-dimensional reflexive polytope such that 6
∣

∣P ∩ Z
4
∣

∣ =
∣

∣2P ∩ Z
4
∣

∣ + 15 then it has

δ-vector

(1,
∣

∣P ∩ Z
4
∣

∣− 5,
∣

∣P ∩ Z
4
∣

∣− 5,
∣

∣P ∩ Z
4
∣

∣− 5, 1)

and 4! vol(P ) = 3
∣

∣P ∩ Z
4
∣

∣ − 13. These conditions are satisfied by the simplex associated with

P
4 (see the remark preceding Corollary 3.3).

Suppose that P is a 5-dimensional reflexive polytope attaining both of the bounds above.

Then

∣

∣2P ∩ Z
5
∣

∣ = 7
∣

∣P ∩ Z
5
∣

∣− 21,

and
∣

∣3P ∩ Z
5
∣

∣ = 28
∣

∣P ∩ Z
5
∣

∣− 112.

In particular, the δ-vector is given by

(1,
∣

∣P ∩ Z
5
∣

∣− 6,
∣

∣P ∩ Z
5
∣

∣− 6,
∣

∣P ∩ Z
5
∣

∣− 6,
∣

∣P ∩ Z
5
∣

∣− 6, 1),

and 5! vol(P ) = 4
∣

∣P ∩ Z
5
∣

∣−22. An example satisfying these conditions is the simplex associated

with P
5. �

The examples given in Corollary 3.9 are not unique. A search through Øbro’s classification

of the smooth polytopes in dimensions 4 and 5 (which form a subset of the reflexive polytopes)

gives many more examples1. These are recorded in Table 4.

1
http://grdb.lboro.ac.uk/search/toricsmooth?id cmp=in&id=24,25,127,128,138,139,144,145,147

http://grdb.lboro.ac.uk/search/toricsmooth?id cmp=in&id=148,149,950,954,955,989,990,1008,1009,1010,1013

http://grdb.lboro.ac.uk/search/toricsmooth?id_cmp=in&id=24,25,127,128,138,139,144,145,147
http://grdb.lboro.ac.uk/search/toricsmooth?id_cmp=in&id=148,149,950,954,955,989,990,1008,1009,1010,1013
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d ID

4 24, 25, 127, 128, 138, 139, 144, 145, 147

5 148, 149, 950, 954, 955, 989, 990, 1008, 1009, 1010, 1013

Table 4. The smooth polytopes attaining the bounds in Corollary 3.9. The ID

refers to the ID of the polytope in the online Graded Ring Database; the data

was calculated using [Øbr07].

4. Applications to Smooth Polytopes

Let the number of i-dimensional faces of a polytope P be denoted by fi. The vector (f0, f1, . . . , fd−1)

is called the f -vector of P . By convention f−1 = fd = 1, representing the empty face ∅ and the

entire polytope P . The f -vector satisfies Euler’s relation

(4.1)
d
∑

i=−1

(−1)ifi = 0.

When P is simplicial (i.e. the facets of P are (d − 1)-simplicies) the Dehn-Sommerville equa-

tions give some additional relations amongst the fi. Conjectured by Dehn and first proved by

Sommerville, these equations did not become widely known until they were rediscovered by Klee.

Theorem 4.1 ([Kle64]). Let P be a d-dimensional simplicial lattice polytope with f -vector

(f0, f1, . . . , fd−1). Then

fi =
d−1
∑

j=i

(−1)d−1−j

(

j + 1

i + 1

)

fj, for 1 ≤ i ≤ d− 2.

A d-dimensional convex lattice polytope P is called smooth if the vertices of any facet of

P form a Z-basis of the ambient lattice Z
d. Any such P is simplicial and reflexive. Smooth

polytopes are in bijective correspondence with smooth toric Fano varieties, and as such have

been the subject of much study (see, for example, [Bat91, Øbr07]).

In [Par03] Park investigated the f -vector of smooth polytopes of dimension 3 ≤ d ≤ 5 and

established weak bounds on the fi. We shall make use of Theorem 1.2 to give an explicit

description of the f -vector in those dimensions.

Theorem 4.2. If P is a 3-dimensional smooth polytope then its f -vector is given by

( ∣

∣∂P ∩ Z
3
∣

∣ , 3
∣

∣∂P ∩ Z
3
∣

∣− 6, 2
∣

∣∂P ∩ Z
3
∣

∣− 4
)

.

