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Abstract—Type-1 fuzzy logic has frequently been used in
control systems. However this method is sometimes shown to be
too restrictive and unable to adapt in the presence of uncertainty.
In this paper we compare type-1 fuzzy control with several other
fuzzy approaches under a range of uncertain conditions. Interval
type-2 and non-stationary fuzzy controllers are compared, along
with ‘dual surface’ type-2 control, named due to utilising both the
lower and upper values produced from standard interval type-2
systems. We tune a type-1 controller, then derive the membership
functions and footprints of uncertainty from the type-1 system
and evaluate them using a simulated autonomous sailing problem
with varying amounts of environmental uncertainty. We show that
while these more sophisticated controllers can produce better
performance than the type-1 controller, this is not guaranteed
and that selection of Footprint of Uncertainty (FOU) size has a
large effect on this relative performance.

Keywords: Interval Type-2 Fuzzy, Robot Boat control, Fuzzy
Control, Non-stationary

I. INTRODUCTION

Fuzzy controllers use the principles of fuzzy sets and

fuzzy logic to automate system controllers. The underpinning

technique of fuzzy logic was originally introduced by Zadeh

in his seminal paper [1]. In this paper, various types of fuzzy

set are used including: type-0 which are identical to crisp sets;

type-1 where membership is a continuous real value in [0, 1];
and type-2 in which the membership values are themselves

type-1 fuzzy sets. The complexity of the sets increases from

type-0 to type-2 as the number of dimensions is increased

accordingly. Type-1 fuzzy logic has been applied extensively

to a range of real-world problems due to the ease with which

it can be applied. It has been applied successfully to areas

including robotic control, fuzzy decision making and fuzzy

classifier systems. However, a number of issues are known

to exist in the application of type-1 in problem domains

which require decision making in the presence of uncertainty

[2]. It is suggested in [3] that such type-1 fuzzy systems

have no capacity for modelling uncertainty, which limits their

application to more complex real-world problems.

Type-2 fuzzy logic has been proposed as a solution to

overcome some of the limitations experienced when using

type-1 systems. In contrast to type-1 systems, type-2 systems

contain membership functions which in themselves are type-1

fuzzy sets. This adds an extra layer of dimensionality to the

system which is postulated to assist in the process of coping

with uncertainty in the problem domain. However, this addition

of an additional dimension is not without its problems. As a

result, additional computational overhead is incurred when im-

plementing type-2 control, which has limited the applicability

of type-2 systems to the classical problems solved by type-1

systems, including robotic controllers. This has become less of

a problem due to advances in both computational processing

power and available memory in computational systems. How-

ever, it may still pose a problem when applying type-2 systems

to lightweight embedded systems. A more complete overview

of interval type-2 fuzzy logic can be found in both [4] and [5].

It has been shown, for example in [6], that type-2 systems

can outperform type-1, potentially due to the fact that type-

2 fuzzy sets have this ‘extra’ dimension. There has been

some investigation into the reasons underpinning the improved

performance of type-2 in comparison with type-1 systems.

However, such investigations have been limited in scope. It is

also uncertain if improved tuning of type-2 sets or alternative

approaches might provide equally good performance without

the computational overhead experienced in the application of

a full type-2 system.

In conventional type-2 controllers, two control surfaces

are obtained, one from the lower bound of interval type-2

defuzzification and one from the upper bound. Due to mem-

ory constraints or performance constraints, it is common to

implement type-2 fuzzy controllers by calculating the control

surface offline, by simply taking the mean of the lower and

upper bound value returned by the controller, and then by

downloading the resulting surface as a look-up table [7]. In

this paper, Birkin and Garibaldi outlined a novel formulation

of a controller which maintains the lower and upper control

surfaces separately, and then switches dynamically between the

surfaces. If the average of the lower and upper control surfaces

is used, this novel controller reduces to a ‘conventional’

interval type-2 controller. Other dynamic combinations are

also possible, such that some of the additional information

available from an interval type-2 system is maintained in order

to be utilised by the controller. This is termed a ‘dual-surface’

(interval) type-2 controller.