If P is a 4-dimensional smooth polytope then its f -vector is given by

( ∣

∣∂P ∩ Z
4
∣

∣ ,
∣

∣∂(2P ) ∩ Z
4
∣

∣−
∣

∣∂P ∩ Z
4
∣

∣ , 2
∣

∣∂(2P ) ∩ Z
4
∣

∣− 4
∣

∣∂P ∩ Z
4
∣

∣ ,
∣

∣∂(2P ) ∩ Z
4
∣

∣−2
∣

∣∂P ∩ Z
4
∣

∣

)

.

http://grdb.lboro.ac.uk/
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If P is a 5-dimensional smooth polytope then its f -vector is given by

( ∣

∣∂P ∩ Z
5
∣

∣ ,
∣

∣∂(2P ) ∩ Z
5
∣

∣−
∣

∣∂P ∩ Z
5
∣

∣ , 4
∣

∣∂(2P ) ∩ Z
5
∣

∣− 14
∣

∣∂P ∩ Z
5
∣

∣+ 20,

5
∣

∣∂(2P ) ∩ Z
5
∣

∣− 20
∣

∣∂P ∩ Z
5
∣

∣+ 30, 2
∣

∣∂(2P ) ∩ Z
5
∣

∣−8
∣

∣∂P ∩ Z
5
∣

∣+ 12
)

.

Proof. Let P be a d-dimensional smooth polytope. By definition each facet F of P is a simplex

whose vertices generate the underlying lattice Z
d. Hence vol(F ) = 1/(d − 1)!, so

(d− 1)! vol(∂P ) = fd−1.

Furthermore, |∂P ∩ Z
n| = f0.

d = 3: Theorem 4.1 gives 2f1 = 3f2, and Theorem 1.2 yields f2 = 2f0 − 4. Thus the f -vector

is uniquely defined in terms of f0.

d = 4: In this case Theorem 4.1 gives f2 = 2f3. Applying (4.1) we obtain f1 = f0 + f3. Finally,

Theorem 1.2 tells us that f3 =
∣

∣∂(2P ) ∩ Z
4
∣

∣− 2f0. The result follows.

d = 5: In dimension five Theorem 4.1 and equation (4.1) give three relations:

2f1 = 3f2 − 5f4,

2f3 = 5f4,

2f0 − f2 + 2f4 = 4.

From Theorem 1.2 we know that f4 = 2
∣

∣∂(2P ) ∩ Z
5
∣

∣ − 8f0 + 12. Substituting, we see

that the f -vector is uniquely defined in terms of
∣

∣∂(2P ) ∩ Z
5
∣

∣ and
∣

∣∂P ∩ Z
5
∣

∣.

�

It is worth noting that Casagrande [Cas06] proves a sharp bound for
∣

∣∂P ∩ Z
d
∣

∣ in terms of

the dimension, and Batyrev [Bat99, Theorem 2.3.7] gives us a bound on fd−3 in terms of fd−2.

Bremner and Klee [BK99] tell us a lower bound on f1 in terms of f0 and d. These results are

collected in the following theorem.

Theorem 4.3. Let P be d-dimensional smooth polytope. Then the following inequalities hold:

(i)
∣

∣∂P ∩ Z
d
∣

∣ ≤

{

3d, if d is even;

3d− 1, if d is odd.

(ii) 12fd−3 ≥ (3d− 4)fd−2.

(iii) df0 ≤ f1 +
(d+1

2

)

.

Thus we obtain upper and lower bounds on
∣

∣∂(2P ) ∩ Z
d
∣

∣ when d = 4 or 5.

Corollary 4.4. If P is a 4-dimensional smooth polytope then

5
∣

∣∂P ∩ Z
4
∣

∣− 10 ≤
∣

∣∂(2P ) ∩ Z
4
∣

∣ ≤ 5
∣

∣∂P ∩ Z
4
∣

∣ .

If P is a 5-dimensional smooth polytope then

42
∣

∣∂P ∩ Z
5
∣

∣− 105 ≤ 7
∣

∣∂(2P ) ∩ Z
5
∣

∣ ≤ 52
∣

∣∂P ∩ Z
5
∣

∣− 90.

Proof. Apply Theorem 4.3 (ii) and (iii) to Theorem 4.2. �
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d Equality ID

4
Lower 24, 25, 127, 128, 138, 139, 144, 145, 147

Upper 63, 100

5
Lower 148, 149, 950, 954, 955, 989, 990, 1008, 1009, 1010, 1013

Upper None

Table 5. The smooth polytopes attaining one of the bounds in Corollary 4.4.

The ID refers to the ID of the polytope in the online Graded Ring Database; the

data was calculated using [Øbr07].