Non-stationary (NS) fuzzy sets, as described in [8] and [9],

have been proposed to model variability in human decision

making, and may offer a method to alleviate some of the issues

raised by the application of type-2 sets. NS fuzzy sets are a

relatively new development in the field and are based on the

principles of type-1 systems. The ‘non-stationary’ component

refers to variations made to the membership functions defined



in a type-1 system. A NS fuzzy set uses perturbations of

standard T1 membership functions to produce several slightly

different membership function on each iteration through the

system. These can then be processed iteratively in the inference

system and outputs aggregated, such as by majority vote or

mean. NS fuzzy sets have the potential to cope with uncertainty

in a problem domain while limiting the additional computa-

tional overhead. However, the current extent of comparisons

between the different fuzzy controllers is somewhat limited.

It is clear that both theoretical and practical comparisons

must be performed in order to understand the differences

between the three different fuzzy systems. In this paper we use

a simulated autonomous sailing problem (SASP) to examine

the practical differences between the different fuzzy control

mechanisms. The SASP forms an ideal test-bed for a number

of reasons. Firstly, control of an autonomous robot is a chal-

lenging problem containing decision making in an uncertain

environment. Secondly, this problem involves the interplay

between a simulated boat and a dynamic environment, in

which data from both the boat and environment are inherently

noisy. The amount of uncertainty present in the SASP is an

important factor in this application selection. Fuzzy controllers

have been researched within the domain of autonomous sailing,

especially the application of type-1 controllers, including [10].

In particular, [11] used a type-1 fuzzy system to control an

autonomous boat of 1m in length around a predefined course

using an attached state machine to handle situations such as

tacking (upwind navigation through side to side movement). In

this paper it is shown that while the fuzzy controller performed

well downwind, it struggled to perform in upwind/tacking

scenarios. Fuzzy controllers are not the only method used in

the control of autonomous sailing boats. PID controllers [12],

and neuro-endocrine approaches [13] have also been success-

fully applied to navigation problems. Proportional Integral (PI)

controllers are also indicated as suitable control mechanisms

for autonomous sail boat navigation.

The aim of this paper is to provide a comparison between

a number of alternative controllers, including a Proportional-

Integral (PI) controller, a type-1 and a conventional interval

type-2 controller, when applied to the SASP. We investigate

changes in the behaviour of the controllers upon the application

of environmental noise, in our case, changes in simulated wind

direction. We use a simulator termed ‘Tracksail’ to perform our

experiments (see Section III-A). Performing the experiments

in simulation has the distinct advantage that experimental

set-ups can be precisely replayed and repeated, allowing for

the comprehensive analysis of the different techniques. We

examine differences between controllers through the resultant

control surfaces and by statistical analysis of the experimental

results.

This paper is organised as follows: Section II describes the

components of the fuzzy systems that are under test along

with a PI controller that was used as a control. Section III

outlines the environment and experimental set-up used to make

the comparison. This is followed by Section V which presents

the results obtained, followed by Section VI which discusses

the implications of these results and draws some conclusions.

Finally, Section VII outlines some avenues for potential future

work.

II. FUZZY ROBOT CONTROL

A. Design Decisions

Stelzer’s work on fuzzy sailboats [14], [11] is used as a basis

for our controller design. Several changes were necessary due

to lack of data about our boat model which were used in the

paper to determine some of the parameters, such as rate of turn

and heeling of the boat. Error was retained as the difference

between current and desired directions in degrees as shown

in Equation 1 while an additional input, change in error has

been added to the system. This is defined as the change in the

error since the previous iteration of the controller as shown in

Equation 2.

error = Desired Direction − Current Direction (1)

∆error = Current Error − Previous Error (2)

Each input has five associated fuzzy sets which gives a rule

base of 25 rules as shown in Table II-C. The membership

functions (MFs) for the terms of the two inputs are shown in

Figure 1(a), along with the output of the system which is the

percentage change of the rudder of the boat characterised by

singleton outputs, shown in Figure 1(f).

Horizontal perturbations of the type-1 membership func-

tions was used to generate our non-stationary controller mem-

bership functions. The perturbation function was a horizontal

movement defined by a gaussian distribution with a mean of

zero. The standard deviation of the distribution was altered

several times per batch of experiments to generate several

different non-stationary controllers and resulted in input mem-

bership functions as shown in Figures 1(b) and 1(d). During

execution, each controller would select 30 values from the

above distribution to create 30 membership functions which

were then processes as a standard type-1 system, the mean of

the outputs from each of the 30 systems was taken to give a

final output.

Interval type-2 systems in which secondary membership

functions are binary instead of continuous can be visualised as

a two dimensional area known as the Footprint of Uncertainty

(FOU). This makes interval type-2 systems considerably more

manageable than the general type-2 variety. We have derived

footprints of uncertainty by starting with the simple type-1 and

moving a uniform distance along the x-axis in both directions

providing a lower and upper bound. This gives FOUs that

are very similar in shape to the non-stationary membership

functions as shown in Figures 1(c) and 1(e).

A dual surface type-2 controller is implemented to deter-

mine if improved results can be achieved through incorporating

extra information, such as the upper and lower outputs as

outlined in [7]. This employs the algorithm described in

Figure 2 for selection of control surfaces and determination of

output. This algorithm compares a user chosen metric, in this

case the magnitude of the input error with a threshold value.



−150 −100 −50 0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Error

µ

−

−

−

−

−

Strong Left

Left

Keep

Right

Strong Right

(a) Type-1 Input
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(b) Movement 2 Non-Stationary
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(c) Movement 2 Type-2
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(d) Movement 20 Non-stationary
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(e) Movement 20 Type-2
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(f) Type-1 Output Singletons

Fig. 1. Membership functions of Type-1, Type-2 and Non-stationary controllers. Unless stated these are input membership functions

error = control_var - set_point

diff = abs(error)

if ( diff < THRESHOLD )

control_action = (LS + US) / 2

else

if ( error > 0 )

control_action = LS

else

control_action = US

endif

Fig. 2. The dual-surface control algorithm

On this basis, the final output of the system is selected from

either the lower, upper or mean value. For this comparison,

the original method of using the magnitude of the error in the

system is retained. As with other controllers, several different

threshold values are used to determine any observable effect

on the system and its performance.

B. Tuning & Optimisation

While manual tuning of the original membership functions

([14] and [15]) was performed we did not specifically perform

any automatic tuning for two main reasons. Firstly the intention

was to ensure generality and this would not be possible were

we to use a specific training data set. Secondly it would be

difficult to ensure the same ámountóf tuning was performed

on each different variety of fuzzy due to the different methods

required to tune for example, a type-1 system compared to

a type-2, which could potentially lead to unfair comparisons

being made.

C. Tacking Behaviours

With respect to the application of our controllers to SASP,

additional behaviours need to be defined. One drawback of

using SASP for testing these controllers is the limits of the

wind — no boat can sail directly into the wind. To solve this

problem, higher level control was added which modifies the

desired direction input to the controller. Sailing into the wind in

practice requires tacking behaviour. The design of the courses

for our experiments attempts to minimise this effect by setting

courses which should avoid the need to tack. The main-sail

on the boat is controlled by a simple set of rules that were

previously developed in conjunction with the PI controller and

have been shown to provide acceptable performance.



TABLE I
RULE TABLE FOR TYPE-1 CONTROLLER: ROWS SHOW delta error FUZZY

SETS; COLUMNS SHOW error FUZZY SETS; SR: STRONG RIGHT; R: RIGHT;
K: KEEP; L: LEFT; SL: STRONG LEFT

Large Large
Positive Positive None Negative Negative

Strong Left sr sr r r r
Left k l r k k

Middle k l k r k
Right k k l r k

Strong Right l l l sl sl

III. EXPERIMENTAL SETUP

A. Tracksail

The simulator used for this research, Tracksail has been

used previously for development and testing of autonomous

sailing robotic systems [16] including the development and

tuning of described PI controller. Tracksail is Java based and

communicates with controllers by means of a TCP/IP socket

allowing any compatible language to be used to control the

boat. Each controller is linked into a common framework

which provides tacking logic, sensor readings and motor

change routines in addition to any other common code re-

quired. This ensures consistency between runs with different

controllers.

One aim of this work is to investigate changes in the

performance of type-2 controllers as the size of the FOU is

varied. This is facilitated by the simulator in that it eliminates

many categories of uncertainty not directly relevant to this

investigation. This includes sensor noise, where the value

returned by the sensor does not truly reflect the physical value

that it is measuring, for example.

B. Track Configuration

Each experiment batch consists of 30 simulator runs where

the tested controller will attempt to guide the boat towards a

single way-point which was defined as 550 metres west of its

starting point, defined by the simulator as the point (0,0). In the

first batch of experiments the wind direction was fixed as 30

degrees across the boat at a fixed velocity of 7 m/s. This means

that the wind will not introduce any noise in this experiment.

However, we still observed minor differences between runs,

potentially attributed to the timing of interacting processes

and delays caused by socket processing in the software and

operating system.