Corollary 4.5. If P is a 4-dimensional smooth polytope then

4! vol(P ) ≤ 3f0.

If P is a 5-dimensional smooth polytope then

5! vol(P ) ≤
48f0 − 96

7
.

Proof. Recall that since P is smooth, d! vol(P ) = (d − 1)! vol(∂P ) = fd−1. In each case The-

orem 4.2 tells us the value for fd−1. Applying Corollary 4.5 immediately gives the result in

dimension four.

In dimension five we see that

7 · 5! vol(P ) = 7 · 4! vol(∂P )

= 2(7
∣

∣∂(2P ) ∩ Z
5
∣

∣− 28
∣

∣∂P ∩ Z
5
∣

∣+ 42)

≤ 2(24f0 − 48),

where the final inequality is an application of Corollary 4.5. �

The smooth polytopes attain either the lower or the upper limit in Corollary 4.4 are listed2

in Table 5. The upper bound in dimension five is not sharp.

5. Reflexive order polytopes

Throughout let Q be a finite poset with d := |Q| elements. Let Ω(Q, k) denote the number of

order–preserving maps f : Q → Ck, where Ck is the chain with k ∈ Z>0 elements; i.e. if x ≤ y in

Q, then f(x) ≤ f(y). Then Ω(Q, k) is a polynomial in k of degree d, called the order polynomial

of Q.

Let Ω̄(Q, k) denote the number of strictly order–preserving maps f : Q → Ck; i.e. if x < y in

Q, then f(x) < f(y). Once again Ω̄(Q, k) is a polynomial in k of degree d; it is called the strict

order polynomial of Q.

2
http://grdb.lboro.ac.uk/search/toricsmooth?id cmp=in&id=24,25,127,128,138,139,144,145,147

http://grdb.lboro.ac.uk/search/toricsmooth?id cmp=in&id=148,149,950,954,955,989,990,1008,1009,1010,1013

http://grdb.lboro.ac.uk/
http://grdb.lboro.ac.uk/search/toricsmooth?id_cmp=in&id=24,25,127,128,138,139,144,145,147
http://grdb.lboro.ac.uk/search/toricsmooth?id_cmp=in&id=148,149,950,954,955,989,990,1008,1009,1010,1013
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Definition 5.1. A poset Q is said to be graded if there exists an order–preserving function f

such that whenever y covers x, f(y) = f(x) + 1. Equivalently, all maximal chains of Q have

the same length r. Following Stanley [Sta97, Chapter 3.1] we shall call r the rank of Q. In

particular one can adjoin a unique minimum element 0̂ and unique maximum element 1̂ to Q to

obtain a bounded, graded poset Q̂ of rank r + 2.

Definition 5.2. A bijective order–preserving map is called a linear extension of Q. The number

of linear extensions is denoted by e(Q).

Let es(Q) denote the number of surjective order–preserving maps f : Q → Cs.

Example 5.3. If Q is the antichain with |Q| = d then Ω̄(Q, k) = Ω(Q, k) = kd and e(Q) = d!.

If Q is the chain Cd then Ω(Q, k) =
(

d+k−1
d

)

, Ω̄(Q, k) =
(

k
d

)

, and e(Q) = 1.

Theorem 5.4 ([Sta70]). Let Q be a finite poset with |Q| = d and order polynomial Ω(Q, k) =

adk
d + . . . + a1k + a0. Then:

(i) Ω̄(Q, k) = (−1)dΩ(Q,−k) for all k ∈ Z;

(ii) If Q is graded of rank r, then ad−1 = re(Q)
2(d−1)! ;

(iii) If Q is graded of rank r, then Ω(Q,−r − k) = (−1)dΩ(Q, k) for each k ∈ Z;

(iv) ad = e(Q)
d! .

(v) Ω(Q, k) =
∑d

s=1 es(Q)
(k
s

)

.

(vi) If Q is graded of rank r, then 2ed−1(Q) = (d− r + 1)e(Q).

Theorem 5.4 (i) is commonly referred to as the Reciprocity Theorem for the Order Polynomial.

Definition 5.5. The order polytope O(Q) of a poset Q is the set of order-preserving maps from

Q to the interval [0, 1], i.e. the set of all functions f satisfying

0 ≤ f(x) ≤ 1, for all x ∈ Q;

f(x) ≤ f(y), if y covers x in Q.

Given the bounded poset Q̂ one can define Ô(Q) as the set of all functions g such that

g(0̂) = 0,

g(1̂) = 1,

and g(x) ≤ g(y), if y covers x in Q̂.