A series of experiments introduced wind related noise into

the system at two distinct levels. Noise was defined as a

specified number of wind changes per second and by the

size of the arc defined by the Max and Min wind direction

parameters specified in the simulator which are specified in

degrees. Experiment two (medium noise) used an arc of 20◦

and a single wind change every five seconds, while experiment

three (high noise) used a 30◦ arc with a wind change every

three seconds.

C. Performance Metrics

Two metrics of performance were collected for all con-

trollers. The first is the total root mean square of the error

(RMSE) between the current heading compared with the

desired bearing. The second metric is the time taken for the

boat to complete the set course which is a straight line distance

of 550 ‘metres’. The correlation between RMSE and time taken

is not as trivial as in the case of a wheeled robot as the boat

controller must balance deviating from a straight line suffi-

ciently to capture enough wind for forward movement, against

the extra time taken to perform this manoeuvre. Higher boat

speeds in Tracksail can be reached when the boat is parallel

to the wind, with the sail set to 90 degrees. However, if this is

performed for the entire duration the boat would not reach its

destination. Hence, a balance between speed and keeping on

course must be found. This becomes increasingly important as

noise is introduced into the wind direction variable.

IV. CONTROLLER SETUP

For reference and control purposes a tuned PI controller is

included in the comparison. This controller uses the same input

value (error between current and desired bearings) as well as

its integral over time instead of the change in error. It uses a

P-gain value of 1.7 and an I-gain value of 0.01. These values

are derived in previous experiments performed by Suaze and

Neal [17].

The running rate for all controllers was fixed at 1Hz. This

is chosen to ensure that the more sophisticated controllers can

execute a complete control loop. This low running rate may

lead to lower performance than optimal as overshoot may occur

with slow running controllers. However, as all controllers were

subject to the same restrictions, we believe the comparison to

be fair.

Five individual values were chosen for the perturbation

function of the non-stationary controller, namely 0, 2, 5, 10 and

20 degrees. These values fall within the limits of plausibility

for perturbation of the error and delta error inputs to the

system. This provides insight as to where the true optimal

value may occur. These measures will also be used to define

the FOUs of the interval type-2 systems where the number

refers to the width of the FOU at any flat point (x = c).

Numerous parameters in the interval type-2 system (and

hence the dual surface controller) were fixed to ensure con-

sistency with the type-1 system. Each experiment involves the

variation of a single parameter. In the standard type-2 case we

defined a parameter movement which defines the width of the

input FOUs and in the dual surface case we used a variable

threshold value with a fixed movement value of 5.

As a validation exercise we ran experiment one (low noise)

with type-2, non-stationary and dual surface controllers with

the parameters including movement value and threshold (where

appropriate) set to zero. This is used to highlight that when

upper and lower membership functions are set to be equal,

the footprint of uncertainty is reduced down to type-1 sets.

This confirmed that the performance is equivalent to that of

the standard type-1 system. The small disparity was put down



TABLE II
RMSE AND TOTAL TIME TAKEN FOR COURSE COMPLETION AT LOW

NOISE LEVELS. MEAN AND STANDARD DEVIATION OF 30 RUNS WITH BEST

IN CATEGORY SHOWN IN ITALIC, BEST OVERALL CONTROLLER IN BOLD

AND VALUES THAT ARE STATISTICALLY DIFFERENT FROM THE TYPE-1
CONTROLLER ARE UNDERLINED. PARAMETER REFERS TO MOVEMENT IN

NS AND IT2 CASES AND THRESHOLD IN THE DS CASE

Variety Parameter Mean Std. Dev Mean Time
Value RMSE RMSE Time Std.Dev

PI N/A 18.01 0.30 146.56 2.02

Type 1 N/A 16.32 0.17 140.80 0.66

Non Stationary 2 17.03 0.64 139.96 1.16
Non Stationary 5 16.72 0.54 139.28 0.63

Non Stationary 10 16.99 1.14 139.59 1.41
Non Stationary 20 16.74 0.55 140.07 1.10

Type 2 2 15.97 0.62 140.42 1.03

Type 2 5 15.84 0.28 140.65 1.18
Type 2 10 16.04 0.53 140.80 0.66
Type 2 20 18.94 0.57 150.03 2.69

Dual Surface 2 19.13 0.61 153.80 1.86
Dual Surface 5 19.34 1.35 150.57 3.35
Dual Surface 10 16.73 0.59 145.43 1.33
Dual Surface 25 15.80 0.24 149.10 7.22
Dual Surface 50 15.99 0.25 142.38 3.59

to operations in the system such as floating point arithmetic

which are performed in different orders in the type-2 based

and non-stationary systems. We are therefore satisfied that our

type-2 and NS implementations are valid and correct when

compared with the type-1.

A. Hypothesis

In our experiments we predict that all controllers will show

a reduction in performance as the amount of noise introduced

into the environment is increased. We anticipate that the

performance decrease shown in type-2 systems will be less in

magnitude than that of the type-1 controller due to their ability

to deal with uncertainty. We also aim elucidate the influence of

the size of the FOU on the overall performance of the type-2

controller. In our experiments we ascertain if controllers with

larger FOU values will produce improved performances over

those with smaller FOUs under higher environmental noise

conditions.

V. RESULTS

From Figure 3, it can be observed that as the noise in-

creases (left to right in the subsigures), the courses increase

in deviation. This aligns with the hypothesis that increase

in environmental noise will result in increasingly non-linear

routes.

The results of experiment one (low noise) are shown in

Table V, in which it can be observed that the standard type-

2 interval controllers have variations in which the RMSE

performance is shown to be significantly better than the type-1

and PI controllers. However, there is a peak in the performance

increase which occurs at a FOU size of 10 after which

performance reduces and drops to lower than that of the PI.

TABLE III
RMSE AND TOTAL TIME TAKEN FOR COURSE COMPLETION AT MEDIUM

NOISE LEVELS. MEAN AND STANDARD DEVIATION OF 30 RUNS WITH BEST

IN CATEGORY SHOWN IN ITALIC, BEST OVERALL CONTROLLER IN BOLD

AND VALUES THAT ARE STATISTICALLY DIFFERENT FROM THE TYPE-1
CONTROLLER ARE UNDERLINED. PARAMETER REFERS TO MOVEMENT IN

NS AND IT2 CASES AND THRESHOLD IN THE DS CASE

Variety Parameter Mean Std. Dev Mean Time
Value RMSE RMSE Time Std.Dev

PI N/A 23.25 0.30 204.69 12.97

Type 1 N/A 24.47 0.76 221.34 8.46

Non Stationary 2 22.86 1.99 160.50 9.17
Non Stationary 5 22.21 4.11 172.53 23.17
Non Stationary 10 20.27 3.18 158.53 3.61
Non Stationary 20 21.09 2.80 161.09 9.23

Type 2 2 25.65 1.39 189.81 11.69
Type 2 5 20.48 3.34 178.64 20.19
Type 2 10 19.32 1.28 168.39 11.24

Type 2 20 26.00 5.31 186.87 5.34

Dual Surface 2 20.59 0.96 168.62 7.85
Dual Surface 5 23.06 5.10 181.94 19.03
Dual Surface 10 22.02 0.92 173.54 12.54
Dual Surface 25 19.75 3.84 171.27 12.66

Dual Surface 50 18.81 1.61 174.35 18.10

A similar pattern is observed in the case of the dual surface

controller. However, in this case both RMSE and time taken

start off lower

than even the PI but then improves to show the best

performance overall. We hypothesise that if the threshold was

further increased performance would once again eventually to

TABLE IV
RMSE AND TOTAL TIME TAKEN FOR COURSE COMPLETION AT HIGH

NOISE LEVELS. MEAN AND STANDARD DEVIATION OF 30 RUNS WITH BEST

IN CATEGORY SHOWN IN ITALIC, BEST OVERALL CONTROLLER IN BOLD

AND VALUES THAT ARE STATISTICALLY DIFFERENT FROM THE TYPE-1
CONTROLLER ARE UNDERLINED. PARAMETER REFERS TO MOVEMENT IN

NS AND IT2 CASES AND THRESHOLD IN THE DS CASE

Variety Parameter Mean Std. Dev Mean Time
Value RMSE RMSE Time Std.Dev

PI N/A 25.85 0.38 157.2 1.41

Type 1 N/A 27.43 0.93 153.61 3.53

Non Stationary 2 31.22 4.55 153.83 7.37
Non Stationary 5 22.21 4.11 172.53 23.17
Non Stationary 10 20.27 3.18 158.53 3.61
Non Stationary 20 28.69 1.35 151.23 2.60