Then the bijective linear map ρ : Ô(Q) → O(Q) given by restriction to Q defines a combinatorial

equivalence of polytopes. Stanley was able to derive the entire facial structure of Ô(Q) ([Sta86,

§1]). In particular, the number of facets of O(Q) is equal to the number of cover relations in Q̂,

and the number of vertices of O(Q) is given by:

|{I ⊂ Q | if x ∈ I and y ≥ x then y ∈ I}| .

Theorem 5.6 ([Sta86, §4]). Let Q be a finite poset with |Q| = d. Then:

(i) LO(Q)(k) =
∣

∣kO(Q) ∩ Z
d
∣

∣ = Ω(Q, k + 1) for each k ∈ Z;

(ii) vol(O(Q)) = e(Q)
d! .
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Corollary 5.7. Let Q be a finite poset with order polytope P := O(Q). Then
∣

∣

∣(kP )◦ ∩ Z
d
∣

∣

∣ = Ω̄(Q, k − 1), for all k ∈ Z>0.

Proof. This is immediate from Theorems 2.3, 5.4 (i), and 5.6 (i):

LP ◦(k) = (−1)dLP (−k)

= (−1)dΩ(Q, 1 − k)

= Ω̄(Q, k − 1), for any k ∈ Z≥0.

�

Remark 5.8. Suppose that Q is graded of rank r. Stanley showed [Sta97, Corollary 4.5.17]

that

Ω(Q,−1) = Ω(Q,−2) = . . . = Ω(Q,−r) = 0,

and that

Ω(Q,−r − 1) = (−1)d.

From Corollary 5.7 we see that (r + 2)O(Q) is the smallest integral dilation of O(Q) with an

interior lattice point; in fact (r + 2)O(Q) contains a unique interior lattice point.

Proposition 5.9. Let Q be a poset with |Q| = d. Let P := O(Q) be the order polytope of Q.

Then the boundary volume of P is

vol(∂P ) =
(3 − d)e(Q) + 2ed−1(Q)

(d− 1)!
.

If in addition Q is a graded poset of rank r then the boundary volume of P is

vol(∂P ) =
(r + 2)e(Q)

(d− 1)!
.

Proof. Since LP (k) = Ω(Q, k+1) for each k ∈ Z by Theorem 5.6 (i), hence if we express Ω(Q,n)

as

Ω(Q,n) =
d
∑

i=0

ain
i,

then

LP (n) = Ω(Q,n + 1) = ad(n + 1)d + ad−1(n + 1)d−1 +

d−2
∑

i=0

ai(n + 1)i.

If we express LP (n) in the form

LP (n) =

d
∑

i=0

cin
i

then cd−1 = ad−1 + dad.

Using Theorem 5.4 (iv) and (v), we get that

cd−1 = d
e(Q)

d!
+

ed−1(Q)

(d− 1)!
−

(d
2

)

e(Q)

d!
=

(e(Q)(3 − d) + 2ed−1(Q)

2(d− 1)!
.
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But it follows from Theorem 2.2 (ii), that

(1/2)vol(∂P ) = cd−1 =
(e(Q)(3 − d) + 2ed−1(Q)

2(d− 1)!
.

Combining these results gives

vol(∂P ) =
(3 − d)e(Q) + 2ed−1(Q)

(d− 1)!
.

When Q is a graded poset, applying Theorem 5.4 (vi) to the previous formula gives

vol(∂P ) =
(r + 2)e(Q)

(d− 1)!
.

�

Lemma 5.10. Let Q be a graded poset of rank r with |Q| = d. Then (r + 2)O(Q) is a translate

of a reflexive polytope.

Proof. Let P := (r + 2)O(Q) be the (r + 2)-th dilate of the order polytope O(Q) of Q. It is

enough to prove that d vol(P ) = vol(∂P ). But

d vol(P ) = d vol((r + 2)O(Q))

= d(r + 2)dvol(O(Q))

= d(r + 2)d
e(Q)

d!

= (r + 2)d−1 (r + 2)e(Q)

(d− 1)!

= (r + 2)d−1vol(∂O(Q))

= vol(∂P ) .

�

Since (r + 2)O(Q) is a (translate of a) reflexive polytope, we can reinterpret our results from

Section 3 in terms of the order polytope:

Corollary 5.11 (c.f. Corollary 3.6). Let Q be a finite graded poset of rank r with |Q| = d. Let

e(Q) denote the number of linear extensions of Q. Then

(r + 2)de(Q) =

n
∑

m=0

(−1)n+m

((

d

n−m

)

+ (−1)d−1

(

d

n + m + 1

))

Ω(Q,m(r + 2) + 1),

where n := ⌊d/2⌋.