Type 2 2 25.48 0.66 149.70 2.08

Type 2 5 25.33 1.36 150.19 2.33
Type 2 10 25.83 0.93 149.77 2.75
Type 2 20 32.72 1.92 172.37 17.31

Dual Surface 2 24.11 1.15 141.09 5.76

Dual Surface 5 28.93 7.41 152.49 10.02
Dual Surface 10 29.12 8.46 151.91 12.63
Dual Surface 25 26.09 0.84 151.26 2.56
Dual Surface 50 25.95 2.66 149.81 2.86



(a) Exp 1 Course Example (Low Noise) (b) Exp 2 Course Example (Medium Noise) (c) Exp 3 Course Example (High Noise)

Fig. 3. Pots of example course taken by PI (green) and Type-2 (blue) at low, medium and high noise levels. Course end point shown as a red circle.

dip below the PI performance level. In this experiment these

RMSE improvements do not lead to a significant reduction in

time to complete the course compared with the type-1.

Experiment two (medium noise) increases the amount of

noise present in the environment with the results shown in

Table reftab:Exp2. These clearly show the anticipated drop in

performance with the average increase in RMSE being 5.06

and the mean increase in time being 40.2 seconds. A very

similar pattern to the previous experiment can be observed

in the performance values of the standard type-2 and dual

surface results with a peak in performance being observed at

a movement level of 10◦ for the interval type-2 controller,

and at a threshold of 50 for the dual-surface controller. Once

again it is hypothesised that a threshold greater than that tested

would show a drop in performance. Overall, this experiment

demonstrates that the type-2 controllers all out-perform the

type-1 variety under these noise conditions.

Table V summarises the results of experiment three (high

noise). The overall the performance is somewhat lower than

for the previous experiment with only one configuration of

the dual-surface controller obtaining statistically significant

improvements over the type-1 controller, whilst none of the

standard interval type-2 or non-stationary approaches achieved

this (in the time taken metric), though the non-stationary

controller did produce two cases in which the RMSE was

improved significantly. The mean RMSE increase between

experiments one and three were 9.57 with an average time

increase of 10.4s.

Two-sided unpaired Mann-Whitney tests are used to de-

termine any statistically significant differences between the

type-1 compared against the non-stationary, type-2 and dual-

surface controllers. This is performed for both RMSE and time

taken metrics with a p-value of 0.05 being used to reject

the null hypothesis. This test is also performed for the PI

and type-1 controllers for all three experiments. The type-1

RMSE proved significantly lower than the PI with low noise

(experiment one). For medium and high noise, it was found

that the PI is significantly better (lower RMSE) than the type-1

controller. However, in the cases of the total time taken, the

type-1 controller was significantly better (lower) than the PI in

low and high noise, with the opposite being true for medium

noise.

VI. DISCUSSION & CONCLUSIONS

Our findings are summarised below, followed by a more

detailed analysis and discussion in the following section.

• At low and high noise levels the more sophisticated

controllers generally do not show a statically significant

improvement when compared to the type-1 controllers.

Specific controllers in each category do show this im-

provement however.

• At medium noise levels type-2, non-stationary and dual-

surface controllers generally do exhibit statistically sig-

nificant improvements on the type-1 method.

• The results difference between PI and type-1 controllers

show that type-1 does improve upon the PI for the RMSE

metric and improves under lower noise conditions and low

and high noise conditions for the time metric.

The fact that the PI controller actually out-performed the

type-1 controller in some experiments, however insignificantly,

does tend towards the conclusion that some aspects of the

type-1 system were not tuned optimally and that further work

may be required in this regard. However, any changes required

would also affect the other controllers, which have been based

on this type-1. For this reason, we do not anticipate that there

would be a great deal of alteration in the general ordering

of the performance of the various controllers, were this to be

done.

Overall, the performance of the pure type-2 controller was

somewhat lower than anticipated and it failed to perform

significantly better than the type-1 system in some cases, as is

especially evident at low and high noise levels. One potential

reason that this could be attributed to is the somewhat naı̈ve

method by which the FOUs were generated — that is by

blurring a type-1 membership function in an equal distance

in either direction. However, it has been shown that simple

augmentations made to type-2 systems in form of the dual-

surface controller can improve the results of this controller



(a) Type-1 Control Surface (b) 20 Non-stationary Control Surface (c) Movement 20 Type-2 Control Surface

Fig. 4. Control Surfaces for Type-1, Type-2 (Movement=20) and Non-stationary (Movement = 20) Controllers at varying noise levels

(a) Type-1 Zoom Surface (b) 2 Non-stationary Zoomed Surface (c) Movement 2 Zoomed Surface

(d) 20 Non-stationary Zoomed Surface (e) Movement 20 Type-2 Zoom Sur-
face

Fig. 5. Zoomed view of control Surfaces for Type-1, Type-2 and Non-stationary Controllers at 2 and 20 movement

type somewhat and that if alternative methods for selection

between the different outputs were investigated performance

could be improved even more.

The results of the non-stationary approach in these ex-

periments shows that in some situations that it can provide

equal, or better performance than similar type-2 or dual surface

controllers showing that these approaches do offer a viable

alternative to type-2 systems as, even though their performance

is not always fully comparable, the simplicity to implement in

conjunction with the lower computational overhead does give

this approach several distinct advantages.

In all of the more sophisticated controllers, the size of

the movement (FOU size in type-2 based and horizontal

perturbation) had a large effect of the output of the system.

In almost all cases there were values selected in which

performance decreased markedly. For example, using a value

of 20 movement in all three experiments caused the type-2

controller to perform significantly worse than a movement of

10. When the membership functions and FOUs at these levels

are observed (Figure 1) it may be suggested that in such cases

the degree of overlap would cause considerably more rules

to fire than occur at lower movement levels indicating that



would would either have to alter the rule-base to accommodate

this or change the shape or spacing of the fuzzy sets so that

this was less of a problem. This therefore implies two things.

Firstly, the shape of the FOU may well be less important that

its overall size or width and, secondly, that the selection of

this size must be matched to the size of the uncertainty of the

environment in which the controller must perform. To support

the experimental work done we have also generated control

surfaces for each of the described controllers. Inputs were set

between -180◦ and 180◦ for both inputs and increased in 1◦

steps which then map to output percentages between -60% and

60%, resulting in Figure 4 and (zoomed in) Figure 5. It can be

seen in the type-1 controller (Figure 4(a)) that the gradient

changes are very sharply defined (causing sharp controller

changes), which contrasts with both the non-stationary and

type-2 controllers that are much smoother, leading to smoother

controller transitions. Both varieties show a different type of

smoothing with the non-stationary displaying more randomly

distributed output points and the type-2 showing a more linear

smoothing but both do show the same pattern that as the FOU

is increased the smoothness of the transition also appears to

increase.

While both of these controllers show this smoothing be-

haviour, it can also be observed in the type-2 surface that

there seem to be artefacts in the form of white lines and areas

which are not present on the other surfaces and which seem to

increase in size as the footprint of uncertainties are increased.

The exact nature and reason behind these artefacts are not yet

fully understood but have recently been discussed and reasoned

about in [18]. However the existence of these discontinuities

highlights the complexity of designing and implementing type-

2 fuzzy systems and shows that it is far from a trivial task.

Currently available software for implementing type-2 systems

is also fairly limited — while some free libraries exist many are

implemented in MATLAB which is sometimes unavailable due

to cost and licensing issues. There are however a great many

type-1 libraries available at no charge and adaptation of one of

these to create a non-stationary systems is trivial while adding

the necessary code to enable type-2 is significantly harder.

In summary, these experiments show that using type-2 con-

trol can certainly give performance that exceeds that of type-

1 controllers under certain environmental conditions (medium

noise, in our case), whereas this performance gain is not

necessarily seen in conditions wither of too low noise or too

high noise. While this has long been suspected, we believe

this paper provides clear experimental confirmation of this

observation. We can also see that with the increase of noise

this ‘optimal’ FOU size will increase with it and that the dual-

surface controller gives a computationally inexpensive method

for getting even more performance out of a type-2 system, but

again careful selection of the threshold value is required to

achieve these gains.

VII. FUTURE WORK

We have shown that type-2 based systems can certainly be

derived from type-1 and produce performance that exceeds

type-1 and PI based approaches under certain conditions,

described here as a medium noise environment. Further work

is required is to formalise these findings and develop a method

by which noise levels can be used to generate an estimate of

the FOU required for optimal performance to match the given

certain conditions. For example in the above case, we would

like be able to estimate an effective FOU size based on the size

and frequency of the wind changes in the environment. This

method could also be applied to non-stationary approaches to

observe its behaviour and performance in these scenarios.
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