Theorem 5.12 (c.f. Theorem 3.8). Let Q be a finite graded poset of rank r with |Q| = d.

Suppose that d is odd. Then

N
∑

m=0

(−1)N+m

(

d + 2

N −m

)

Ω(Q,m(r + 2) + 1) = 0,

where N := ⌈d/2⌉.
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6. The Birkhoff polytope

Let B(d) denote the Birkhoff polytope (or transportation polytope) of d× d doubly stochastic

matrices in R
d2 . That is, B(d) is defined by

xi,j ≥ 0,

d
∑

i=1

xi,j = 1,

d
∑

j=1

xi,j = 1, for all 1 ≤ i, j ≤ d.

Because of its rich combinatorial properties, the Birkhoff polytope has been intensively stud-

ied. In particular, methods for estimating and computing the volume and Ehrhart polynomial

are of considerable interest (see [Pak00, BP03, CM09]). The following theorem summarises some

of the key facts about B(d):

Theorem 6.1. Let B(d) denote the polytope of d × d doubly stochastic matrices in R
d2 . Let

Hn(r) denote the number of n× n magic squares with linear sums equal to r. Let Pn(r) denote

the number of n × n positive magic squares with linear sums equal to r, where positive means

that all entries of the matrix are positive. Then:

(i) dimB(d) = (d− 1)2;

(ii) LB(d)(m) = Hd(m) for all d ∈ Z>0 and m ∈ Z≥0;

(iii) LB(d)(−d− t) = (−1)(d−1)2LB(d)(t) for all t ∈ Z;

(iv) the vertices of B(d) are the permutation matrices;

(v) LB(d)◦(m) = Pd(m) for all d ∈ Z>0 and m ∈ Z>0.

In fact – as the following two lemmas show – it is easy to see that the d-th dilation of the

Birkhoff polytope contains precisely one interior lattice point, and that this dilation is a translate

of a reflexive polytope.

Lemma 6.2. Let B(d) denote the polytope of d × d doubly stochastic matrices in R
d2 . Then

∣

∣

∣dB(d)◦ ∩ Z
d2
∣

∣

∣ = 1.

Proof. Using Theorem 6.1 (v),
∣

∣

∣
dB(d)◦ ∩ Z

d2
∣

∣

∣
= LB(d)◦(d) = Pd(d).

But if Q is a d× d positive magic square whose lines sum to d, then Q must be the matrix with

all entries equal to one. Hence Pd(d) = 1. �

Lemma 6.3. Let P := dB(d)−Q denote the translation of the d-th dilate of the Birkhoff polytope

by Q, where Q is the matrix with all entries equal to one. Then P is a reflexive polytope.

Proof. From Theorem 3.4 (i) and (ii) it is enough to show that

(−1)(d−1)2LdB(d)(−m) = LdB(d)(m− 1)

for all m ∈ Z>0. But setting t = d(m− 1) in Theorem 6.1 (iii) gives:

LdB(d)(m) = LB(d)(dm) = (−1)(d−1)2LB(d)(d(m− 1)) = (−1)(d−1)2LdB(d)(m− 1).

�
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We can now reinterpret our results in Section 3 in terms of the Birkhoff polytope. In particular

an explicit formula for the volume of the Birkhoff polytope is given in terms of the the first
⌊

(d− 1)2/2
⌋

dilations.

Corollary 6.4 (c.f. Corollary 3.3). Let B(d) denote the polytope of d × d doubly stochastic

matrices in R
d2 . Then

((d− 1)2)! d(d−1)2vol(B(d)) ≥ (d− 1)2Hd(d) − (d− 1)2 + 3

Corollary 6.5 (c.f. Corollary 3.6). Let B(d) denote the polytope of d × d doubly stochastic

matrices in R
d2 . Then

(6.1)

vol(B(d)) =
1

((d− 1)2)!d(d−1)2

n
∑

m=0

(−1)n+m

((

(d− 1)2

n−m

)

+ (−1)d
(

(d− 1)2

n + m + 1

))

Hd(md),

where n :=
⌊

(d− 1)2/2
⌋

.

Theorem 6.6 (c.f. Theorem 3.8). Suppose that d is even. Then

(6.2)

N
∑

m=0

(−1)N+m

(

d2 − 2d + 3

N −m

)

Hd(dm) = 0,

where N :=
⌈

(d− 1)2/2
⌉

.
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